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Condensation principles with rates
by
W. DICKMEYS and R. J. NESSREL (Aachen)

Absteaet, 'Tho prrpose of this papor ix to supply the classical condensation prin-
eiple of Banaeh Stoinhaus (1927) with rates. The method of proof consists in the
familiar gliding hump mothod, butnow equipped with rates. First applications concern-
ing tho sharpness of (pointwise) error bounds are given in connection with Fourier
purtinl sums, Bernstoin polynomialy, Lagrange interpolation, and numerical quadrature.

1. Introduction. Lot X be a Banach space, ¥ anormed linear space (with
norms |- Ly, |+ [l respectively), and let [X, ¥] be the space of bounded linear
operators of X into ¥. Then one version of the classical condensation
principle (OF) reads (N: = sob of natural numbers):

op. Let {T, b pev < [X, Y1 Suppose that for each n,p e N there
emists T, & X such that
{L.1) My pllx < O,

(1.2) Hmsup [T, b plly = o0.
T p 0O

Then there cwists f, € X, independent of n, p € N, such that

[e 2]

1

(1.3) limsup |7y, »follz

f~»00

simultancously for all p e N.
Noto that conditions (1.1,2) are equivalent to the fact that for each
peN
{1.4) Limsup [, pll e, 77 = 0,
w0

which, in view of the classical uniform boundedness principle (UBP), is
also equivalent to thoe existence of a sequence {fylpew = X such that for
each p e N

(L.5) limsup | L, pfpllz = o0.

Timr OQ

Of course, these remarks just reflect alternative, perhaps more familiar
versions of the classical OF.
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The OP was shown in 1927 by Banach-Steinhaus [2] via Baire catogory
arguments; see algo the account given in [1], p. 8L £f, [11], p. 23 ff in
connection with a number of applications. For a proof via the gliding
hump method see [20]. Of course, in viow of the implication (L.5)==(1.3),
the CP is indeed an oxtension of the UBD, which just corresponds to the
implication (1.1,2)=(1.5), thus delivering the oxistence of a soquonce
{fplpew = X rather than a singlo element f, € X, independent of p, wuch
that (1.5), (1.3), respectively, hold. true.

Continuing our previous work on UBI"s with ratos (cf. [5], [6], [7]),
it is the purpose of this paper to develop CP’s with rates in the senso that
(1.1~1.3) are equipped with rates. To this ond, Sec. 2 first considors the
case of countable index families. The method of proof will ho the gliding
bhump method but now equipped with rates. Following classical work
of Orlicz [15], the results of Sce. 2 are thon extiendod in Sec. 3 to uncount-
able (topologized) index families, using catogory argumonts. Finally, See., 4
outlines some first illustrating examples concerned with Fourior pavtinl
sums, Bernstein polynomials, Lagrange interpolation, and numerical
quadrature of indefinite integrals.

2. Condensation principles with rates for countable index families..
Let U < X be a seminormed linear subspace of X with seminorm *lg-
Then the K-functional (¢ > 0)

@0 K@) =R X, U): = nd{|f—glet-tlglys g € U}

serves as an abstract measure of smoothness for the elemont feX (cf.
(41,4)). Let o be a continuous function on [0, co) with

0 < o(t) < o(s) (0 <<y,

o(l+s) <o) +ols) (s,120).

Note that necessarily liminfw(t) /i > 0, in fact (ef. [18], p. 96 £f)
[y

(2.2)

(2.3) O<o@)h<20M)) (0<i<s).

Thus, if @(0) = 0, then o is an abstract modulus of continuity in tho usunl
sense. Consider the intermediate spacoes (10 -}- )

(24) X, = (feX; K(1,f) = o0 (n)),
(2.5) X, = {feX; K@, f) = Og(e(8))},
zmrll leb {g,,p}n,pev denote a doublo sequenco of (strictly) positive numbors
with
(2.6) lim ¢, , =0
N->00

foor each p e N. Then one has the following version of a QI with large
-rates.
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Trrorem 1, Lel {T,,}psw, {Tnm}n,mN‘: [X, YT and let w, {‘7’n,p}n,pelv
satigfy (2.2), (2.0), respectively. Suppose that for each n,p e N there ewists
My, € U such that

