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Finite dimensional projection constants
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I, KONIG (Kiel)*, D. R, LEWIS (College Station)**, P.-K. LIN (Austin)

Abstract. 'Weo derive a forinula for the relative projection constent of a k-dimen-
gional subspaco of a finite dimensional Banach space which is better than Vk. Various

cases of tho optimality and non-optimality of the formula are studied, using & combina-
torial reformutftion, Similav estimates are given for reflections instead of projections.
Let X be a closed subspace of a Banach space Y. The relative pro-
jeetion constant of X in ¥ is given by )
MX, ¥): =t {|P|| P: ¥~T is a projection onto X},
the absolute projection constant of X by
AMX): = sup{A(X, ¥)] ¥ a Banach space containing X as a subspace}.
We are mainly interested in cases where X and Y are finite dimensional.
Tor convenience in these instances, their respective dimensions will be
indieated by lower indices. Thus X; ¢ ¥, means that X, is a k-dimen-
gional subspace of an n-dimensional space ¥,. Denote for k<n
AT, m): == ﬂup{z(xk! Y ) X = Y.}
A(k): = sup{A(k, n)| n €N},
- EEw e /
F(le, n)s = VE (VE [n+V(n—1)(n—F)/n). /
T§ statements on these constants only hold in the real or complex case,
we indicate this by additional superseripts R or C,
Tt 18 well known that A(k) <Vk. In the finite-dimensional case this
can boe improved. B B ‘
Trmonust 1. Ak, 1) < f(k n) < VE (L—(Vk=-1)2/2n). Thus for large
subspaces X, & Yy T == omy 00,
MXy Y) € V1I—aVE+c.
T4 iy unknown whether thero are spaces X, such that WX V1.
A positive answer to this question would follow if there are sequences of
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spaces X, = ¥, with
My X,) =Ff(kyn), k-roo, ktjn-+0.

A natural candidate for ¥,, seems to be I because then 4(X), ¥,) == M),
The following characterization holds:

TueorREM 2. Let 1< k< n. The following are equivalent:

(1) There ewists a subspace X< I3 such that A(X,) == f(k, n).

(2) There enists an operator 1': 177 157 with nuclear norm v{T) == 1 and .

eigenvalues Ay (L) = ... = L (T) == f(k, n)|k and 2, i (L) == = 4, ()
= (L~ (&, n))[(n—T) (thus one eigenvalue being h-fold, the other (1 — k)-fold).

(3) There emists an nxn matriv A == (a, pit]
=2kfn—1 (i =1,...0), layl =2/ Vi(n-k)n
vy My 5 ).

If (1)-(3) hold, the cigenspace X, of A associated to the cigenvalue +1
has dimension % and projeetion constant f(k, n), P: = L/2(I - A) is o pro-
jection onto X, of minimal norm; given X, for & 1, P is unique. For
k1, any such P has the form

1 and ay
(4,4 =1,.

Py =Hfn (@ =1,...,n),

We will later discuss various cases of (, %) for which nintrices 4 as in (3)
can or cannot be constructed. Althongh we have not heen able to solys
the question whether A(X,)/VE->1 is possible, we show thati there are
spaces with

M)WV -> VS ~ .89

which is the largest Imown value so far (Y. Gordon [L] construeted spaces
X with 2(X) [ VE->(2—V2/m)™ w .83).

Of course, there can he other spaces ¥, and Xy € X, with (X, ¥,)
== f(, n). A natural example is given in the following proposition which
has the additional feature that, given », & ix sueh {hat Ty m)

= 1¥}l¢i?cf(z, n) = (1 -W?ﬁ)/zg I (h-] 1/;1) 2

1
PROPOSITON 1, Let n == N* and Y o0 L(IR) the space of operalors on
¥ and X}, == subspace of selfadjoint matrices. Then k = (n | V)2 and

Theorem 1 and some approximation method yields & different proof
of the following result of Y. Gordon |1]:

PROPOSITION 2. We have A®(2) < 2~ g, 53 1075,
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Tomurk., 2(2) is conjectured 1o be 4/3 = f(2, 3) which is the pro-
jection constant of the 2-dimensional ypace whose unit ball is the hexagon,
‘We mow turn to the proofs of the previous results. The first lemma is
pasically known, ¢f. e.g, [8]. '
Tosmma L. Let X and Y with X < Y be finite dimensional. Then
MX, XY = sup{ftr (2 A2X0] | Tt ¥ X with »(T) =1, T(X) < X}.
Proof. We only have to show the inequality “<” since the other one is
immediate, Minee AT and ¥ are finite dimensional, there exists a projection
Poi Y-+X & X onto X of minimal norm, Pyl = 4(X, ¥). Consider
@ = {8 & L(X)| IS < |7}
and

