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Projections onto gradient fields and L?-estimates for
degenerated elliptic operators

by
TADEUSZ IWANIEC (Warszewa)

Abstract. Lot L™(RN, RY) be the space of all vector-valued functions f: RN
>R, which are intograble with the power m > 2. Consider the subspace D™ (RY)
of all functions which are the gradients of scalar functions on RN. We study the closest
point projection Py, : I™ (RN, RV)— D™ (RVN). The main result of the paper ig the in-
equality [[Ppflp < Aplfips for any p > m. In the proof an inequality of Fefferman and
Stein is used. As an application of the methods presented we give some regularity
vegults on PDE’s and quasiconformal mappings. In particular, we get a stronger ver-
sion of the Gehring theorem on LP-integrability of first derivatives of quasiconformal
mappings.

Introduction and statement of the results. The main objects of this
paper are the Lebesgue spaces I™(RY, RY), 1< m < oo, of mappings f
from RY to RY with the standard norm

Wl = ([ 1f @)™ da] "™

and their subspaces D™(RY) of gradient fields, i.e. of vector-functions
of the form f = Vu, where V is the gradient operator acting on locally
integrable functions % for which we can define f e Z™(R", RY) such that

[<hoy = = [udive

for any test funetion ¢ e OF (RY, RN). Hereafter <, is reserved for the scalar
product in RN,
Our main results concern the LP-cstimates, p > m, for a projection

P,: L™(RY, RN)=D™(RY), m>2.

The intevest in bounding such projections is motivated by a number of
applications we give to problems of regularity in PDI and quasiconformal
mappings.

Tiot us first consider m = 2; then I? (RY, RY) and D*(RY) are Hilbert
spaces and thoe orthogonal projection P: I*(RY, RM)—>D*(RM) is linear.
Thercfore, for any f € I* (RY, RY) we have Pf = Vu with an % which mini-
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mizes the Dirjchlet integral

int (1 7o) = ([ 1~ V™ = |2fflhs
thus % can be found from the Buler equation
(0.1) divPu == divyf.

The standard method of the Fourier transform yields an explicit formula

(0.2) Pf = —R{R, [,

where for B = (By, ..., Ry)y F=(f* -, fY) we denote (R, [y = 3 R, f!

and R, stand for the Riesz transforms '
0~ B (y) dy

R R e )

Since B; are LP-bounded for 1 < p < oo and ‘are isomelries in I* (RY B
it follows. that ‘ ' ‘

PROPOSITION 1, If f is in L*(RY, RY) and in LP(RY, RY) for some
1< p< oo, so s Pf. Moreover, for some C, = O, (N) we have
(0.4) WBfl, < Cylif s '

From A}IOW on m will be a fixed real number 2 2. The projection
P: I™(RY, RY)—D™(RY) is defined by P,.f = Vu, where 4 is a locally
integrable funection which minimizes the integral

int ([ 1f =o' = ([ (f = Pu}™ = 1Pof Sl

In contrast to the previous case the operator }?m, m > 2
the corresponding Euler equation

(0.6)

Cp=1.

(0.5)
is non-linear and

v |V —f" 2 (P~ f) = 0

is not uniformly elliptic; thus the study of P, is mueh more complicated

and requires deeper arguments from PDH theory.

We shall prove a straightforward generalization of Proposition 1,

namely '
THEOREM 1. If f is in L™ (RY, RY) and in L2 (RN, RY), p = m, so is

P,f. Moreover, ‘

(0.7) 12 fll, < Byl

Jor any f and some'constant B, = B, (m, N} independent of f.

icm®
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TFor o full unalogy it remains to have (0.7) for g > m=1, which we
conjecture to Lie true bub are unable to prove. However, for the appli-
cations which we have in mind, the stronger result is not obsen’mal, our
main interest is in the estimates for large p. o
In the paper we shall be mogtly concerned with a ﬁomcwh&t more
general equation

(0.8) div | Va2 Vu = divf,
which ean be recognized as the Buler equation for the variational inbegral
functional

I(v) = [ |Po™ —m <f, 7o)
defined tor Vo e D™(RY) with given f from I™®™-D(RY, RY). As usual,
(0.8) is understood in the distributional sense, i.e. the equality

(0.9) [ v =Fuy oy = [ <y V>

must hold for any test function 9 e OF (RY), ‘whence for thoge with %7
e D™ (RY) as well. We immediately observe thab (0 9) for 5 = u and the
Holder inequality yield

(0.10) f[V,ulméj‘[flml(m—l)'

We shall generalize this as follows:

TumorEM 2. Let f be in IM™D(RY, RY) and in LP*D(RY, RY)
for some p = m whzle w 48 the solution of (0.8) with Vu in D™ (RY). Then Vu
is in D?(RY) and

(0.11) I7uly ™ < Aplflpim-1

where A, = 4,(m, N) are constants independent of f (Adn = 1).