(2.7) Ve, pll e <5 O
(2.8) e pler < Oalpy s
(2.9) ]il::a'mup 17 p T plly == 00 (p eN).
(a) Tf o satigfies additionally
(2.10) zl.gnr} a(t)ft = oo,
then there exists f, € X5, independent of p € N, such that for each p e N
(2.11) Ii1’11§tt21)||1’,,‘,,,f," ‘‘‘‘‘ Lyl vlo(py,,) = oo

) If w(t) = wy(t): =1 (i.e., essentially, one does not have (2.10) (¢f-
(2.3))), thea there ewists f, e X, , independent of p € N, such that (2.11) holds
e (for o == ay). .

Thas, i any case, there ewists an element f, as specified above such that
for each p e N
(2.1])* ”Tn,pfw - “Tj'lfw" ¥ # O((D (%,]))) (97,-%00) .

Proof. Lot the sequence {pyhey < N be given via
vp~1, i op>1,
le-+1, it p=1,

in other words, if k = 2'<-m, 0 € m < 2!, m, L e NU {0}, then Pi = 2!l —m.
Tt follows that for each p e N there are infinitely many % e N with p,, = p.
Now one may successively construet sequences {@lev < (0,1/2], {8}t
< {0,1}, {dey = N with @, =1/2, 8, =mn, =1 such that for k>2

(2.12) Pyt =1, Pt =

(2.13) 0 <oy <ty 1724
(2'1‘1‘) (1) gy > M1y q”"lo-”k < q”‘kv;'T’Ic—l’
andl in case (a) additionally
Il
(M) > a0t Pagny S OBy Py
=1
(2‘1“) ”T‘“}cwllﬁlram 17 Tphml”[x,lf] ‘1’52201 < (k _'1) /2 ’
2,18 1Ly, 6T Olly 2 7“0(%70.%)7
ol /]

)
Ot = 2‘ 6jaja>(<7’n]mj)hﬂ}'7‘.r R

jm
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Indeed, if the first k—1 elements of the sequences, and. thus g,.., € U, uro
-given, choose a, small enough so that (2.13, 18) are satisfied. Consider

ﬂ[k—l: = limﬁ‘up H'Tn,pk.(/lc 17 Tpﬁglc—llllf/w<(pn,pk)'

Nroo
In case M,_, < co there exists an integer m;, with
U g 911 = Loy Gl 5 (Mjoms 1) (g )

Moreover, n, can be chosen so large that (2.14) is satistiod (cf. (‘J.(i,’ 10)),
ay well as

WL g P o e 22 T B e Oy Lo, vy A+ (M -+ 1)
{cf. (2.9)). Hence, setting 6, = 1, the element g, is well-defined and (el
2.7)

0T g 23,85 — Loy Ol 2 ajw (P, }J])“Tﬂl T

— 60 (P ) 1Ty P = (Memy 1) (P ) 22 B0 (0,

i.e., (2.16) holds true. In case M;_, == oo, condition (2.16) (a8 well as (2.14))

of course holds true for g,: = g,_;, 1.0, &: == 0, with suitable n,.
Since X is complete and (cf. (2.2, 7, 13, 14))

oo o0
Tkl N =) .
(2.17) 2 5]"11;{50(‘1’7;1,17]-) ”hnj,pj”X <0 a:,g.{:lw(fp,% snopg) 2 270 09
F=l+1 Jo=0

the element

= g{’ 8 0 0 (P 5, By g
is well-defined in X. Moreover, f, € X and f, € X, , respectively. Indeod,
since for each te (0, ¢y ,) there exists & such that e, 1Py U P
(note that hm Py, = 0 I view of (2.6, 12, 14)), one obi.mum in
case (a) by (21 8, 13, 14 (ii), 17) and finally (2.2, 3) that

Kt fo) < o — el +tgilo

Z 6]“;]‘0 ‘7’:11,11]) ”hnj,pjllx""tz ) ij’w %zj,pj | IEJ,_[JJ‘U
J~I-| 1
< 2OII a’la+1 @ (‘pnk,,_,,zzk -I-l) +2 tou a’)c ((Pnk,p,,) /7)11,]“1?7,,
< (20,2754 40,27F) 0 (1) = o(w (1),
i.e, f, € X5, In case (b) one obtains analogously

E(t) fo,) < Way —rlx + gl

o0
S 2010y gy T100 ) 0] S O,
=1
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thus f,

y € le. Now (2.15-17) deliver

”Tn,,‘:,pk.ﬁu p; fw”l Tnk,_fpkgh . 'Tz')kgk”.Y - HT”k’Y’I.: y; "[X ¥ ”fw -'glc”‘{
e (16/2) @ (977%,1)15) .