n
@ = (Pel(Y)| D= Dyl Maf@wy, neN, of e X+ ¢ ¥, oe X},
fual

Then #NY == @ since £ consists of projections. Morcover, # and £ are
convex sets in L(¥) which can be separated, Thus by the trace duality
there iv 1'e L(Y) such that ,
Te (tr(T9)) < Pyl < Re(tx(TP)), BSe# Peo
which implien ||| ==t (IPy) and o(TL) == sup [tr(T8)|/IIS]| = 1. To prove
that T'(X) € X, Lo, ¥, Twd =0 for all o* e X't and weX we take
P o= Dyt @u. Then
[Poll 5 Ro (t2(T2)) -1t (T (@* @ @) = |Pgll+Re a¥, T,
Hence Roda®, Twd 3= 0 for all o* e X+, v e X. Since X, X' are linear
spaces, thiv yields <{o¥, Ta) = 0.
TumMa 2. L<r< oo, Ke{R, C} and Z, = (K", |}|lz,) where

n
W8l z = max (| 3] &) 1(E)malh)-
foa],
Then the dual norm 48 given by
== {1 - =)t e Ljr4-1[r =1.
lI(M;).’;Llllz: }gﬁiltlﬂ (=8 buslle}y L1/

n
Proof. The map @ Zp -(LOK)w; (E)fy ~ (60 izl £) is an iso-

metrie fmbedding, Tonco g*: (L@K)y—>Zry (A 1) = (A 1)y is
@ quotiont map wnd

il = il (A Do e = Bt =, )
* tall

s A 0] |ty — D)t}
7309
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Proof of Theorem 1. Let X, < ¥,.. By Lemma 1, it suftices to show
(T X;—~>X) <f(k,n) for all T: I’ > X, with »(T') =1 and (X,
< X, Let A,(T), ..., A,L(T) denote the eigenvalues of ' (counted according
to their multiplicity); % of them (WLoG 4,(T), ..., 4,(T)) are the cigen-
values of Ty, : XA—>X Then [[(4;(T))ixillz, < 1 since

ltr (T ]Z Ag(

ef. [3]. For the convenience of the reader, here is a diveet argurnient for
the last inequality: Let

[ WI) =1 and ATV < (T

)

T = E saf@ay, af el aelX,
J
with [lgff]| = |l =1, Y |6 <1-e Then I' factors us T == 8B where
J

R: Y,—l, 8:14,>Y, Re=(§a@), 8&) ==Z1/?s]'gjmj,
7

Tt is easily checked that T: = RS has the same cigenvalues as T, with the

possible exception of zero, cf. Pletsch [5], Chap. 27.3, and that the Hilbert—
Schmidt norm ks of 7' is less than 1-+e hs(T) <1+e Thus

NNl = [[(A D)5l < Bs(T) < Lte.

)| <] 47\7 3T | 1Nl

Hence

k
ftr(T: Xy Z)| = | 3 2T

PE G
< ”(1a vy 1y 0, ceey 0)”7’*
e el ———

ke n—k

= inf 11 —~1|2 -] . 2\1/2
g {5 {1 1+ (n —R) )]

using Lemma 2. The inf is attained for t, = kjn--1/n 1/7r (n—Fk)/(n— 1)
its value at ¢, turns out (after a slight caleulation) to be just f(k, n).
A modification of this proof yields

COROLLARY 1. Let 1< p < oo and,1fr: = [1/2 — ~1/p|. Lhen there is
¢ >0 such that for any 1<k < n and any X, <1

n)
MI, 1By < llr(l___ ok /w)s/r)

Proof. By Pisier [6], |[(A(D))iyl, < »(T: B->10), 1jr+1)p ~—=1
The same argument as before, w1th Y, =08, yleldu

M &y B) <MLy - 1, 0,00, 0], ~

& n~k

= Inf {1814 (L 2" - (. — ) j217) 1)
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which, because of r2=2, is

< inf [Jt] 4 (711 —
i+ (e

12 - (m —T)"8[2) 12}

The infimum s attained for ty = 1A (B - E (0 —E)Ur | ;/A—:i) where
Az = B (BT, as its value one finds after some calenlation
o= T (1A (0 — Ty VA =14k}
< B L~ (BN — 1)} 24}
from where corollary 1 follows.
Tor the prool of Theorem 2 we need
LmmMA 3. Let (4)h € Zy with (A)fanllz,= 1. Then 2 X = f(k, n) if
ond only if Ay = ... = Ay = [l w) [k and A, =. = (L=f(k, n))/
[(n—T).
Proof., It is oﬂslly seen. thdm lz € R is neecssary for 2 Ay = f(k, n)
to hold. Moreover, 2 Ay =1 (if 2 A <1, one could enlar(re the poqmve
ol