This theorem will be utilized in the proof of Theorem 1 and two
other ones from PDE and quasiconformal mappings. Let us formulate
applications to PDI.

Take o domain £ in RY and a measurable map ¢: Q--GL(N, R)
from £ into the gencral linear group. Suppose that both conditions:

(0.12) G (#) is symmetric
and '
(0.13) 'l‘ll(w are constants 0 < a << b < oo such that

A|EP <G (@) E <YL, EeRY,

hold for almost all ¢ in £.
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‘We intend to apply Theorem 2 to a regularity problem for the equation
(0.14) Aiv <G (@) P, Vot Y= G () Vs == 0

which arises at several places of analysis: let us just mention the capacity
theory and quasiconformal theory (m = N); it is also a typical example in
the theory of degenerated elliptic equations. As before, the cquation is
understood in the distributional sense and the solutions % are sought in
the Sobolev space W5, (£2); thus they are stationary points of the functional

I (u) = [ (G @)Vu, Vuy™du.

The results which follow depend on the “G-coefficients™ of (0.14), essen-
tially on the characteristic

(0.15) Eg = esssup (1+|G(@) —B))™, EKg>1
aef

alone. Here F stands for the identity matrix and |4] is the norm of A.
Later we shall ghow that

(0.16) [<G{w) & EYMIG (3) & — |Em2E < (Kg—1)| &,

which entitles us to interpret Kg—1 as a distance measure between the
operators (0.8) and (0.14).

TEEOREM 3. Let p > m. Suppose that Kg—1 is such that

(HEg—1)4, <1,
where A, has been determined in Theorem 2. Then any solution of equation

(0.14) belongs to Wy 1,,(£2). Moreover, for amy concentric balls B, (w,)
< Bglwy) € 2, B > the following apriori estimate holds:

(0.17) ( Jivue)” <o, ( [ivum)™,

By . Bp
where C,, = Cy(m, N, Rr) is a constant independent of w and the integral
mean value (mesA)™ [ has been denoted by a barred integral [

4 i

LP-estimates of this kind are considered in PDE. Taking into account
the results given by N. G. Meyers and A. Blerat [2], we find that the
solutions of equation (0.14) belong to W 1,,(2) for some p > m. Moyers
and Elerat have shown, making use of the well-known Gehring lemma [4]
that no regularity assumptions on @ are necessary for this result, In this
paper we shall see that the exponent p may be arbitrarily large as soon
ag G() is close to a given continuous matrix-function. It should be
mentioned that Gehring’s lemma does not work for large p aven for the
case of smooth @.

In connection with gquasiregular mappings we shall also investigate
the regularity problem.

e ©
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DrrINITION 1. Assume f: Q—RY, f = (f% ..., f); then f is said to
be guasiregular if e Wi 1,(2) and the following inequality holds:

(0.18) IDf (@) < AT (@, f)
oty . : .
for almost all z € 2, where Df = . is the Jacobi matrix of f, J (w, f)
'

is the Jacobian of f, and & is a constant.
According to the well-known definition for the matrix-funetion, in-
equality (0.18) can be reduced to the Beltrami equation

(0.19) D*f(0) Df (@) = J (v, )G (@),
where @ is defined by
DY (@) Df(w) .
G (@) = J(w,f)zl’N it J(@,f) #0,
B it J(x,f)=0.

Here the matrix transposed to Df is denoted by .D*. In view of (0.18)
we observe that @ satisfies conditions (0.12), (0.13) and det@(z) =1
for almost all # in Q. Let 0 < §,(2) < B (@) < ... < By (@) < oo denote the
eigenvalues of G(x). Then the number

B (®)
0.20 K, = esssu
(0:20) 1 Ca T Bal@)
will be called the dilatation of f. Moreover, if K, < K, then the map f is
called K-quasiregular. ‘ . )
Trom the Beltrami equation one can derive the following differential
equation of second order (see [1] and [6]):

=1

(0.21) div <G~ (@) P, Vuy®™ =92 G (@) Vu = 0,

which is satisfied by each component u = f* ¢ =1,..., ¥ of the map fi
The dilatation K, and the characteristic K _, of the inverse matrix G-
are related by

(0.22) VE, <K, ,<VE .

