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in muclear Fréchet spaces
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Abstract. A Fréchot Schwartz space has the bounded approximation property
(resp. the boundoed projection approximation property) iff the identity operator on
tho space is the pointwise limit of a sequence of finite rank continuous linear oper-
ators (resp. of linite rank continuous linear projections). The space hag an absolute
unconditional partition of tho identity (resp. an absolute finite dimensional decompo-
sition) ilf there exists a series of finite rank continuous linear operators (resp. a series

> By, of finite rank continuous linear projections with B,,B,, = 0for every n, m with
T

n % m) converging pointwise absolutely to the identity operator.

In the present paper we show that every Fréchet Schwartz space with the bounded
approximntion property has an absolute unconditional partition of the identity, that
every Préehiot Schwartz spaco with a continnous norm and the bounded projection
approximation property has an absolute finite dimensional decomposition and that
every nucloar Frdchet space (rosp. Fréchet Schwartz space) with the bounded approxi.
mation property is isomorphic to @ complemented subspace of a nuelear Fréchet space
(resp. Tréehot Schwartz space) with an absolute finite dimensionsl decomposition.

Introduction. In the present paper we are interested in nuclear Fréchet
spaces with the bounded approximation property.

It was proved by Dubinsky [2], [3] that not every nuclear Fréchet
spaces hag the bounded approximation property and by Mitjagin and
Ziobin [9], [13] that not every nuclear Fréchet with a finite dimensional
decomposition, and hence with the bounded approximation property,
has a hasis. : ’

Wae deal in this paper with the question if the existence of the bounded
approximation property implies that of a finite dimensional decomposition
in nuclear Fréchet spaces. ‘ S '

We show the following main results:

(1) every Fréchet Schwartz space with the bounded approximation
properly has an absolute unconditional partition of the identity, -

(2) every nuclear Fréchel space (resp. Fréchet Schwartz gpace) with
the bounded approximation property is isomorphic to a complemented
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subspace of a nuclear Fréchet space (resp. Fréchet Schwartz space) with
a finite dimensional decomposition,

(3) every Fréchet Schwartz space with a continuous norm and the
bounded approximation property has an absolute finite dimensional
decomposition.

Fréchet Schwartz spaces seem to be a natural framework for mosb
of the methods used in this paper, hence we state our results in this context,
though we arc mainly interested in nuclear Fréchet spaces.

Our first result solves a problem posed in [2]. The proof uses a result
of Pelezyniski and Wojtaszezyk [11], who show that every separable Fré-
chet space with the bounded approximation property is isomorphic to
a complemented subspace of a Fréchet space with n finite dimensional
decomposition. A. slightly stronger version of our fist result and the embedd-
ing method of Pelezyhski and Wojtaszezyk in [11] yield our second
result.

This result is related to a result of Pelezyiiski [10], who observed
that every separable Fréchet space with the bounded approximation
property is isomorphic to a complemented subspace of a Fréchet space
with a basis (see [8] for a proof), and to a result of Djakov and Mitjagin
[1] who proved that not every nuclear Fréchet space with the bounded
approximation property is isomorphic to a complemented subspace of
a nuclear Fréchet space with a basis.

A result of Johnson, Rosenthal and Zippin [7] is that every reflexive
Banach space with the bounded projection approximation property has
a finite dimensional decomposition. Their methods and a modified version
of our second result allow us to show our third result.

In [5] Johnson shows a result weaker than our third result for the
more general case of separable Fréchet spaces with a continuous norm.
An application of a method of Johnson [6] allows then to prove the follow-
ing result: ‘

For every nuclear Fréchet space (resp. Fréchet Schwartz space) B
with a continuous norm and the bounded approximation property there
exists a nuclear Fréchet space (vesp. Fréchet Schwartz space) F with
a continuous norm and a finite dimensional decomposition such that
the produet space E xF has a finite dimensional deconmposition.

It remains an open problem if every nuclear Fréchet space with
the bounded approximation property has a finite dimensional decompo-
sition.

