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An integral exirapolation theorem with applications
by
R. A KERMAN* (8t. Catharines, Ont.)
Abgreact, Tt 7' be a sublinear operator mapping the simple, integrable functions

on w o-finite moasure space (X, ) to the measurablo functions on another such
spuce (X, py). Then, for certain growth funection b, we have the inequality

[ i 8 oo
JEn* e ds < 0 1s7 [ ) blsfwdu+ [ f*u) b (ufs)duju] ds] ,
0 0 0 8,

involving the noninercasing rearrangements of 7f and f if and only if

110 e dus () < B} [ 17 @)P dmiw)
X X

with

?* »*
By ~—0( lb(expp 1))

This rosult is applied to the study of convolutwu opcmtcns with kernels K(z)
= b(1flx]) cotmw, — 1/2 < < 1/2.

1. Introduction. The first extrapolation theorem, due to S. Yzmo (101,
appeared in 1951, It asserts that, for a certain kind of transformation 7,
mapping I* (a, b) to the measurable functions on (a, b), and a &k > 0, there
oxist positive constants A, and B,, independent of f, such that

b b

J 0L @)ldy < Ay [ 1f (@) log"(L-+1f (@)]*) do -+ By,
provided
(1.1) f (2f) ()P << B j (f (@) P,

with B, « O (1j(p —1)F) also independent of f. Using this theorem, Yano
proved 1;he boundedness from LlogT to L' of the classical maximal function
and conjugate function operators, results of Hardy-Tittlewood and A.
Zygimund, respectively.

* Rewearch partly supported by NSERC Grant A4021.
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In 1963, O’Neil and Weiss [8] proved an inequality for the conjugate

function closely related to the LLog Ii-» L' result. Given fin L'(—~1/2, 1/2),
we define its conjugate function f by
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fly) = Lm fly—m)cotmrde, —1/2<y<1/2.

&0+ e<lz)<1/2
Transferred from (-—m, ) to (—1/2,1/2), and modified somewhat, the
inequality of O’Neil and Weiss reads as follows:

11 4

[P s)as <0 [(P+Q)f*(s)ds,

0 0

(1.2) 0<t< 1.

Here, f* and f* are the nonincreasing rearrangements of f and f, and

Kl 1
(BFYs) = 7' [1*(w)du, (@) = [ f*(w)dufu.
0 &

Calderdn [3] later showed that (1.2) holds for any linear operator T,
which, together with its transpose, is of weak types (1,1) and (2,2). Such
operators have the B, in (1.1) of order p*/(p—1), 1< p < co. A special
case of our extrapolation theorem shows this latter property characterizes
the T' for which Tf can replace f in (1.2).

Theorem 3.1 given, for now, on the interval (0, 1) shows that for cer-
tain growth functions b (1), defined on (1,c0), and operators 7', the inequality

i |2 8 1 .
f (Tf)*(s)dsgo[ f [8*1 [ 1 ()b (s fu)dn + S f*(u)b(u/s)du/qus]
Q 0 0 k] -

(1.3) is equivalent to

1 1
[1enwra <z [y, wm 5,- O(E}j—:—--b(exp — ))

0

An important example of the growth functions we consider is b (t)
= (log,#)*%, a > 0, which corresponds to the order p**/(p —1)* The vesnlt
(1.3) for such power growth rates has heen obtained independently by
B. Jawerth in an abstract setting,

In Section 4, Theorem 3.1 is applied to the study of the class of eon-
volution operators with kernels K (w) == b(1/ l%]) cotnu, —1/2 < @< 1/2,
There, we will need a pointwise version of (1.2):

oy <o@+) ),

This is seen to follow from Theorem 8§ of [3], with p, == g1 = Py Pa = (s
= p/(p —1), on letting p—>1+, in view of the order properties of the weak

0<i< 1,
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type norm of the mapping f —>f . (See [5].) A direct proof, using the methods
of [3], is given in [1].