The proof of the above inequalities will be given in Section' 6.
As a consequence of Theorem 3 we immediately obtain the following
regularity properties of quasiregular mappings.

TuROREM 4. Any K-quasivegulor map f: Q-RY belongs to the Sobolev
space Whioo(Q) whenever p >N and

(0.23) (E@-D2 14, <1,
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where A, 1s determined in Theorem 2. Moreover, the following local estimate
holds: -

(0.24) (f 1I)f(m)|1>dm)””<0 (N, K, Bfr) f J (a0, f) da) ™
B, bR

for any concentric balls B,(%,) = Bp(w,) € 2, B> 7.

Such estimates for quasiregular mappings have been investigated by
J. Resetnjak [7]. He has made use of some essential properties of quasi-
conformal mappings, for instance the stability theorem and also somo
specific generalization of the John-Nirenberg lemmi on BMO spaces.
Therefore, the methods which he has introduced are not useful for dif-
ferential equations,

By Theorem 4 one can give sgome explanation of the Gehring conjec-
ture, which proposes an explicit formula for the exponent p = py (K).

The idea and the results of this paper may casily be extended for differ-
cntial operators of a more general form. For example one can obtain L?-
estimates for a large class of monotone operators of the type

{0.25) Lw) = divA (@, u, Vu),

where A = 4(»,u, &) is a given vector-function sutisfying the usual
regularity and growth conditions. We shall not give these generalizations
here since they would involve extremely long expressions,

1. Preliminary facts. In order to clarify the proofs wo colleet here
some elementary inequalities, estimates of maximal funetions, a Yoinearé-
type inequality and a property of the Riesz potential.

The inequality

+1 9
"ol + _ﬂ_ﬂ__ |4 — BJ 4 p4°

holds for arbitrary real numbers 4, B, ¢ and any positive g.

(1.1) |4%—c| < |B

Let m =2 and & ¢ e RY. Then
(1.2) DEMTPE— (LML, E— > = (|EM™E - (™) 6~ LI,
(1.3) (JEM2 4 (L™ 16~ [* 2 2m2 (| &™2 — (L [mP)E,
(L.4) AUTHEME L) 6~ L > (gL,
(L.5) P EM E (G L 2 LI,
(1.6) [IE™ — 121™) < (mf2) (|E - [ 6— &1,
L7 (&)™ (402 g - (L1 /02 g, 00,
(1.8)  |lg—LMm=2(&—L)— &2

< (L4 O™ 1™ - (L4102

icm®
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Conditions (0.12) and (()..13‘) imply
(1.9)  LG¢& EmAGE—(GE, G, £
= (a™[2) (€™ 102 6 — 2.

These inequalities are rather elementary, and so we omit the proofs. As
promised in Introduction, we give the proof of inequality (0.16). For any
measurable map G: 2-GL(N, R) and almost all 2 € @ we have

[<G () & &m0 @ (o)

1

a
[ Am+ue—m) g o (m 4 yg—m) dar

0

5__ Ié—rm-—ﬂ f

N ,
< _m_'. L - . (m—2)[2) g1m—1 7,
<0f 5 |G—E|(141|G— B &t

=[({1+ ]G(w)"EDWZ——lJI{-‘Im“I < (Eg—1)[&m1.

Now we recall some results on maximal cperators in L? spaces. Let
I € Lig,(BY). The Hardy—Littlewood maximal function is defined by

Mf(w) =sup [ If(y)ldy,

>0 (%)
where B,(«) is the ball of radius » and centre z.

Lmmva 1 (see T. Stein [8]). If fe L?(RY), 1 < p < oo, then
D'Np 1/p
(1.10) I, < |1anp<2(p”_l) 1,

Another operator we use is the maximal operator of C. Fefferman and.
B. M. Stein [3].