This paper is part of the author’s Ph.D. thesis prepared under super-
vision of Ed Dubinsky during the author’s stay at Clarkson College of
Technology in Potsdam, New York, during the academic year 1979/80.
The author likes to express hig gratitude to Jid Dubinsky for his invitation,
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his interest, his suggestions and his constant encouragement and to the
whole functional analysis group in Potsdam for the very stimulating atmos-
phere. ‘

Definitions and terminology. A Fréchet space is a complete metrizable
locally convex topological vecor space. Hence, its topology is defined by
an increasing sequence (py), of seminorms. We call (p,); a fundamental
sequence of seminorms. Two sequences of seminorms which determine the
same topology are called equivalent. ‘ )

Let B be u Fréchet space. We will write (H, (p,),) instead of B only if
we want to stress that we consider the linear space B with the topology
generated by (p,),. If a Fréchet space has o fundamental sequence of norms
then we say that the space admits a continuous norm. It I is a Fréchet
space and (4,), is a sequence of continuous linear operators on B and
B, :=A, and B, :=A,,,—A, for every » then the sequence (B,),, is
called the associated sequence to (A,,),.

A geparable Fréchet space E has the bounded approwimation property,
shortly BAP (vesp. the bounded projection approvimation property, shortly
BPAP) iff there exists a sequence (A4,), of finite rank continuous linear
operators (resp. of finite rank continuous linear projections) from F into B
such that lim 4, () = = for every = e H. We say (4,), is a BAP (resp.

n
a BPAP) determining sequence of operators.

The space B has an wnconditional partition of the identily, shortly
UPI (vesp. a finite dimensional decomposition, shortly FDD) iff there
exists a sequence (B,), of finite rank continuous linear operators (resp.
finite rank continuous linear projections with B,B,, = 0 for every n, m
with # s m) such that > B,(#) = & and the convergence of 3 B, (@) is

. n n

unconditional (resp. conditional) in B for every » € . If in addition B, ()
n

converges absolutely for every € B then we say that B has an absolute

n
UPI (resp. an absolute FDD). We gay. that (4,), with 4, := > B;is a
=1
UPI (resp. FDD, resp. absolute UPY, resp. absolute FDD) determining se-
quence of operalors.
An infinite matrix (a¥),, of real numbers with 0<Caf < ak*' and
supak > 0 for every k, n € N is ealled Kothe matriz and the sequence space
n

K (a) {m: @ = (@), T, I8 & sealar for every n,

Prl@) = 2 af|@,| < oo for every k}
"

with the topology defined by the sequence (p,), of seminorms is called
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Kothe sequence space. I B is a Fréchet space, (p),, 1s a fundamental sequence
of geminorms on E and m is a natural number then (#, p,,) means that we
congider the linear space B with the topology generated by the seminorm
- We denote by A’ the dual operator of a continuous linear operator A
from (E(p,),) into (H, (p,),), by ™B’ the dual operator of a continuous
linear operator B from (&, p,) into (H, p,,), by I’ the dual space of B and
by p,, with

Pu(y) = sup{ly(@)|: & B, p,(v) <1}

for every y € (¥, p,)’ the dual norm of p,,.

If A is a subset of a locally convex linear topological vector space
then we mean by cl(4) the closed hull of 4, by span {4} the linear hull
of 4 and by E" the completion of .

From now on the term “operator” stands always for “continuous
linear operator” and “subspace” means always a “closed subspace” if
not otherwise specified.

1. Every Fréchet Schwartz space with the BAP has an absolute UPI,
The following theorem iy well known.

THROREM 1 [11]. Hvery Fréchet space (with a contimuous norm and)
with the BAP s isomorphic to a complemented subspace of a Fréchet space
(with a continuous norm and) with an FDD.

Levwa 1. Let F be a Tréchet space with an FDD), let (p,);, be a funda-
mental sequence of seminorms on I, let (4,), be an EDD determining sequence
of operators on F and let B be a complemented subspace of F. If B is a Fréchet
Schwartz space then for every L there emists a j(k) such that

limsup {p(A, (@) —o): 5 € B, p(2) <1} =0.

Proof. Define g, () : = suppk(A,,(m)) for every % and overy o e F.
n

Then (g,), and (py), are equivalent fundamental sequences of geminorms.
Since B is a Fréchet Schwartz space, for every % there oxists o (k) such
that for every ¢ > 0 there exists o finite set {@y, ..., #,,} in B such that
for every ®e{w: ¢ el, ¢;;,(®) <1} there exists an %€ {0y .00y B}
with g, (¢—2;) < &

The rest of the proof follows then from a standard argument using
the facts that (4,), converges pointwise to the identity operator on B,
that {4,: » € N} is an equicontinous set of operators on (7, qu) for every

kand that(p,),and (g,),are equivalent fundamental sequences of seminorms
on .
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We are now ready to state and prove the main sesult of this section.