As usual, the constant (' appearing throughout is not necessarily the
same at each occurrence.

2. The operators P, and Q. Given f in the class § of simple, integrable
functions on (0,7), 0 <1< oo, we define

f
(Puf) () = t7 [£(s)b(2/s)ds

and

1
(@)Y = [ f(s)b(s/t)ds/s.
t
The function b associated with these operators is positive and Lebesgue-
measurable on (1, co).

Such generalizations of the well-known Hardy operators P and @,
mentioned in Section 1, have been studied by many authors. See [2], +3,
for example. Our coneern is to study the growth with p of | P, 4-Gy|l,,, the norm
of P, @, as an element of the space [L”] of bounded linear transformations
from L?(0, 1) to itself. This norm is, of course, determined over f e S.

A famous result of Hardy, Littlewood, and Polya, [4], p. 230, implies,
in this instance, that

1Py, < fl b(1/s)s1Pds = }Ob(s)s"p“zds,
and U 1 I1<p< oo,
1911, < fb(s)s"”p”lds,
i
Hence, P, e[L™] and @, € [L‘j whenever
fb(s)ds/sz< 0,
it

2 condition which from here om we impose on b.

Since the operators P, and @, are adjoints of one another and the
order function claimed for ||P,-+@l, remains the same on replacing p by
p/(p —1), it will be enough to consider [P/, as p—1-- in the proofs below.

LuvmA 2.1. The norm of Py in [L?] has at least the order of

exp (p*(p—1))
b(s)dsls as p—>1-+.

1
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Proof. The Marcinkiewicz interpolation theorem, as proved in [9],
shows ||Py, is equivalent to the least congtant B, so that

(2.1) sup 4o f (P,,XF)(s)ds < B,lBM?,

- o<t<1 H
whenever B iy a Lebesgue-measurable subset of (0,7) and [Z] its Lebesgue
meagure. The supremum in (2.1) occurs when ¢ > |H| and the contribution
of the integral of P, X7 is substantially that of

i 22|
(2.2) fds/sf b(s/u)du
[F2]] 0

The substitution « = sv in (2.2), followed by a change in the order of
integration, yields ’

\BI/E
f b (1/v) [t — | B dv+ || jb 1/v) [1/@-110%,

1)/

and so, effectively, [P, is the largest possible value of

¢
(2.3) #0-1 [b(s)ds/s,
1
when > 1. Now take § = exp (p*/(p—1)} in (2.3).
The next two results deal with cases in which b is monotone.
PROPOSITION 2.2. We have

2 )2
[[P,,—]—Q,,[['sz(exp~g~—~), 1< p< oo,

if either b is noninereasing and differentiable with imeb' (1) /b (1) = 0 and

>0
(2.4) bM< Mb(), t>1,
where 1 << M < 2, or b is a nondecreasing, concave function satisfiring
(2.5) b)) < Cb(D), 1>1,

Jor some C > 0.

Proof. By Lemma 2.1, ||P]], is at least as large as 'stated. The vep-
resentaticn obtained for |}])b1] i that lemma now reduces the proot o the
assertion

(2.6) sup P (¢) logt < C ————Dlexp _Z)_'.__ ,  Ll<p2,
i>1 -1 p—
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This is obvicus when b is nondecreasing. To see it is enough when b is non-
inereasing note (2.4) yields

3
j b(s)ds/s < [b (2 h’f b by 2087 log g ] < Cb(2) log t.

Giving the details for the case b nondecreasing only, we show that as p — 1
the supremum in (2.6) oceurs at a ¢, with \

(2.7) exp P < i, < exp 20
]9"‘1 D p__l’

The inequalities
t
b(t) = b(n)+ [V (w)du<bn)+1b'(n), t>n,
n a fixed positive integer, and
b(t) > Cb(#) > 0¥ (1), t>2,
together imply

lim—b—@— = Hmb' () = 0.