Sauwe for cach p ¢ N there are infinitely many %k e N such that p, =p (cf.

12)), this completes the proof.

]nzb us mention that Thm. 1 (a) subsuwies the clagsical CP as a special
cage, namoly for o =y =1, U = X, T, =0. Indeed, conditions
(1.1, 2) and (2.7, 9) oommdc, Wh(»]‘@cb‘% (‘> 8) ig then trivially satisfied
for any {p, .} Noto that now X" == X,

Doaling with (proper) rates, however, one may even replace large O-
rates in Thm, 1 (a) by small o-ones if the limiting case w, (and w,) is
exceluded.

Tuwonmm 2. Lel {'Zn 1)}7» peN & FX Y]? and let {% p}n,peN sa,tzsfy (2.6).
Suppose that for each n,p e N there ewisis h,, e U such that conditions
(2.7, 8) hold true as well as

(2.18) Lim sup L), Py pllir 2 O > 0.

R 00
Then there ewists o constamt 0, > 0 such that fbr each modulus o satisfying
(2.2) as well as (2.10) and

(2.19) lim o () = (0) = 0
fos e '

there ewists f, e X, independent of p € N, such that for each p e N
(2.20) Yiw sup |7, folly [0 (1) 3 O
N 00
In partioular,
(2.20)* 1Ly pfully # 0(@(@y)  (n—>00).

Proof. Proceoding as in the proof of Thm. 1 (a), let the sequence
{Pihen be given by (2.12). Then one may congtruct sequences Myt
e N, {(§hn = {0, 1} with ny == 8, = 1 satisfying for k> 2 conditions

(2.14) (of conrse, (i1) without any a;’s) o well as

(2.21) w (m’%ﬂ’k) =% (1/2) w((pﬂ/kmlyi’[g—l)’
.(2'22) ”T”k”hl’k»- ”lX r}ts (05/2'001) (q”"k—lll’lc—l)/“(W”Is'l’k)’
(2.28) 1y 2 il 3 (0015) 0 (@)

Ot = 2 dyw(wn]mj)h”'f'ﬂ] €U
el
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Indeed, if the first & —1 elements of the sequences, and thus g,_, € U, are
given, one may consider

My = lim sup ”Tn,pkglc—l”1’/‘0(9011,,1);6)'

N0
I M,_, < 20,/5, one has for all but a finite number of values of »
(2.24) I, g I—rllyr [0 (@, ) < B0 [D

Therefore, setting 8,: = 1, wo may choose =, (herewith determining
Ry, 30d g;) large enough to satisfy (2.14, 21, 22, 24) (¢f. (2.19)) ay woll
ag (cf. (2.18))
I P il 2 - 405,
thus (2.23). If M,,_; > 20,/5, take &, = 0 thus g, = g,.,. Then, of course.
one may find n, large enough to satisfy (2.23) as woll as (2.14, 21, 22),
Since X is complete and (ef. (2.7, 21))

N T £y
(2.25) 2 830 (P 0) Wy e < 100 (P ) z 277 < oo,

FTetl

the element
N o
= Zajw(%mj,pj)hnj,w
j=1

is well-defined in X. Morcover, f, € X,. Indeed, choosing ¢, & as in the
proof of Thm. 1, one analogously obtains (ef. (2.14 (i), 25))

K(t, fo) < o —gllx+119:lr

< 201 w((p"k+l-1’lr+1) +202tw(‘7’71k,pk) /(pnk,p,‘, < (201 '+" 402) w(t) .
Now by (2.22, 23, 25)

“Tnk,wkfm”;[’ = “ka,pk-qk”l"'_ ”Tnk,[)k“[x,l"] ”.fm - gln”X
= [Oa /5 - 03 /10] Y ((pnk,ph) .