Zt’s and negative A’ leaving [i( lj)}-lllz <1 and enlarge thus 2 A). I8 Y‘ A
F(k, n), wo get by Holder’s inequality

I k

S0y n =1k A) < DAL,

il dr=l

S"’ A2 = 1»-2 At <L —F (T, m)* [k = 1] (n—To) (L —F (%, m))*

1-]:\1
= 1(n—E)( Z a) < Z A

Fmefont-1

We used the funetional equation f(k, n)2—2k/n-f(k, n)—k(n—k—1)/n
= 0, Since cquality holds in the above inequalities, we must hfwe A

=== Ao and Ay = ..o A Thus Ay = f(k n)/k and 2, = ( 2 S’ A —

1—1

JJIuMMA 4, Let T & L) with |(A;(T ){Mllz = v(T) == 1 where 3{T) e R
Then byt e BY and |ly| = [ty for all i =1,.

Proof. The assumptions imply

1 = o(T) 2 tr(T%)/IT)| = Za PATN = 3/1T], 1T =»(T) =1.
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k . y . R ¥ , o-A,

By Lemmu 4, |a;] ==

The operator norm of T is ||T| = mip ;‘ [t5l, the nueclear norm of T
»(T) = 3 sup [t], (the second formula follows from the first by the trace
duality)j Hznce there is 4, {1, ..., n} such that sl = sup [tyl for all
j =1, ..., n (the i, for which the sup in |T|| is attained). Moroover,

) = thijtji< 2 gl il = (Z Itioi])
4,j (%] T

This equality implies #;f; e R* and [i;] = [Bsos] == Ityl for all 4, j
e{l,...,n} ‘

Proof of Theorem 2. The proof of Theorem 1 shows that there iy
X, = 17 such that A(Xy) = f(k, n) if and only if theve is 7': I — 1 wilh
»(T) =1 and (4(T))illz, = f(%, n), where 4,(T) are again the eigenva-
lues of 7. By Lemmcu 3, this is equivalent to (2). Hence (1) and (2) are
equivalent. The implication (3)=-(2) is easy: If 4 = (@)F gy 18 given
asin (3) of Theorem 2, let T' = (A;+4,)/21+ (4,~2,)/24, whero Ay
=f(k, n)[%, A, = (L—Ff(k, n))/(n—7%). Then

= Zn'“ﬁ =2k—n = 21"(‘4)
i=1 =1

However 4;(4) e {£1} since A* = I. Thus the eigenvalue -1 of 4 ig
k-fold and —1 is (n—%)-fold. Henee T has a k-fold cigenvalue 2y and an
(n—k)-fold eigenvalue ,. Moreover,

= Msupltyl =1
7 .t

as seen by caleulation using the given values for @y and |ay).

The main step is the implication (2) =(3). Assume 7 is given ag m (2).
Since T' has only two different eigenvalues A, : — A(T) and 2,: = 2,(T),
it satisfies the minimal equation

(T —2,I)(T—2,I) =0
which is equivalent fo
= (A4 +4,)2T+ (4 —2,)/2A4 where A% =1. -

A is restricted by the fact that »(T) = tr(T) = 1A (I))eeslla = 1 (the
latter equalities follow by easy caleulation from the given values of the
eigenvalues of T). Let

= (h+2)[2 = 1in+(n—2k)/2nV (n—1) ]k (n—F),
= (=22 =12V (0 —1)]k(n—F).

: d; depends on]y ongjforie{l,..,m} ¢ sjand
ty] = 88;. Bince »(T) = tr(ﬁl’) =1,

> os; = \ Nityl = Z y+dayl =1 = 3 (y+oa).

PR i
Hence
7 o e e e s e et et
D6 = 5 = 2Vhk(n—E)[(n—1)
j=1
and

m‘l/n Zn’ 6,,).

Joml

@y = &= y[8 = (2h/n—1)+ (¢

Qur aim is to show that all 8s are the same (==1/n), ie. that the last

term cancels. For notational convenience, we just prove 8, = 1/n 2 By
By Lemma 4, a4, € R*. Since A* = I,

1= (42 = ad+8 0+ ... +0,) = ah+6,( D 8) — 4,
1

= [(@k/n—1)+ '(61 —1/n Zﬂ] ak)]’ +6, (ij 619) —

0

= [@kn—1)—1/n 3 &,] +6, [(n—2)/n Z 8,+2(2k/n—1)],

1

—|(2k/n~—1) mllnd?] &

am( 3]

S (=2 (S o 2teiin—1) (5 )

=

4((n~ 2) m3)is(n — o) — 1) -+ (4% — 2n) }n) (‘i )

I

4

[\

é n
) k) 4&((%——-2)/%)70(%——70)/(n~—1)~}~((é7c*2n)/fn,)(? )

ol

1
e ;l/n( 1(S,‘,).
Jowa X
The last caleulation is possible only for & = 1 (then the denommator is.
non-zero), For % =1, the existence of A with the required properties is
eagy. This shows 61 o=, =0, ml/fn (b #1), aﬂ-=2lo/n ~1 and |aglh
= (dn)~t for ¢ % j.