{00 {0

This ensures that b(t) increases slower than any power of ¢, since

bt) _ 2

t I

n

for any positive integer n. Thus, 1< 1,<C co.
Setting the derivative of t”“"lb (t)logt equal to 0 we find

ty
(2.8) 1, = exppp (1 1, b((i )))

The bounds (2.6) on t, now follow, as (2.7) entails limf, = co and
D00

" (1 b(2)—2b' (¢

W b=

0] G :

for sufficiently large t.

Examprres. The functions ¥ (¢) = (log,1)*, o > 0, satisfy the hy-
potheges of Proposition 2.2, as do those of the form b(f) = s(logt), where
s(u) is increasing and slowly varying.

In the proof of Theorem 4.1, certain auxilliary operators, involving b,
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arise. For fe § they are defined by

¢
b(1/t)
(B0 == f fls)a

and

= [fepam =
¢

LEMMA 2.3. Suppose b (1) is nonincreasing on [1, oo) and b(2t) < Cb(1)

there. Then, whenever fe S and 0 <t <1,

i 1
@) [P (s)ds < O [ (Puf*)(s)ds,
0 0

-

) 13
@ [ (@) (0)ds < € [ (Quf)(s)ds

0

Proof. Inequality (i) is equivalent to

where

Di(s) = fb(l/tu)du/u and  Dy(u) = fb(]./u)du/u.
8/t s/t

But, b is nonincreasing, 80 @, (s) < Dy(s), 0 < s < ¢,

By Theorem 7 of [3] it is enough to prove (ii) when f = x,. Applying
Tubini’s theorem to the integrals in (ii), it is seen the proposed inequality
will hold if

t
(2.9) [o @ uyan < (‘tfb 1/w)ydu
0
and
) 1= 171
{2.10) tf (1 /fae) dus Jur << (f (h[/ufb wls)ds,
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for 0 <t |H). Now (2.9) i\ true since b iy bounded. Again, observing

that b(1/u) < b(|B|/u) and fb w[s)ds = (b (u [t), we sec inequality (2.10)
follows if

171 1|

(2.11) [ 008l fuydn i < [ b (uftydu .
t {

In fuct, simple changes of variables show the two integrals in (2.11) are
equal.

3. The extrapolation theorem.

TumoREM 3.1. Let T be a sublinear operator from the class § of simple,
integrable functions on a o-finite, non-atomic measure space (X, u,) to the
measurable ones on another such space (X, po). Suppose b is a positive func-
fion on (1, o) which is either decreasing with b)) < Mb(t), t>1,
1< M« 2, or increasing and concave with- b(t?) << Ob(t), t> 1. Then, the
Sollowing are equivalent:

(1) There is a positive constant C, independent of f e 8, such that

4 11
[ (@) (s)ds < € [ (Py+Q,)f*(s)ds, 1> 0.
0 0]

@ [N duly Bﬂf f@)dp @), fes,

X2
qwhere

p?
—1

B})‘_‘:O( ﬁ-
»

7 )), 1< p< oo,

exp
SF
Proof. That (1) implies (2) is a consequence of [6], Lemma 1, and
Proposition 2 '
To prove the converse we show there is a positive constant ¢ so that
for any set F of finite w,-measure

fea(75)
(3.1) TN @) dpa(y) < C [ (Pyp-+Qu)f* (s)ds,
I v
which iy sufficient, asg
11

[g*s)as = sup [ lg@)idus(m)-

o no(E)<t g
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Fix the set E. By Fubini’s theorem

uy (B

) \ 0
[ (Pt @ (s)ds = [ f(s)B(s)ds,
[ 0
where @ (s) denotes the noninereasing function

(Py+ @) K (0,uq9) (8) -

Therefor(?, (3.1) amounts to showing 7' is bounded from the Lorentz space
A((.D)‘(wmh u'nderlying meagure space (X, u,)) to the Banach space of
funetions which are pg,-integrable on H. We may restriet attention to

f = am I 2 set of finite u,-measure. See [3], Theorem 7.
Now,

ST @) < [ [ U Tum) @) Pdpe )] ua(BY 7,

b %,

and hence, from (2),
J Um0 usly) < Bous (B2 (1)1
B

Thus, we require

#(F)