THEOREM 2. Let B be a Fréchet Schwartz space with the BAP (resp. with
an FDD) and let (p), be o fundamenial sequence of seminorms on E. If
(aF).  is a Kothe matriz then there exists a BAP (resp. an FDD) determining
sequence of operators on B which has an associated sequence (B,), such that

2 APy B, () < 00 for every x € B and every k.

In particular, every Hréchet Schwartz space with the BAP (resp. an
FDD) has an absolute UPL (resp. an absolute FDD).

Proof. Suppose £ hag the BAP. We can assume by Theorem 1 that
B is a complemented subspace of a Fréchet space F with an FDD. Let
(4,), determine the FDD of F. Lemma 1 implies now that for every k
there exists a j(k) such that

limsup{p, (A, (@) ~2): © € B, pjg,(r) <1} =0.
n
Henee we can find a strictly increasing sequence (n(i))i of indices such
that
sup{max{al, aj,;}pi(4, (@) —2): € B, py,(#) <1} <270,
SUP{I‘MX{“?H: a’ﬁi%}pi+l(An(a") '“'75’): @ € By iy (@) < 1} < 27+
for every i and every n = n(i).
Define Dygy: = A,y and Dyt = 4,400y — Ay for every <. We
obtain
sup {afp( Doy (@): % € B, pyy(@) < 1} <2’

for every ¢ and & =1,2,...,i—1 and we conclude

k 0
Z“fplc(pn(i) (m)) < Zafpk(]—)n(i)'(m))'{‘ 2 27 < 00

i=1 i=k+1

for every k and every » € B with pj,,(#) < 1. But this implies

Eal’-“pk(l),,(i) (#) < s for every k and every w e H.

i
The sequence (PA,,); is &« BAP determining sequence of operators on H,
where P is a continuous linear projection from ¥ onto #. Obviously, for
every % there exists an m (k) > & and an M, > 0 such that

2 afpk(l) D,y (m)) < My Z “r:n(k)ﬁm(lc)(l)u(i) (m)) < oo for 6791'57 sek.

This implies that B has an absolute UPIL, if one considers the cage that
af =1 for every n and every k
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If B has an FDD then a repetition of the proof with B = Fand P = I
implies that ¥ hag an absolute FDD.

2. Every nuclear Fréchet space (resp. Fréchet Schwartz space) with
the BAP is a complemented subspace of a muclear Fréchet space (resp.
Fréchet Schwartz space) with an FDD. Let ¥ be a Tréchet gpace, let
(Pr)r Do & fundamental sequence of seminorms on B, let (#,), be a sequenco
of subspaces of F and let A be a subset of N with the natural order.

It K (a) is o Kithe sequence space then the space

K(a)((En)ncfl) o= {117: L= (;I;H,)'IIEA’ &y E-En for every n e A’7

Q@) t = E alp(m,) < oo for overy 70}
ned
with the fundamental sequence (g);, of seminorms s called the sum of
(B ) e in the sense of K (a). We write K (a) ((E,L),,,) instead of XK (a) ((En)nEN)'

We have the following fact:

LEMMA 2 [127. If K (a) is a Kothe sequence space and (), is a sequence
of subspaces of a Fréchet space T then K (a)((En)n) 8 1somorphic to a subspace
of the completion of the projective tensor product of K(a) and E.

' Theorem 2 and arguments of Pelezyriski and Wojtaszezyk [11] allow
_to prove the following proposition.

ProposITION 1. If K is @ Iréchet Schwartz space with the BAP and
K(a) is a Kothe sequence space with aff =1 for every &, w then there ewists
a sequence of BAP determining operators on B with an associated sequence
(By)y, such that I is isomorphic to a complemented subspace of K (a) ((Bn(E))n).

Proof. Let (p), be a fundamental sequence of seminorms on I
According to Theorem 2 there exists & sequence of BAP determining oper-
ators with an associated sequence (B,), such that

PE@) s = Y alp (B, (a)) < oo

n

for every k and every @ e K.

(9%, and (py,), are equivalent fundamental sequences of seminorms on X,

It is then easy to see that the operator U form H into K (a) ((B,L (&) ,1)
with U(ax) = (Bn(m))n for every x e iy an igsomorphic embedding and
that the operator P from K (a) ((BH(E’))n) onto U (H) with

P
P((x,)) = (Bn (Z’I"))n for every (@), € K (a) ((Bi(E)),)

is a continuous linear projection. This completes the proof of the prop-
osition.