In view of (2.12) this proves (2.20) with 0, = (4/10 > 0.

Note that the limiting cases @ = @y, w, have to be excluded in Thim. 2.
In fact, this remark already applies to the particular situation of the UBI
with rates (case I, , = T, cf. (8], [7]).

3. Condensation for uncountable index families. While the proceding
section was concerned with double sequences of operators wo now want to
give a first contribution to the case when p varies over an uncountable index
set /. To this end we shall use the following lemmas.

Lemma 1. Let of denote a topological space of second category amd
N = o & dense subset. Let {g,},on be a sequence of continuous functions on of

Condensation principles with rates 61

such that for each t eV

(3.1) limsupg, (1) = co.

7-¥00

Then the set (N = B < of)
#: = {t el ; limsupyg,(t) = oo}
=00

s of second category in of

LigmMA 2. Let o, 4, {g,}en satisfy the hypotheses of La,. 1 with (3.1)
replaced by

{3.1) limsupg, (¢) 3 ¢, > 0.
Ner o0
Then the set (N < B’ < o)

= {t e o limsupg, () > og}

7> 00
8 of second category in of.
Proofs. For La. 1 see Orliez [15]. In fact, the proof of La. 2 is just

a copy of that given in [15], but included here for the sake of completeness.
Hinco ¢, ix continuous on &, the sots (m, n e N)

‘fn m e {6C.}1, gn(t 60(1 1/m}

are closed. Thus alko the intersections & ,,: = ﬂ fn n are closed in «.
Now observo that "=

NG == {l el ; llmsupg,b y<od = U UFim-

meN keN

Moreover, cach sot .?7",, o 18 mowhere dense in «. Indeed, suppose there ig
& sob Fy o, With an inner point ¢, in its closure. Then #, Tgmp COLGAINS an

‘open neighbourhood ¥, since &y, ., 18 closed. Of course, ¥'y = #\Z', but

the density of # in o also implies ¥"ond” % @ and thus ¥ %' # @,

a contradiction. Heneco &/\g' is of first category. Since o = #'U(A\%')

was assumed to bo of socond category, #' must be of second category, too.
Note that Lw. 1, 2 do not state that £ (or #°) is equal to . In fact,
this ecamnot ho true in general as already mentioned in [15] (see also Sec. 4.1).
OFf cotrno, Tm. 1, 2 may now be used to derive extensions of the results

of Soe, 2 to families of operators depending on an uncountable index p.

Rather than to formulate & most general theorom, let us just state one
Bypical version,

JOROLLARY 1, Let of denote an interval of R (:=the real line with

the natural topology), and let & be the set of rational wumbers in o£. For
neN, teo let 1,,e[X, Y], and let p,, satisfy (2.6) such that for all
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n e N, t e conditions (2.7, 8, 18) hold true. Suppose that

gn(t): = ”Tn,tf“Y/w(q)n,t)
s @ contimuous function on o for each 'f e X. Then there exists a constant Oy > ¢
such that for each modulus o satisfying (2.2, 10, 19) there evists f,, e X,,, inde-
pendent of t, with

lim sup ”‘Zyﬂme ”I"/‘v ({]')n,t) ‘\/: Oxj

N—>00

simultaneously for oll ¢ in a set B’ of second category in of, containing A

4. Applications.

4.1. Fourier partial sums. Let ¢ denote the space of continuous,
Sr-periodic functions with the usual sup-norm and O the subspace of
continuously differentiable funetions (with seminorm (|flly). The correspond-
ing K-functional turns out to be equivalent to the usual moduluy of
continuity of functions, i.e., if

w(t, f): = sup If (@ +h) = F(@)lle,
then there exist constants ¢, ¢, > 0, independent of fe 0, , 12+ 0, such
that (cf. [4], p. 192 1)
(4.1) ey oty ) SI(t, f3 Oy OF) < a00(t, f).