8 — Btudia Math,. 76.1
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The previous arguments and the proofs of Theorem 1 and Lemms 1
also show that, if (1)~(3) hold, the k-dimensional eigenspace X, associated
with the eigenvalue +1 of A which is the same ag the k-dimensional eigen-
space associated with the ecigenvalue A; = f(k, n)[k of T has projection
constant f(k, »). Given A, let P: = 1/2 (I+ A). An immediate calculation
shows IIPHL(I:) = f(k,m). Thus P is a projection of minimal nerm onto X;.

To show that a minimal projection P onto a given subspace X, < 12 with
MXy) = f(k, n) is uniquely determined, note that the scts
J ={T e L{IY)| tx(IP) =[P},
o ={A LX) T =yI+04 7}
are convex. Hence the set i
{4 e | A satisfies (3) of Theorem 2}

is convex. This can happen only if it is reduced to a point, i.e. 4 is unique.
Thus T and P arc unique, in view of the one-to-one correspondence of T
and 4 for & = 1.

The form of P follows from the form of 4 and P = 1/2(I-+A).

Remarks. (i) For ¥ =1, the form of P clearly can be different:
Choose any @, a € K" with [z],, = |lall; = 1and {a, o> = 1. Then P = a Q@2
is a minimal projection (of norm 1) onto span(x] < I°. |

(ii) The conditions on T and A imply that 7' = T% A4 = A*

(iif) If the matrix 4 of (3) works for the index pair (%, ), the matrix
—A works for-(n—%, n)-and vice-versa. Nevertheless f(%, n) Fln—k, n)
for & # n/2. Actually, fixing n, f(%, ») atbains its maximum at & = 1, [2(n+
+ Vn) (for m being a square number).

The problem of whether there are X, <12 with M) = fk, ) is
thus equivalent to the following
NorMALIZED PROBLEM. Given (, #), is there a matrix 4 = (@) 51

with A2 = (m2+n—1)I,

Uy = My || = lforz % j, where m = (k—n/2) X
XV (n—1)[k(n—Fk)4

‘We now consider those cases of (&, n) where answers are known to us. -

(@) kb =Land-n—1, f(1,n) =1 and f(n—1,n) = 2(L— —1/n) (hyper-
planes). In this case 4m = (n—1)/2, the matrices —LA exist (take ay

=M, 0y = —1for ¢ 5 j). For n = 3, this yields f(2, 3 = 4(3, utbained
by the hexagonal wnit ball

, {mel“’!}]w =0, folo < }.

(b) f /2, m) =14+ Vn~1 /2. Here m = 0.'The correspond-
ing ma,trlces A “symmetric conference matrices”, have been studied

e ®
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in Hadamard matrix theory. Tn the real case, a sufficient condition for
the existonce of A iv m == p"--1 == 2(mod4), p being a prime number,
A necogpary condition is n = @*4-b*+1 for a,b € Z, if » is of the form
n = 2(mod 4). Thus such A’s exist c.g. for n =2, 6, 10, 14, 18, 26, ...
but not for n == 22, 34, ... In the compler case, matrices 4 also exist if
n =2~ or n = p'--1 = 0(mod4). For n = 2V, they can be given inducti-

vely by
0 1) 14
A= [1. oj’ Tr= Lz 1]’
A== |2 T T =T®T v, N3>1.
V41 ['TaN 'A‘QN ’ oN 41 2 oY Z
In particular, thero is X, = C* such that
A0(X,) =f(2,4) = (1+V3)[2 > 4/3,

4/3 being the conjectured value of supl (Xy).

For the other facts mentioned, We refer to J. Scbery-Wa:lhs 71
(©) % = %ﬂ;l/n )12, Fln— V) j2,m) = L+ Va)2—1/Va, f(n+

-+ Vn )2, m ) sa (1 Vn)/2. Here m = +1. In the real case, the corres-
ponding matrices exist e.g. for n = 47, defined inductively by
B R R § ‘,_1 . .
11 1-1 '
'Ad == ] 1 1)’ A4Iv‘+1 = A4®A4N1
1L -1 1..1

as gshown alveady by A. Sobczyk [8] in 1938. In the complex case, they
exist for :my square n = N2: To see this, start with an ¥ XN matrix B
with BB* = NI, which has entries of modulus 1. Let

AN 1) N1 4 = Bimbin <hhLms N

Then A is an n xn matrix with 1’s onthe dmfronzul and entmes of modulus 1
guch that 4% == 4. It suffices to show that the rows of A are orthogoml
in the cmuplox sense, .