TaroreM 3. If B is a Fréchet Schwartz space (resp. a nuclear Fréchet
space) with the BAP then H is isomorphic 1o a complemented subspace of
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a Fréchet Schwarte space (resp. nuclear Fréchet space) F with an FDD.
Moreover, if in addition E has ¢ continuous norm then I can be chosen to
admit o continuous norm.

Proof. Choose a nuclear Kothe sequence space K (o) with af > 1 for
every k, n. According to Proposition 1 there exists a BAP determining
sequenco of operators with an associated sequence (B,), such that B is
jsomorphic to o complemented subspace of K (a)((Bn(E))n). Obviously
K (a)((Bn (E))n) has an FDD. Using Lemma 2 it follows easily that
K (a)((Bn(E))n) is a Fréchet Schwartz space (resp. a nuclear Fréchet space)
iff B is a Fréchet Schwartz space (resp. a nuclear Fréchet space) and
that K (a) ((Bn(E))n) has in addition a econtinuous norm iff # has in addition
a continuous norm.

Remark. Theorem 3 has besides the version for Fréchet Schwartz
spaces and nuclear Fréchet spaces also a version for every subclass of
Fréchet Schwartz spaces which contains with two spaces the projective
tengor product, which contains with each space also each of its subspaces
and each isomorphic space and which contains a Kothe sequence space
K (a) with af > 1 for every n, k. For example, modifications of the concept
of nuclearity can lead to such classes of spaces [4].

3. Every Fréchet Schwartz space with a continuous norm and the
BPAP has an absolute FDD. We start with a modifieation of Theorem 3.

ProrosITION 2. Hvery Fréchet Schwartz space with a continuous norm
and the BAP is isomorphic to a complemented subspace of a Fréchet space
F with an FDD such that on I there ewists a fundamental sequence (D)
of norms and an FDD determining sequence (4,), of operators such that for
every T the space (F, p,)" is reflewive, that the sequence of the extentions of
the A, onto (F,p,)" determines an FDD of (F, p,)" and that (¥4,,), determines
an FDD for (I, p) .

Proof. Let G be a Fréchet Schwartz space with the BAP and let
(¢.); be a fundamental sequence of norms on G. For the choice aj = n*
for every k, n there exists according to Proposition 1 a BAY determining
sequence of operators on & with an assoeiated (B,),, such that ¢ is isomor-
phic to a complemented subspace of ‘

F:= K((L) ((Bn (G))Yb)i
where () with gi{(@,),) : = In*q(@,) for every & and every (a,), € I'is

o fundamental sequence of norms on F. Define
2 3 2\1/2
Qle((mn)n) = (2 ('nl Qk(wn)) )
k)

Then it is easy to see that (¢7), and (gi), are equivalent fundamental

for every k and every (»,),&r.
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sequences of norms on . Set p;, = g3 for every k. Then (¥, p,)" is reflexive,
Let 4, be the canonmical projection from F onto K (a) ((B,(G))%") for
every n. It is obvious that F, (p,), and (4,), have the required propevties,

In the following part of this section we will study more closely the
gituation deseribed in the next remark. It is the purpose of the remark
to fix for later references the notation of the terms which occur in this
situation.

Remark 1. We show in Proposition 2 that every Fréchet Schwartz
space with a continuous norm and the BAP is isomorphic to a complemoen-
ted subspace E of a Fréchet space I with an FDD, where on I there exigty
a fundamental sequence (p,), of norms and an ¥DD determining gequoence
(4,), of operators such that (¥, p,)" is reflexive for every k, that the
sequence of the extentions of the 4, onto (I, p,)" determines an FDI
of (F,p,)" and that (¥4;), determines an FDD for (I, p,). Since H iy ino-
morphic to a space with the BAP, F itself has the BAP. (P,), may determing
the BAP of E. Since F is a complemented subspace of ', there exists a con-
tinuous linear projection P from F onto H. Since P is a continuous linear
projection and {P,: n e N} and {4,: % € N} are cquicontinuous sets of
operators, there exist, for every &, 1(k), L(k) > 0, m(k), M (k) > 0, j(k), J (k)
> 0 such that

24P (@) < I (k) pyqpy () for every » e I,

=
Py (An(w)) < M(B)Ppyy(m) for every m and every a» e I
and

PulPu(@) < J(k)pyay (@) for every m and every w e H.

We choose in addition the sequences (1(%)), (L(%)), (m (%)), (DL (T)) s (4() )
and (J (k)) « Such that they are strictly increasing and termwise larger than 1
and that k <l(k), k <m(k) and & < j(k) for every k.