For the Fourier partial sums

ki

- 1 A .
(8uf) ()= \ k) gthe =5 fj(m—qr,)]),,(u)dfa(,
ik1<=n o
. 17 -
f (76):=-‘.._ ff(?l:)c_”""‘d‘u': ])n(fu,); = : e'llru’
2 - |%1

one hag the well-known (uniform) direct estimate
(8, 1) (@) —f ()] < Cw (w7, fllogn (@ & R).
Then Thm. 2 and La. 2 (or Cor. 1) give

COROLLARY 2. For each modulus w satisfying (2.2, 10, 19) there ewisls
Jo € Cy such that

(42) ol fa) = 0{w(t)  (t=0-),
but on the other hand
(4.3) limsup | (8, o) () —fu (@) 0 (L/n)logn 2 ¢, > 0

simultaneously jor all @ in a dense set of second oategory in R.
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Prool. Tet us fivet clieek tho conditions of Thm. 2 for the spaces
X we Oy A = € (2 == the complex plane), U = 0®, and the bounded
lineny l‘umtmmﬂq Ty oft = [{S,1) (@) — f('r )1flogn. Since for the functionals
Buedt == (8,1) () one hus |IS, 10, €1 = [Hlly > clogm, independent of x,
there are clements Jae € Coy with | £, ./c“(’ =1 Mld [8,efnal 2 ¢'logn. Now

&

choose iy, == Vo fy oy whore Vi == (L/n) L‘ 8,
T -1
delayed means of de Ta Vallée Poussin, Then Ty 18 & trigonometric poly-

nomial of dogree 2n satisfying (2.7, 8) with Pu,e = L1, independent of a,
as woconsequence of the elassien] Berustoin inequality. Condition (2.18)
is fullillod sineoe for sofficiontly large n

are the standard

Ilw a n.zr, I 0 nfnm '(Vu.fn,m)(w)”lo:‘"«'”
2 18y afnel —0dflogn = ¢’ > 0.

Thus an application of Thm. 2 in connection with (4.1) gives the existence
of f,, satinfying (4.2,3) but only for countable many # € R, e.g., for rational .
Since |10, S| 8 & continuous function of » € R, applieation of La. 2 states
that (4.8) moreover holds trae on o dense net of second category in R.

It in interesting to consider the case w(f) ~ (log(1/t)~*. Then (4.3)
gtates that Hmsup| (8,f,) (@) —f.(@)] 3¢, >0 on a dense set of second

T2

eategory, whilo the fanous theorem of Carleson states the convergence
aliost (wm‘ywhorn on R. Thix tact doos not only show (ag already men-
tioned in Hoe. 3) that in genoral 4, #' 4 o in La, 1, 2, but that even a P
with watos is not possible for an arbitrary (becond) index set without
additional assunptions.

In connection with tho development of the various kinds of UBP’s
and CI, the Fourier paxtial sums have always been used as the test for the
applicability of the functional analytical principles under consideration.
Bo thore iy o lot of background material. Rather than to be complete, lot
ws ouly mention that the present treatment should be compured with
the classionl ones, given in [2] without rates and in [13] with rates, but
without condensution. On the other hand, there are even results on the
(non) convergence with rates almost overywhere (see [16], [17]), whieh
of coursoe cannot he coverod by the prosent abstract approach.

4.2, Bernsiein polynomials, Lot 0]0, 1] denoto the space of continuous
functions on [0, 1] with the nsual sup-norm and ¢* [0, 1] the subspace of
twico continnously difforentiable funetions (with seminorm [If"'[lg). Again
the corresponding K-functional is equivalent to the usual second modulus
of continuity of functions, i.e., if

o*(b, ) == wup  wup  |f(0—h)—2f (@) f4-R)],
(bl hwest=h
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there exist constants ¢,, ¢, > 0 such that
(4.4) ey (t, f) < K (#, f5 010,11, 0910, 11) < cpe0* (8, f).
For the Bernstein polynomialy (# [0, 1], n e N)

3

Bfi o) = 3 (1) (1 —a et s o)

k=0
-one has the well-known direct estimate (cf. [3])
1B, (f; ) —f(@)] < O*(@l5: 1),
where @, .1 = #(1 —a)/n. Now an application of the general results of the

previous sections deliver

COROLLARY 3. For each modulus o satisfying (2.2, 10, 19) there
ewists f, € C[0, 1] such that

(4.5) w*(t, f,) =0 (o) (t—0+),
but on the other hand
(4.6) msup |B, (fu; ) —fo(@)/0(p,q) 2 €0 >0

simultancously for all z in a dense set of second category in [0, 17.