2 zimbjlbt’mgjl’ = ( 2 5]!’)( Z 54mbf'm)' = 5u' i :

Jyme1
is the inner product of the N (i—1)+1™ and the N (¢ —]) { 1% yows.
(d) Tt can be shown by caleulation that a matrix A does not exist
for k = 2, # == b (necither in the real nor the complex case). Thus 4 Xg)
<.f(2,8) for all X, s ¥
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(e) C. Lam and J. Seberry [4] showed by methods of combinatorial
design theory that the required matrices exist in the real casefor b = (204 -
+11)(16u+9), n =20(8u+3)(L6u+9) corresponding  to the wvalues
m = 30 %19, for infinitely many % € N. This means %/n—1/5 and yields
spaces X, < I with .
X)) VE—>V4/5.

Concerning cases of X; = ¥, with (X, X,,) = f(k, n) where ¥, [, we
now give the

Proof of Proposition 1. The map P: L(I%)—L(l¥), §->1/2(8 -+ 8%
is a projection of morm P < (14 Vn)/2 = (1+XN})/2 onto X,. Thus it
suffices to proveA(Xh, L(1%)) = (1+N)/2.To do so, it: is sufficient to show
that T: L(Ig)—~L{Iy), 8—8" has nuclear norm < XN, since this yields
by Lemma 1

AXyy L) = tr(Tlg) Ip(T) = BN = (L+N)/2.

Identifying matrices with its collection of rows, we consider the following
natural factorization of T (with £ induced by T)

T: L) = (© .. OB (8D ... DL @ ... Blly) = (..
S —

N-fold
Then ||.’f’l[< 1 since
) _ . B
12 (8)l g = sup 2 51 < 3 uplegl = 18llggo..crg,

Hence »(T') < »(I) < NV »(Id: 1},—1%) by the ideal properties of the nuclear

norm., Bub »(Id: I;—I3) =1. Let B: I3~} with |B) = 1. For any

& e{+1, —1} one gets | 3 bye; ej[ < 1. Averaging over all s,,¢, yields
i3

ltx(B)| = | 2 b

=1

<1.

Thus »(Xd: B—+IF) = sup{ltr(B)|| IB: 3—~ly| =1} <1 (the last argu-
ment was mentioned to us by A. Pelezyriski), and the proof of I[N
is completed. ‘

Bxawprg. Whereas in the cases of n = N?, ¥, = I or ¥, = L),
the dimension %, for which X, = ¥, attains the maximal possible value
of A(X;, ¥,), is uniquely determined as % = (n-- ¥n)/2, this is no longer
true for other spaces ¥,,. Consider e.g. ¥,, = L(1%,) where alwaysfor X, ¥,

A(Zpy T} <12(L46(T,, 1) < (L+HVN)2 = (1+ati/2.

This value is attained for subspaces with different dimensions J if % — N3,
N = 4M: First of all I imbeds isometrically into L(%;) (diagonal maps)

e ©
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and contais Xy, with & = (N-+VF)/2 = (i +#%)/2 and 4(X;) = A{Xy;
L(lev)) == (1--0)/2 by (c) of the examples of matrices A. Consider next
the 4% x4™ matrices A 3 = (a;) constructed there and let

Xyt = {8 eL)l s =0 for all (i,j) with a; = —1}.

Then dim Xj = number of 1% fn the mutvices 4 o which is fo= (NZ-F
4+ N¥)] 2 = (m~}-n)j2. This space also satistios

(&g L) = (1402
To give the idew of the proof of this fact, let ' L(13,)~L (%) be given by
(85)> (@ 8). By some averaging method and the trace duality, one can

show »(T) < N (actually = N*%, depending only on the fact that 4 o
is a Hadamard matrix, ence

4Ky Lily)) 2 e (T2 Zym) p (1) > BN = (140) 2.
If there would be Hadamard matrices with a larger number of --1°s than
in the above 4,8, the same estimate would give a contradiction to
A Xy Lly)) < (L-+n')/2 for all X, = L(l). Thus we have

COROLLARY 2. For amy N X N-matrio A = (0,) with A4" = NI, and
ay & {-+1, —1}, at least (N~ )2 and at most (N* ++N*2)/2 of its entries
are 41 (or —1).