Lmmma 8. Let B be a Fréchet space and let (p,), be a Jundamental so-
quence of norms on H. If A is a finite rank operator Jrom B into B and if
there exisis an m such that A is also a continuous map from (1, p,) into
(B, ,,) then

Ay ="4(y)  for every y & (B, p,)  and  A'(B) ="A' (T, p,)).

Proof. We have that dim (4 (B)) =7 for an r e N. Ienco A has a
representation

A(w) = Efn(w)w,n tor every w ¢ B
n=1 !
vhere @, e B and f, € (B, p,)) for n =1,2,...,r.
A

The relation of bounded appromimation property 111

It follows that

A (y) = Z'y(wn)fn for every y ¢ B’

n=1

r
’”LA‘I(:’l) = Zy(wﬂ).fn fOP O'V'QI'Y /y € (‘E7 p’ﬂl)’
n=1
which implies the assertion.
The following lemma gives an information how the spaces P (H')
are embedded in P'Y(F) in the situation of Remark 1.
LismMA 4. Let B, (p), B, P and (P,), be chosen as in Remark 1. Then
theye enists a To, such that P, (B') < PI7((F, py:)') for every n and every kg = k.
Proof. {P,P: n e N} is an equicontinuous set of operators from F
into B. Hence there exists a k) and an M > 0 such that

1P P (@) < Mpy (@) for every o .

Since dim (P, P(H)) < oo for every n, there exists for every » a K, >0
such that

K2y, (PP (@) < py (P, P(w)) for every zeB.

Hence P,P is a continuous map from (F,p,) into (H, pg). Therefore
we have (P, P)((B, py,)) = (F, py,) and by Lemma 3

“o(P,P) (B, py,)) = (P,P) (B) = PP, (H)
and thus
Py () < P'Y(F, py,))  for every .

The only restriction on &, is that it has to be sufficiently large. This com-
pletes the proof.

Proposition 2 and Lemma 4 allow now an application of the methods
of'Johnson, Rosenthal and Zippin [7]. The purpose of the following four
Temmata is to ensure essentially that in a Fréchet Schwartz space JI with
4 continuous norm and the BAP for every finite dimensional subspace
@ of 1 and certain finite dimensional subspaces H of B’ there exists a finite
wnk continuous linear projection @ on J, which is the identity on @, whose
dual operator is the identity on H and which is bounded in a certain way.
With the help of this fact ib is thei possible to prove the main result of
this section.

The Lemmata 5-8 and Theorem 4 are modifications of corresponding
results for Banach spaces presented in [7]. In spite of the fact that the
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proofs we give are in many parts identical to those given in [7] wo feel
legitimated to give these proofs,

LEMMA B. Let {X;: j =1, 2, ..., 1} be a sci of linear veclor spaces such
that X; « X;py for § =1,2,...,1—1 and let p; be a norm on X; for j
=1,2, ..., I suchthat p; (&) > ;.. () for every o € X; andj =1,2,...,1-1,
Let G be a k-dimensional subspace of X, and let

{ ) i =1,2, ..., k} = Gx (X p)

be a biorthogonal system with pi(f;) =1 for 4 = 1,2, ..., & Let & = 0 with
s<1 and e(1+e)(1—e)™* M <1, where

k
M =max{§pj(mj): g == 1, 8, ...,l}.

If T is an operator from (X, p,) into (X3, p;) with dim (T(XL)) == N, where
n=k, and T(X;) ¢ X, such that

sup {p;(T(@)~a): w €@ py@) <1} <e for §=1,2..,1

then there ewists an operator 8 form (X3, p,) into (X, p,) such that

(a) dim (S(Xl)) =n, §(X;) =« X, and S(z) =a for cvery x €@,
(b) '8 (X, p)) =T (X, 20), '

(¢) 8 is a projection if T' is a projection,

(1) p,(S@)) < 204(T (@) for every v e X, and j=1,2,...,0.