(L.11) £i@) = sup [ (7)1, dy,

] >0 B (x)
where fp == r SF(y)dy is the infegral mean value over a (measurable) subset
B

B = RY, Notice that in the original definition of f¥(x) the supremum in
(1.11) is taken over all the balls which contain the point @, not necessamlly
a8 a tentre. Bul in view of the inequality

sup{flf(y)«fnldy; @ & B—a ball} < 2! sup f [f(9) ~Fa,ldy .
B p . >0 Bylx)

both definitions are cgsentially equivalent. The last inequality follows from:
the lomma:

5 — Studla Math. 75.3
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TEMMA 2. For any measwrable subset B < RN and any feIL(B) we
have

@12) T —faldy <2 [1f@)—cldy
B B

for arbitrary real c.
TeMmA 3 (Fefferman and Stein [3]). For any 1<p< oo

1371, < Bl *llpy

Next we present two lemmas on Sobolev spaces.

TmimMA 4 (Sobolev—Poinearé inequality). Let B = BY be a ball of
radius o and let w be a function from the Sobolev space Wi(B), L< g < N.
Then

@i (f 1 (g) — g ¥ |50 < Gy (g) o ( [ 17 (o) )
A . : V] )

(1.13) B, < (Oy)

i

TEMMa 5. Take 1< 8 < oo and 4 & Wi(B). Then
@15) (] o —up S Day " < Oyls) e [ 17uty) e ay)™.
B ‘ . B

This lemma follows from (L.14), where we put ¢ = sN/[(NV g~1) <N
and apply the Holder inequality to the right hand integral.

We end this section with an estimate of Riesz potentials. Take a fune-
tion k. The problem now is to find a vector field H guch that

(1.16) divH = h.

It ke 0(RY), we solve the Poisson equation
1.17) divPy == bh.
Its solution is given by the Newtonian potential

| _ 1 Iiy)dy e
. vl = F20yJ oy ¥’ N=2,

where oy is the measure of the unit spheré in RY, Tho gradient Py is
expressed by means of the Riesz potential of order 1, namely

Ppi@) = — [ LZYAOd

1.18
- o J T Ty

icm
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LuMwmA 6. Let » be such that » > N/(N—1) and he L'¥/0+N(RN),
then Vy belongs to D'(RY) and : ’

( )
(1.19) 17l < Cx () Bl -

TFor the proof we recommend E. Stein [8]. :
From this result we get an estimate under additional assumptions on
the function h. .
I;EM;\VWA 7. Let s>1, g>max(l,sN/(s+)), N >2. Suppose that
h e lIf (IF ) gupph < B, (w,), fh(y)dy = 0.- Then formula (1.18) defines a
vector field H = Vy e L*(RY, RY) which satisfies

(1.20)

divH =h,

(1.21) IHT, < Cy (s, 9) 91+N/s( f ]h(y)l"d{t/)”q’

Byl

where Oy (s, q) depends neither on kb mor on the ball B, ().
Proof. Since [h(y)dy =0, we have for |z > ¢

f(ﬁ:_y_,
N
2 Vol

and by the Holder inequality

B (o) =

@ C .
. e
—=) »(y)dy|< T Baf b1y

91+N = e
(@) < Oy = (Bf ieay)”.
Therefore
r s dow
(1.22) H@)dn< O ([ [
e ‘ (Bof ) rdee (21— O
< gt ( [ )™,
BQ

Tb, suffices to estimate the integral [ |H (m)l"dm. To do this we take
{e] <20 N

¢=N-1/2,

_ {max(s, (N4+D/(F-1)) i
g<N—1/2.

¢ [(N —q) it

One can check that 7> s, r >N {(N =1), »N¥ [{(r-- ) < ¢. By the Holder
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inequality and Lemma 6 it follows that

[ 1H @ de < Cy o™ NIH S <Oy (35 0)0™ " Il sty
lel<2e

T w\a(r+-N)/rN
< CN(S, q) 93+N( f lh[er(r-i .N)) r
BC'

<0uls,0 o ( [ ni),

‘B(I
This together with (1.22) implies (1.21) and cnds the proof.
2, Some regularity theorems. Some deep regularity resulls on degen-
erated elliptic cquations are of principal importance for what follows,

LomMA 8. Let fe CP(RY, RY) and G: Q-=GL(N, R) be o (™ map
which satisfies (0.12), (0.13). Suppose that u solves one of the equations ‘

(a) div|Fu"*Pu = divf, Vu e I™ (RN, RY),
(b) i P — =2 P —f) = Ve I (Y, RY),
(e) div{GVu, Pud=dqVy =0, VueL™( 2, RY).