(2) Bpuy (B us (B < 0 [ @(s)ds
0

~for some p >1. We consider two cases, de i i
pending on the size of
= o (B) [pir (F'). ’ ’

(i) a> 1. The integral on the right side of (3.2) is no smaller than
1 ‘ a -
m(F) [[b(1s)as+ [b(s) dsfs).
[} 1

So, we need only show

2 2
_101__ b (exp 4

. ; ds
5] <o oo
1
when o > ¢. The choice p = 1{+ 1/loga works, in view of (2.4) and the

equivalence of the functions f b(s)-ds
{ 8

and b (¢)logt.

(ii) @< 1. Using symmetry, we obtain

#1(F) iy (.E)

Of D(s)ds = | (PyeF Q) Lo,y (5)ds,

0

icm
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the latter integral being bounded below by

‘
a—1

,ug(E)Ub(l/s)ds+f b(s) ds}s].
0 1

This reduces the result to the inequality
-l

p? 1 " ds
< » —
1)\G‘a J b(s) =

2
jz_ 1~b (exp Py
which bolds when o< ¢7? if we take p = logl/a.

4. Conyolution operators. O'Neil, in [7], uses & generalization of
(1.2) to prove, modulo a change of variable, that odd kernels of the form
K (x) = b(1/|n|)cotna define bounded convolution operators between
certain pairs of Orlicz spaces on (—1 /2,1/2). Given Theorem 3.1, these
results suggest the following -

TamormM 4.1. Let b(w) be a differentiable function on [1, co) which
decreases to 0 and which, together with —axb’ (), s slowly varying and for
which b(z*?) < Mb(x), L<< M < 2. Then the convolution operator

(Zf)(y) = lim fly—o)K (@)do

a0 g 2]l /2

with odd kernel K (x) = b(1/#]) cot ne, satisfies the inequality

i 1
(+1) [ (s)as < O [ (Pt @u)f*(9)ds,  0<t<1,
0 0 )

0 a positive constamt independent of fe&.

The conditions put on the kernel K in [7] enable one to express it
as a conjugate function. More precisely, K = I, where & is even, integrable,.
and decreasing on (0, 1/2). We now obtain something close to this basic
representation of K under our somewhat different assumptions on b.
These guarantee (see [11], p. 189) the well-known asymptotic estimates

%)

1
(1) Zb(%)simnnm ~ =g b (1 [2),
te=] w
ii {Rb(A ) COR2 NI o -wli-'r‘zb'(llw)
(i) 2 n) COB2 NI o2 5@ 1 [
el

as @-=0-}-. :
e require more information on the error term in (i).
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Leyara 4.2, If b(x) satisfies the hypotheses of Theorem 4.1, then

b(1/iz])cot e = 2b(n)sin2n7cm+1%(w),

n=1

where R(x) = O(—a~b(1/|z])), and hence s integrable on (—1/2,1/2).

Proof. It is enough to consider # > 0. We have

D'b(n)sin2nmz = eotnw D) (b(n) —b(n+1))(1 —cos2nma)+ 0(1).

n—1

~with. )
{a/e] , {1/a)
; (o(n)—b(n+ 1)) (1 —cos2nma) < O[1/w]™2 2 (B(n)—bn-+ 1)jns,

nw=l
‘The latter is no bigger than
[1/e]
O[l/m]“E —b'(n)n? < —C[1[2]b"([1/e]) = O —2~'b' (1/m)),

n=1

ginee —ab’(®) is slowly varying. Again,

Z (0(n)—b(n+1)) (1 — cos 2nmx)

n={1/r]+1
aquals
b(L/z) — (b(n) —b(n+1))cos2nam+ O(1).
n=[1/z]+1

The function —a(b(x)—b(x-+1)) is equi
[)) 18 equivalent to —uab’(z), and so, as i
the proof of 2.15, p. 189 of [11], it is seen that @ 7 .