Proof. We check the conditions of Thm. 2 for the spaces X = ([0, 1],
Y=R,U=09[0,1], and the bounded linear functionals T, .f
i= B,(f; ®) —f(x). For « & (0, 1) consider the functions (&, , € [0, 1])

By (w) = 2810° (2 — ) [203/%) = 1 — cos((@—w)/m/%)
= (@ —)"/20;,, — (L/4) (@ — ) D (&, 0)
Of course, h, , satisfies (2.7, 8) (with ¢, ;). Moreover, (2.18) follows im-
mediately, since in view of the positivity of the Bernstein polynomials
IBn(hn,m; m) '—hn,m(m)[ = Bn(hn,a;; JG)

= (1/2(p71,w) B"((.’U - ”)2; .'YJ) - (1/4-')‘777;;[31&(({1” "W’)’l; 0!?)

= 1/2 — (14 {3 -+ Lina (1 —w) —6/n} = 1/3,
if nz1/z(l—s). Thus Tho. 2 delivers the existenco of wn oclomoent
fo €010, 1] such that (4.5, 6) hold true for all vational @ & (0, 1). In view

of the continuity of ;% on (0, 1) an application of La. % complotos the
proof.

Let ws mention that for w(t) =¥, 0 < f < 1, even a Bernstein-typo
inverse theorem is valid: It states that

1B, (f3 2)— f(2)] < O o (L—2) ) = w* (1, f) = O().
For details concerning this result see [3], [14].
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4.3. Lagrange interpolation. Let L, f denote the Lagrange interpolation

polynomials for f e [0, 1] with respect to the triangualar matrix of knots
{0 <oy, << 2y <o <y, K L, e,
n

n
W r—2
Ly (f; )2 = _}J F@p) (@), L (2): = — (0<e<).
Juad A [ Pxn
kitf

Setting
L
Ra(): = 3 (@), A,: = max 4, (a),
Jaal O]
one hag for almost every w € [0, 1] (cf. [8])
“.7) limsup A, (#) = co.
Tk 0O
Thus for every Lagrange interpolation process the following divergence
properties hold true.

UOROLLARY 4. Tor each modulus o satisfying (2.2, 10) there ewists
T. €00, 1] such that

(4.8(2) (1) = olo®) (=04
as well as
(4.9) lim sup ILn(fm; #) = fo ({l/‘)|/0)( (”’zﬂ'n)_z) = 00

simultaneously for all » in a dense set of second category in [0, 1]. For w = w,
condition (4.9) holds true for a function f, e C[0, 1] such that

(4.8(b) o fa) = O(f)  (t>0-+).

Proof. We first check the conditions of Thm. 1 for the spaces X
=([0,1), Y = R, U = 0¥[0,1], and the bounded linear functionals
T, .f: = L,(f; »), T,.f = f(x), where @ varies over a dense, countable
st N < [0, 1] of indices for which (4.7) holds true. Since i,()
= T, olomy, theve oxist functions f,.e0[0,1] such that [f, .o
< 1 and Yimgup (L, (fue} #)| = oo for each » 4. Choosing now

N=r 00

Jowltny)  for 0w <<my,
e @i) - L ®pga,0) = Fore ) 1 ( (0~ 2, [(@1.1,0— T)
B tox mjn UK mj+:\,n7 1 Qj < 0,

fn,x(wlm) for w,<u<],

where » denoties some infinitely often differentiable function on R with

= () for «<0,
hiw)ie(0,1) for O<u<l,
=1 for wz1,

Ty ()8

$ — Studia Math, 5.1
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one obtains (2.7
”h‘n,mHO = ”fu.wnc’ £ ilﬁ
upon using (cf. [9])

thy:

n*

9) with ¢, = 1/(n24,)%. In fact,
gyl << 2111/,

= M (P,
1<gj<n

= oo for each @es since T, (h, ;) =

=) > 1A,

Moreover, Hmsup | T, 7, .|

N0

L, (53 %) . Thus an application of Thu. 1 (a), (b) delivers the existence of
f,,, satisfying (4.8 (a), (b)) and (4.9) for all # e, Since, moreovor,

L (f3 @) o (@) [ {(02 2,) %)

is a continuous function of # on «: = [0, 1], La. 1 proves (4.9) com p](t,(aly.
For a result stating the existence of functions f, ., depending upon

the individual € [0, 1] (c¢f. (1.5)), see [12] (and also [7] for the treatment -

within the frame of general UBP’s with rates). On the other hand, it was
shown in [10] (see also [19]) that there exigts & continuous function f, such
that limsup L, (fo; @

n—+00

this type are again beyond the scope of our functional analytical approach.