Proof. U := 1|y is an invertible operator £ 7 ‘
y perator form & onto T’ e
of the assumption " A0, beoamse

sup {p;(T(@)—a): 2@, py(@) <1} <s for 1,2,..,L

I(l)llef1 has fur‘chgx;more for j =1,2,...,1 the estimates |Ul;< L& and
Iz lly fl(l ——zf) . and he.xlwe 10U —I|peglly < &(1—6)", where || | i8
v e‘ usua operator norm, if ¢ and I'(@) are considered with the norm p,.
1(1):1 @ﬂ;- 1,2, ..., b we have | f; (U™ (2))| < (L—e&)"*p;(a) for every o & ()
2,1- : erefore we can extend every fumctional (f;U!) from T(&) onto
T(X,)) to a functional (f,U~")" such that ‘

- Z’;((fg‘v*l)") < {1—eg)™*
and thus Co

2, .. L

pﬁ((f«;U_l)~) <P ((fo—l)N) <(l—g™ for j=1,2

©
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Qonsider the projeetion P” from T'(X;) onto T'(G) with

~

P(x) =

A

(U @)U ()

1

D

T

[

We have
PP (@) < (L48)(L—8) "' Mpy(a)  for j= 1,2,..., L
Set V = U™P" +T|pxy—P" wnd 8 = VT. The map 8 is obviously an
operator from (I'(X}), ;) into (span {F, T (X))}, p). It is casy to check
thati (o) = o for every ®» € G. We have furthermore for j =1, 2,..., 1
sup (p; (V=1 ) (@) : @ € T(X), 2;(0) < 1} <e(l—a) 1+ M <1
This shows that V is injective and thus dim (T (X)) = m implies

dim (8(X;)) = n. From the fact that 8-1(0) and T~ (0) are tinite codimen-
sional and that §71(0) = T-%(0) it follows that

Ls! ((Xn 131)') =1 ((Xz: Pt)')-

Tf T iy a projection, it is easy to calculate that (8 (w)) = @ for every
@ e X; and hence 8 is a projection. '

The assertion (d) follows by another simple calculation. This completes
the proof.

L0 6. Zet 7, (B By P, (Aas (L)), (LB} () and ()

be chosen as in Remark 1. Then there exisis a ko such that for every &, = kv
for every k and every finite dimensional subspace H of PY(F, pk;)’) there
emists @ finite rank operator T from B into B such thal

T'(y) =y for every ycH, T'(F)< Pr(E, pit))

and .
sup {25 5 (T (@) ¢ @ € By Pl +0) (@) <1} < 2 Lk} +4) M (17 +19)
for i=1,2,...,k.

Proof. Let J be the canonical embedding of B as a complemented
subspace of F. Choose %y 1(1) and M >0 such that p,(l)(A"JP(w))
< Mpy, () for every w e F' and every n. Since dim (A,,JI’(F)) < oo for
every m, there exists for cvery # & K, > 0 such that

Kb, (4T P (@) < Puyy (4pdP (@) for every @ ell.
Lot k €N, G 1= P'(H), d : = dim(6) and
{@ ) r=1,2y ..., d} = G (I Dryan)”
be a biorthogonal system with pg r(fr) =1 for r =1,2, ..., &
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Choose &> 0 with e <1 and e(L-+&)(1—e)™ M < 1, whero

a
M = max {21921”(%): j=1,2,..., k}
1

=
Since (®4;), determines a BAP in (F, p,) we can choose an s (@) such
that
SUP {Dragey (" PAL ()= Y): Y € Gy Dhagan (W) S L) <o

for every n = n(@), n(G)-+1,... and ¢ =1,2,..., k.
) By Lemma 5 there exists a finite rank operator B from (F, 1)
into (¥, Py, 41y) Such that R(y) =y for every y 6,
R’((F7 pm(lcl-i-k))”) = (m(kl-*-k)-A;w(a))l((F: pm(lcyHc))”)
and

SUD Dy, 40y (B (2): @ € (B, D) Dy ail@) < 1
< 2sup {p;n(kl-)-i) (m(klﬂ)A;A(a)(”)): @ € (B, Pr 4e)s 10;:1-;4(96) <1}
for every ¢ =1,2, ..., k.
Since we have (™HOAL V() Dugyen)”) = Fy, we can  define §

to be the restriction B[, of B’ onto F, where R'|, is considered as an
operator from F into H.

Tt is easy to see that ™*17M8’ = R and hence §'(y) =y for every
¥ € @. Furthermore we have the following estimates:

sup {plc1+7: (S(‘”)): 0 €Fy P, 4y () < 1}
< 2sup {Pklﬂ(—’in(m(w)): D EF, Py (1) <1} <2 M (By+13)
for i=1,2,...,%.
i)efine :J? == .PS:J - Then T is & finite rank operator from H into B and wo
ave T'(y) = J'8'P'(y). = J'P'(y) = y for every y ¢ H. Our choice of F,

implies that PSJP is a continuous map f g int
pwlies tha p from (T, p), ) into (H, p, ). We argue