N (b))~ d(n+1))cos Znma= O (5= [b(1/m) —b(Ljw+ 1))

n=[l{r]+1
’ = 0(—a7"b'(1/z)).

. .Remark. Tl}e above lemma and (4.2), (ii), show X is the sum of the
Tc;ln]ugate of an m‘nfagra,ble function and a function which is itself in L.
o :,t f’che §1111(1_ -f)u;uﬁmn of the series (i) in (4.2) is indeed conjugate to the
: of series (ii) follows from the second part of the proof of rem
P. 183, and Theorem 3.25, p. 90, of [11? proof of heorem 15,

Proof of Theorem 4.1. We show

t ¢ )
{(4.3) Uf(Tf)*(s)ds< O [(P'+QQ")f*(s)ds, O<it<1.

’

icm
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By Lemma 2.3,
i i
[Pf()is < [Pof*(s)ds  and - Q@'f" < 0QT".
0 0

As @ is bounded on L?(0,1) for 1< p < oo, this implies T has

2

Pt
p—1
But, T is essentially self-adjoint and so B, has that order in general. This
ensures (1.3), in view of Theorem 3.1.

The remark following Liemma 4.2, together with Young’s convolution
theorem, means it is enough to obtain (4.3) when T is defined to be the
conjugate function of g, where

p2
Bp;—.o(pmlb(exp )) as p—>1+.

1/2

gu) = () (w) = [ T(w—0f)dt,

—1/2
(4.4) k(z) = ) b(nycosznme = 0 (7% (L/lal),
=1

being even and integrable. From the pointwise inequality for the conjugate
fanction operator,
(TH* () <OP+Q)g* (), 0<s<1,
and so
P(Tf)*(s) < OP(P+Q)g"(s).= C(P+ Q)Pg* (s)-

The basic lemma on convolution operators [7], p- 134, mow. yields
i i 1
[zt is)as < 0[]J(s)ds+sz(s)ds/s],
0 0 t
where
s L8 . 1
J(8) = [s"‘lff* (/Lb)dul” 70*(%)(1%‘ + ff*(u)lc"‘(u)du.
0 "M ) s

Trom (4.4) and
8
b(Lfs) = [ —uy (Lfu)du > s (L[s)
[

we get J(s) dominated by a constant multiple of

(2" + Q" (9)-
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1
This gives the right bound for [ J(s)ds, because
. 0

i

t
bef*(S)dS < OfQQbf*(s)ds.

o

L
Again, t [ J(s)ds/s equals t times
2

t 1 1 1
[ @)au [bLs)ds/st+ [f*(u)du [o(Lis)dsis*+QQf* (2),
[ [3 1 w
which is less than a constant multiple of
i
HP -+ QP+ Q@) (1) < [ (p°+ @+ Q@°)f* (s)ds.
0

This completes the proof.

Remarks. 1. With the pointwise inequality for the conjugate function
‘operafor in mind, one might expect to have

(TfY* () < O(Pp+Qp)f* (1), O0<it<1l

for all feS. But, assuming this to be true and taking f = MY, 1m LOT
n =1,2,3,... successively, we obtain

E*(1) < OLmb(nf) =0, 0<t<<1.

2. Though the P, and @, in (4.1) are the best possible choice from the
class of maximal operators reflecting just the growth of the norm of 7,
- they don’t yield all its characteristic properties. Thus, for example, Py-+Q,
is not bounded between all the Orlicz spaces that are continuous pairs
for T'; the P°+@° and even P’--QQP, operators, however, are. This,
along with (4.3), suggests that, using other methods, (P?+ @Q%)f*(s) could
be substituted in the integrand on the right side of (4.1). We hope to
congider this in a future paper.
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