4.4. Numerical quadrature. For f e 0[0,1], x € [0, 1] consider the .
trapezoidal rule for the approximate integration of the indefinite integral. .

@
‘_)f Fluydu, i.e.,.
‘N1

Qual: = D02+ 5 FU)+5(@)/2},

fe=1

Then one has the well-known direct estimate (fe[0,1], » e[0,1]}

b == @,

Quaf~ [ F)au| < Coo*(afn, ).

An application of the general results of Sec. 2, 3 now shows tlfﬁ‘vh tHis
estimate is indeed sharp in the following sense:
CoROLLARY 5. For each modulus w satisfying (2.2, 10, 19) there erisls

f. €010, 1] such that
(4.10)

but on the other hand

orltfa) = Ofo(®) (=04,

(4.11) hmsup =e¢>0

Qnefo— f Folw) dul Jool(o]

simultaneously for all @ in a dense set of- second, category in [0, 1].

)| = co even for almost all ». Of course, results of

icm°®
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Proof.. For the spaces X = (0, 1], =R, U = (® [0, 1], and the

bounded lm(mrim etionals 2, f: == @7 [9, of = f j wydn], » € (0,1], Thm,

9 delivers (4.10, 11) for all mmonfml v e (0, 1] s0 that La. 2 completes
the argument. Indeed, the functions &, ,(u) = sin?(2wnu/z) S‘xtlsfy (2.7,
8) with ¢, o == (w/n)* a8 well ag (2.18) since

. & n .
[ Ly ,ml ’j sin® (2rnufo)dy = n? j Sin?(2nu) du
0 0

1
v f sin® (2nu)du = 1/2,

0

Note thal f,, is chosen in such a way that it is positive and vanishes on
the knols of the rule.
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On the extension of
continuous linear maps in function spaces
and the splitness of Dolbeaut complexes of

holomorphic Banach bundles

by
NGUYEN VAN KHUE (Warszawa)

Absteact. Tho papor investigatos the extension of continuous linear maps with
values in the spaces of sections of coherent analytic sheaves over analytic spaces.
Tt is shown that the space H®(X, &), where & is a coherent analytic sheaf over & para-
compact analytic space X has tho extension property with respect to the class of
s-nucloar spaces if and only if it is isomorphic to €4 for some set 4. We also investigate
the oxistenco of continwous linesxr projections of the space OP(R(X)) onto 0x(X), where
B(X) is tho regular part of X and & is & holomorphic Banach bundle over X. The
gplitness of Dolbeaut complexes of holomorphic Banach bundles over complex manifolds
is considered. We prove that on complex manifolds which are increasing unions of open
Stein gots those complexcs split only at positive dimensions.

Introduction. In the present paper we consider extensions of con-
tinuous linear maps with values in some function spaces of complex
analysis and the splitness of Dolbeaut complexes of holomorphic Banach.
bundles over complex manifolds. These problems have been investigated
by several authors ([6], [8]). The paper contains three sections.

In § 1 wo prove that the space H(X, &) has the extension property
with respect to the class of s-nuclear spaces if and only if it is isomorphic to
C“ for some get A.

Soction §9 iy devoted to the study of the existence of continuous
linear projections of 0F (R(X)) onto 0,(X). It is shown that when X is
Stoin such & projection exists if and only if X is discrete.

In § 3 we investigato the splitness of Dolbeaut complexes of holomor-
phic Banach bundles over complex manifolds. We prove that on complex
manifolds which aro inereasing unions of open Stein sets these complexes
split only at positive dimensions. Let us note that the splitness of Dolbeaut
comploxes of holomorphic vector bundles over Stein manifolds has been
established by Palamodov ([8]).
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