Since dim (PSJP(F)) < oo, there cxists a K >0 with
Ep,, (PSTP (2)) < p, (PSIP (@) < L(L) Py ST (w)) < L(1) Dr, (STP ()
<2 L)y, (An‘(a)JP(m)) <2 L(l)JV[(Kn(G))—qpkl ()
for every z e F,

where M > 0 and Ky > 0 wer i inni p
e were chosen in the beginning of the proof.
'Hepee we have *1(PSJP) ((B, 7)) < (I, p,,)) and beeause of *1(PSJPY
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((B,ps)) =P'T'(H) we can conclude
T'(B') < P'((F, ps,))-
Furhermore an casy compubation gives ‘

pk1+i(T(w)) < 2L(751 +4)M (1(701 ‘M)) p1n(l(k1+i))(w)
for every we B and i=1,2,..,F.

The only restriction on %, is that it has to be sufficiently large. This com-
pletes the proof.

TommA 7. Let By (D) By (Po)n (§(8)e and (I (K)), be chosen as in
Remark L. Then for every k and every finite dimensional subspace @ of B
there exists a finite rank operator 8 from B into B such that

S(@) =o for every 2 €@, &(E) < P, (H),

sup {pi(ﬂ(w))_ i) eE’ p]‘(‘i)(w) gl} <2 J('L) fO’I‘ every 4 = 1, 2, ey %

and that 8 is a projection if P, is a projection for every n.

Proof. Let & ¢ N, & bo a finite dimensional subspace of B,d := dim(G)
and {@,f): r=1,2,...,d} « Gx (B, p) be a biorthogonal system
with pi(f,) =1 for r =1,2,...,d.

Choose &> 0 with s< 1 and e(1-+s)(1—e) M <1, where

d
M =max{2 pi(@): §=1,2, ,k}

r=1 .
Sinee (P,), determines a BAP (resp. 2 BPAP) of B, we can find an n(G)
such that
sup {py(P, (@) —0): @ €@y p,(@) < 1} <e
for m =n(@), n(@)+1, .. and  §=1,2,...,k.

An application of Lemma 5 implies then the assertion.

Tmvma 8. Let T, (el B, P (Pyns (L(k))ln (l(k»kv (ﬂf(k))lm (m(k)),,,
( (1)), and (5 () be chosen as in Remark 1 and let P, in addition be a pro-
jection for every m. Lhen there ewists @ ky such that for every k&, every finite
dimengional subspace H of PY(F, oy, Y) and every finite dimensional

" subspace G of H there ewisis a continuous linear projection @ from B into H

such that
Q(w) =o for every w €@,

Q) =y for wery y eH, Q@) <P (I p))
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and
SUP{ka-H(Q(”)): © € By Dymaqyray) (%) < 1}
<8 L+ i) M (I(ha+0)) I (m (Il +9)))  for =12k

Proof. Choose k, larger than %, of Lemma 4 and larger than k, of
Lemma 6. Let & € N. According to Lemma 6 there exists a finite rank op-
erator T from B into B such that 7'(y) = y for every y ¢ H,

T (®) < P ((F, py,))
and ‘
SUD (P, 1T (@)): @ € By Py 1) () < 1} <2 L(Toy +4) M (I Ky +-4))
' for 1=1,2,...,k%.

Choose D := span{@, T(B)}. According to Lemma 7 there exists a finite
rank continuous linear projection 8 from FE into H such that S(») =
for every # € D,

§ @) e U @)
and
sup {pkz%(s(w)) 22 €8, Pypyrpy (@) K12 J (b +9),
for ©=1,2,,..,k.

Set @ := T+ 8—T8. We will show now that @ has all required properties.

Since § is a projection and T(E) < S(E), it follows from an casy
calculation that § is a projection on E. We have (I —T")(y) = 0 for every
y € H and therefore (I —§')(y) = 0 and henece @'(y) =y for every y ¢ H
and we have (I —@)(x) = 0 for every @ € D and thus @ (») = @ for every
# €@ < D. The Lemmata 4 and 7 imply

8 (7Y = U P (B) =« PY(F, py,))
13
and Lemma 6 implies 7’(E') = P'~((F, Py,)') and hence
Q' (B) = PH(F, pr)))-
Moreover, it follows easily from Lemmata 6 and 7 that
sup {Pk2+¢(Q(w)): @ e B, pj(‘m(l(kg-i—ﬂ))(w) < 1}
<8 L(koy+4) M (U (kg +1)) J(W»(l(k?~|—i))) for {=1,2,...,k.