For X, & ¥, with n fixed, oquality in A(Xy, ¥,) < (1+Vn)/2 could
be attained only for & == (n +¥n)/2. Tn the situation of ¥, = If of Corol-
lary 1, a better estimate can be shown: )

LeMMA 5. Let 1 < p < oo and 1jr: = [1/2—1/p|. Then for any X,
S W MXy, 1) < (L+-n"")[2 where equality could possibly be only atiained
for & = (n--n")[2 (requiring this fo be an integer).

Proof. As seen in the proofs of Theorem 1 and Corollary 1,

4 n
M ) < sup{ 34l 3 4 =1 1Akl =1}

Feal fan]

I
Letting @ == 3 4, wo have
dwal
(1 Y e I (20 1Y

n

> 1)

I
< (e TV ' S"'l P o =t (n— ]G)r’/r
< (n—BE ("‘“‘ il ) (i-lc+1

fual
s [(n—T) K]
Thus f, (@) = o [B"' o (= 1)" [(n— )"~ < 1. Since f, is increasing in #,

M, 1) < @
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where @, is the unique solution of f;, (#,) = 1. We claim that for fixed n ¢ N

sup{®, My Jrlo) =1} < L-+ninj2,

which is attained at k = (n-4-#4")/2, if this is an integer. This can be
seen by treating % as a real variable and differentiating with respect to k.

The estimate A(Xy, 1) < (1+2"")/2 has been given already by Sob-
czyk [8].

We still have to give the

Proof of Proposition 2. We will approximate the dual unit ball of
a given real 2-dimensional space X, by a polygonal unit ball being the dual
ball of a space X, and then use

eRT| 1<k

MX) < AUZ)A(Xy, Xa).

By John’s theorem [2] we may assume that the unit ball By of ¥: = Xy
satisties B, = By € }/ZB2 where B, is the euclidean unit ball. Moreover,
By may be assumed to be smooth (by approximation). Choose y, e ¥
with [ly,lly = 1. Next choose 4y € ¥ with |lylly =1, ¥ % ¥, in the positive
direction around zero starting from y,. Let t(y) and t(y,) be the tangents
to By at y and ¥, and f(y) be the angle between these tangents and 2 be

-

their point of intersection. Let a(y) be the angle between the lines 0y,
- — —

and 0y and y the angle between Oy, and ¥,2. Then ©/4 < y < 3w/4. Since

a(y) and B(y) depends continuously on ¥ with [y|ly = 1, there is o unique

93¢ Y with |ly,lly =1 and min(a (yg),ﬂ(yz)) = 2n[n, for a fixed given
# € N to be determined later. The correbpondlng point 2 will be called #,.

Continuing in this way, we find points y,, ..., y; of norm |y,lly = 1 s.t.
Yoy ¥0) < 27/ B(Yipy, ¥) < 2m/n. At most n points are meeded to
“travel half way around the circle”; we denote them by 4y, ..., Yy m < 0,
Let Y be the space whose unit ball is the absolutely convex: hull of the
cos ¥y and X,: = F*. Since ext By = {£w] ¢ =1,...,m}, there is

icm

©
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a canonical isomotric imbedding ¥ < 1% < 1. By Theorem 1,

AT KV2(L—on), o =3/2— V3.

. . . > —>
Let w, be the point of intersection of 0z, and y.y, and define similarily ;.
Then the Banach-Mazur distance can be estimated by

A(Xy X,) = a(¥, T) < max gl oyl

Some elementary plane geometry shows that this ratio ean be bounded by
Xy X)) < L+ 02 < L4202 n2,
using that the angle n/4 <y < 3n/4 does not “degencrate?” Lo 0 or m.

Hence .
AXy) < (14272 n2) (L—ofn) V2

which for n = 480 yields A(X,) < ;/.a«c, £ == 1.4-107%,

The involutions 4 of (3) of Theorem 2 are connected to the problem
of minimal reflections. An operator B: ¥—Y is called a reflection about
X c¥ iff B =2P~-I, where P: ¥+X < ¥ is a projection onto X:
Let

w(X, Y) = inf{IB]| R: Y- is a reflection about X},
wllym) = sup{u( Yl X, s Tl
1/n(m--2k[ +2Vk(n—k)(n—1) i |n—2k>Vn,
g9{k, ) _
l/n it |n—2k < Vn.

The result corresponding to Theorem 1 in the case of reflections is
ProrosrmioN 3. We have u(k, n) < g(k, n).

Proof. Let X, c ¥, and By ¥,~Y, be a reflection about X, of
minimal norm. A gimilar argument as in the proof of Lemma 1 shows

WXy Ty) = sup{ite (TR | T+ Ty Ty T(Xe) € Ly () = 1}.

Since Ry = 2P,~I for some projection P, onto X, TR, = 2TP,—T.
Thus if A,(T), ..., 4(T) are the cigenvaluos of T where A (T), ..., 4(T)
are those with respect to X, wo got oy

(X Xy) msup{l}_“,zm»— ) (||
fawl RLY'ESA
T: X=X, T(-ch) € Xy, »(T) = 1}
< ”(1y sy 1; ”‘1a reey "1)

J -k

Iy
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using the same notation as in Lemma 2. Lemma 2‘ yields

#( Xy T,) <inf [fi] +(k11—t|2+(n—k)11+t|2)1/2} = inéh(t).
teK €.

The infimum of % is attained at some t e R; differentiation shows:
at ity =0 ' it 2Kk < Va,
at t, = @h—n)n—2nVkm—K)jn—1)>0 if 2k—n> Vn,
at i_ = (27@—'%)/%—{-2/% VW< 0 i #—2%k> Va.
We remark -that |(’I7/—~27G)_/27/|>2/7’b]/7—6(—7b::m iff n—2k > Va.
In the first case h(0) = Vn, in the second or third case
hity) = 1/n(12k—n|+2 VE(n—h) (n—1)).

To prove an analogue of Theorem 2, we need a result corresponding to
Lemma 3.

Lemwa 6. Let ()i, € Zy with |(4;)i_,llz, =1. The following are equi-
valent:

k n
@) D= D A =g(ym).

qe=1 t=k+1
M= =hy=1ny, Ay = .. =4, = —1Vn
‘ i 12k—n| < Vn,
M= = dy =Jy W)l Ay = .. = Ay = (L—f(k, n)) /(0 —T)

if  2%—n>Vn,
M= ... =k = (f(n—F n)—1)/k,
My = e = Ay = —f—Rym)f(n—%) if n—2k >Vn.
Proof. (2) implies (1) since 9k, ) =2f(k,m)—1 if 2%—n >Vn.
It (1) holds and |2k—n|<Vn,

Vn = g(kyn) < 2 4l < Vﬁ(}:’ WP <V

=1 gl

yields that |3 = 1/Vn for all i, the first % being positive and the others
negative. I |2k—n| > Vn, for reasons of symmetry we may assume
2% —n > Vn. In this case, denoting g: = g(%, n)

hia): = 1/k((g+w)/2) +1/(n—F)((g —a)/2)?
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is decreasing for @ € [~1,1] since h'(x) = ((n—2k)g+ na)/(2k(n — %)) < 0
for |#{<1. Thus &A(w) > h(1). Calculation shows k(1) =1. Since

n k n
WAdiallz, =1, @: = 3 4, satisfies o<1, 3 44— 3 A4 =g implies
n i=1 i=1 {= ko1

> A = (g+®)/2, and by Holder's inequality
qu=l

n I ke
O WP 1= DIAP<1-1/6( 3 Af = 1-1/k(ig+a)/2).
o1 g=]1 3=1
Using h(®) =1 we find
K n ”
D AP <1m—B)(g—a)2) =1m-m( 3 A< D P
b =1 =Tt
Thus the previous inequalities are equalities. This yields 4, = ... = 1,

n
by =.. =4, and & = 2 A; =1 which easily implies 2, = f(k, n)/%,

Ay = (1—f(k, 'n))/(n——k) ;siilg again- g(k, n) = 2f(k, n)—1.

ProPOSITION 4. Let 1 <k <n. The following are equivalent:

(1) There exists a subspace X; = 17 such that w(X,, 1) = g(k,n).

(2) There emists an operator T: 1°—13 with nudear norm »(T) =1
and eigenvalues equal to the values (A,);_, in (2) of Lemma 6.

(3) If [2k—n|>Vn, there is & matriz A = (a;) with A* =1 and
@y =2kin—1 (i=1,..,m), layl =2nVEn—Tk)jn—-1) @G,ji=1,...
ceny My b 55 ).

If 12k —n| < Vn, there is a matriz A = (a;) with A2 =T and |ay)

p— n
=1Vn (4,j =1,...,m) and 3 a; = 2k—n.

fe=]

If (8) holds, the eigenspace X, corresponding to the eigenvalue +1 of
A has dimension & and satisfies u(X,, ) = g(k, n); A dtself is a reflection
of minimal norm. '

Proof. The equivalence of (1) and (2) follows directly from the proof
of Proposition 3 and from Lemma 6. For 2k—n > 1/4—{, the values of the
A; = A4,(T) are the same a8 in Theorem 2; thus (2)<>(3) follows from there.
In the case n—2k = Vﬁ, just interchange % with n—% and (T, 4) with -
(=T, —A4). To prove (2) <(3) in the remaining case |2k —n| < ¥n, note that
(3) implics (2) letting T': = 1/Vnd, since then »(T) z?z supty| =1,

2(T) & {+1¥n, —1/¥n} since A* =I. Moreover, % of the eigenvalues
have to be --1/Vn, the rest —1/Vn to ensure that 3 4(T) = tr(T)

=1/Vntr(A) = (2k—n)/¥n. I (2) holds, let A: —Vn T. Since A(4)
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e {41}, A* = I,. Lemma 4 yields |a;;| = la,;| = : §;foralls, je{1,...,a},
i.e. constancy of the absolute values on the columns The condition (A4%),
=1 gives

13

a,.(ja,) =i, i=1,...,mn.