This completes the proof.

TEEOREM 4. Bvery Fréchet Schwarlz space with a continuous norm and
the BPAP has an absolute FDD,
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Proof. A Fréchet Schwartz space with a continuous norm and the
BPAP is according to Theorem 3 isomorphic to a complemented subspace
B of a Fréchet space F, where B and F can be chosen as in Remark 1.
The space E has then also the BPAP.

Therofore, 16t 7, (D, By (Puas (D00 (106))ey ()} (0 ()} ( ()
and (j(k)), be chosen as in Remark 1. Since B has the BPAP, we can assume
that P, is a projection for every n. Let k, be chosen as in Lemma 8.

Since B is a Fréchet Schwartz space, it is separable, so we can choose
in B a dense subset {x,: n € N} with 2, = 0. Now an FDD determining
gequences (@), of operators on B will be constructed inductively. Let
Q,: = P;. Wo have

SUP (P ey (@a (@) 2 @ € By Dyiumirrey 1) (#) < 1}
<8 L(ly+1)M(I(ky+1)) J(m(l(k2+1))).

Let T e N and assume that the projections @y, ..., @, on B are already
chogen such that the following conditions are fulfilled for ¢ =1,2,..., k
and j =1,2,...,k:

(a) 0:0;= ;9 = Quingiip)
(b) (B) = {3, .., 0}
(e) QUE) = P7H(F, 2,))
and

(d) sup {pkz'}-r(Qi @)z @ € B, Dimppregron) (@) < 1}
<8 L{bg+n) M (L) I (m(UEa+))) for  r=1,2, ey b
Set
Ghpy 2= SPAN (D1, Q,(B)} and  Hyy, = Q. ().
According to Lemma 8 there exists a finite rank continuouns linear projec-
tion Q,., on B such that
Q@) = o for every ®FE Gris
Qi ly) =y for every y € Hyyy Qpoir (B) = P (B, sy}
and
SUD { Py 44 (@1 (@)1 @ € By Dyimiey+i) (@) < 1}
<8 L(kg»]—i)M(l(kz—}-i))J(m(l(kﬁ—}—i))) for 4=1,2,...,k+1.

This shows (d). It follows immediately from the construetio? of ,Q’f“
that (b) and (¢) are fulfilled. One has Q@ =@, and Q@i = @ for
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i=1,2,..., k+1and thus (a) is fulfilled. It follows from (d) that {Q,:
7 € N} is equicontinuous.
Now it is easy to see that (@), determines an FDD of ¥, hence H

has an abgolute FDD by Theorem 1 and so does every Fréchet space

isomorphic to H. This completes the proof.
The following theorem is a modification of a result of Johnson [6].
THEOREM 5. Let B be a Fréchet Schwartz space with a continuous norm
and the BAT and let A be a Kithe sequence space. Then there ewists a sequence
(G, of finite dimensional subspaces of B such that B x /'l(((;n)n) has an FDD,
Proof. Since [ is separable, there exists a sequence (H,), of finite
dimensional subspaces of B with Hy, c Hyc ... and B = cl( |J H,).

e
It follows from Lemma 7 that there exists an equicontinnons set {1',: # e N}
of finite rank operators from F into B such that we have for every o
that T, (») =« for every = e H,. Set

G, = (I=T,)(T,(B) for every n and I :=Jx i{(G,),).
‘We have

F = ol (U (H, x4(Gncia -
Let @; be the canonical projection from A((G,),) onto A((G)pe;-1) and let
P, be the canonical projection from 2((6%,,),}) onto @, for every 4. Define
a map S;_, from F into ¥ by

8;1(@,y) = (T5(0) +Pu(y), (T—T) (Ti(@)) + (L~ T) (P, () + Q4 (1))
for every (m,y)eF and ¢ = 2,3, ...

It is easy to check that {§;: ¢ € N} is equicontinuous, that &(z,y)
= (@, y) for every (#,¥) e H;, x A(G,)y<) and that S; is a projection
for every . Henee (8;); determines a BPAP of 7 and thus # has an. FDD
by Theorem 4.

CorOLLARY 1. If B is a Fréchet Schwarte space (resp. o nuclear Tréchet
space) with a continuous norm and the BAP then theve eaisls a Fréchet Schwartz
space (resp. a nuclear Tréchet space) I with an FDD and o continuous norm
such that the product space of B and T has an FOD.

The proot foltows from Theorem 5 and Lemma 2 and is similar to that
of Theorem 3.
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