Jj=1

Hence §; = ... = 6, = 1/1/4;. Thus |a,| = 1/1/;»_ for all 4 and j. Moreover,
n — - n
Zaﬁ—_— tr(4) = l/'ntr(T) = ‘/"Zﬂf(T) = 2k —n.
=1 d=]

The last statements follow from the one-to-one correspondence of T and A
and the fact that (3) implies [4| = g(k, n).

Remarks. (i) Thus for [2k—n|> l/ﬁ, the problem of existence of
subspaces of I3 with worst possible reflection constants is the same as the
one for projection constants; the combinatorial matrices needed in (3)
of Theorem 2 are in fact relections of minimal norm about “worst comple-
mented and worst reflected” subspaces.

(ii) The case. [2k—n|< Vn is different from the projection case,
sinee here [tr (T){ < 1 is antomatically satisfied and tr(7) = 1 can no longer
be gunaranteed, in fact [tr(T)] = |(2k—n)/Vn| < 1. In the |2k —n| < Vi—
real case, [2k—n] Vel is necessary for the existence of 4.

" Wenow discuss a few exzamples which follow from the previous results.

(a) k =n—=1, n>>4: g(k,n) = 3—4/n is attained by some X, = 2.

(M) & = (nL Vn) )/2, m = 4 in the real case or n = N*in the cmnplnx
case: g(k,m) =Vn is attained by some X, < I,

(¢) & = nj2,n =2 : g(k,n) = Vn is best possible. One can take for
"~ Ae.g. a(correctly bealed) Walsh-matrix. This also solves the case b = n —1,
n = 2.

(d) For E =n—1, n =3, g(k, n)
case for some X, c I since V3 ¢N.

In fact, one can show u(X,, 1) < 5/3 < V3 by some ad-hoe consi-
derations. A natural guess seems to be (2, 3) = 5/3 (attained by the space
with hexagonal unit ball).

. (¢) In the complex case, for n = N* and In—2k] < <Vm, g Ic, n) =Vn
is attained: There is Xk < Iy with u (X, I? =Vn. ‘To prove this, we con-
struct a matrix A as required in (3):

Let B be an N x N-matrix with BB* = B*B = Iy and |b,| = 1/ V¥,
e.g. B-=1jYN (") s, s Where w is a primitive N'™ root of unity. Let

L it dsjore=jand 1<i<h—(n—Vn)/2,.
-1 i {=4and k—(w—-l/fn)/2<z\l\7.

=V3 is not attained in tho real

eyt =

icm
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Define' A by
ONG1)+L, N(G-1)bm = Cg By, 1
Then 4 = 4% |a, ,| = lll/n and

Z uzbubn *2% = 2k—mn.

=1 =1 =1

Moreover; A* = I, since any two rows are orthogonal: the inner product
of the ¥ (i—1)-+1" and N(w 1)+ row is

Z Oy 040y By 2 B Birms
Je=1 Mm=l

If 4 5 4', the second sum is zero, if ¢ = ¢’, the inner product is

2 ¢ bl = &y

j=1

The same construction applies in the real case if # = N* and N is an index
for which a Hadamard matrix exists, eg. N =2 or N =p¥+1 =2
(mod4), p a prime.

(f) Let 1 <p < co and 1/r = [1/2—1/p|. For a subspace X, c I we
get by similar considerations as before that

SWHZ%W* @||

. . BT (D) =1, T(X) € X}
< dnf i+ (o(1 — 1Y (n—T) (L 1))} < i,

<445, lL,m<gN.

tr(4) =

/“(Xk’ n

For & with |n—2Fk]|

< Vn there are X, <12 such that equality u(Xy, 1)
— ,nllr

is attained: Let 4 be a matrix as in (e), X; be the (k-dimensional)
image of P = 1/2(I+A) and T = n~" A. Then »(T: ¥ ->12) <1 since
It5] -n-(1+mm(lfﬂ»1/ﬂ ). Since 4(T) =, 1<j<k and A4(T) = n~,
+1<j<<n we get

,u(.X;” Zn) = k%-—l/?" - ('”/ - 75) ( "“'n—]/r,) = nl/r .
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