Then Vu is locally bounded, i.e. Vi e L (-, RY).

One can recognize this lemma in the theory of quasiregular varintional
equations, which have been investigated mainly by Ladyzenskayn and
Uralt’seva (see [b], Chapter V). Actually Pu iy Holder continuous but we
do not need such a stronger property. The most difficult rogularity result
we use here is the following one (see [B], Theorem 7.1, p. 414).

If we WL (Q) satisfies the homogeneous equation div|Vw|™ *Vw =0
in am open subset Q, then Vw'is Holder continuous with exponent o == ay(m)
independent of w and the domam Q. Mor eover, Jor any compact subset Q' = Q
the Holder norm

1P| = hup[Vw[—{ sup ~|Vw( e Vw(v/)

PRI o — yl“
2y

is dominated by the Lebesgue norm ( !f [P ()™ ).
4

By dimension analysis this implies
- LEMMA 9. Let B, = B, (2,) be the open ball of radius r and centre @, & RY

and w e W, (B,) such that

(2.1) div |[Pw™ 2 Pw = 0,

Then '

(2.2) sup| V20| < Gy (m) )( f [P () ™ dy ) ™

r/z B,

icm
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and for anJ 0.5 7/2

(2.3) .sup ]Vw( y—

Vw (z4)| < C
x:B(,(a:O) .

w(m)(epr)( [ 1w ag)™,
BT

where a = ay(m) is & positive exponent independent of w, r, and o.

We derive from this result the following complement of Lemma 8.

COROLLARY 1. Assume that either (a) or (b) in Lemma 8 holds. Then
Vu belongs to LP(RY, RY) for any p > m.

Proof. The case p = m is included in the definition of u. So, let
» > m. Choose the number R so large that f(z) = 0 for |z|> R. Then %
satisfies the homogeneous equation

div|VFu/™ Py =0 in |#| > R.

Take into consideration the ball B, (»), where # = o] — R. Then inequality
(2.2) implies B
Oy (m)

[P ()] mm— 1Vl -

< Oy (m) fWu( imay)"™ <

By )
Hence for any p > m we obtdin
[ u@)Pds < co.
|l@|>21 -
Since Pu is locally bounded, Vu e LP(RY, RY) as we declared.
3. Proof of Theorem 2. The case p = m has been considered in Intro-
duction. Therefore we assume p > m. First we shall show estimate (0.11)

under the condition Vu e L? (RN, RY). Take the ball By = Bg(,); then
% belongs to WL, (Bg) and we may solve the Dirichlet problem :

3 T2 j—
(3.1) {dlv[VwI Vw =0,

w—1u & WL (Bg),

where Tf’}n(lfn) denotes the completion of CF (By) in the norm of Wi, (Bg).
Put the test function 2 = w—u into the weak forms of equations (3.1)

and (0.8), obtaining, respectively,

f]V lm M<I,w, V?/> = 0, fIV,MIm——2< V'le, V77> =
Iy By
Then we get

[ <t vnd.
Br

[ <vur=2vu— [P vw, Vu—Vw)

By

= [<f, Vu—Fuw).
BR
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We estimate from below the left-hand integral by wusing (1.2). To the
right-hand integral we apply the 1Ioldor inequality and (1.4)

fuvmm—w[mr"—z)[w Vwl* < 2 fIfHVu vl

Br
m(m—1)\(m—1}m Vit — Vo™ 1/m
3 e f i )

<4(m—1)/m( flflml(m—l))(”‘"“’"‘( [ (wupm== ~l--(le""’)[Vquwlz)llm-
B Bp
Hence .
J PP [P~ Vu—Pul* < 4 [ 7D,
Br : ' Br

According to (1.3) the last inequality implics

f(qu]"‘/2 [Peo™2) < 200" [ifmem=2 - for any r< R.

BR
Now, we apply inequality (L.1) with 4 = [Pu™*, B = [Vw|™*, an arbitrary
¢, and > 0.
4 .
(3.2) (V)™ — ¢ |Pw|™—o|-+-B |Vu1m-i-~w (1P ™
Ly T,
(B--1)m -
— 1o < [ |ivem—c+p [ 1vuma: _.Lﬂ_,__ [ gy,
By By ; g

One can replace ¢ by any integrable function. In paxticular; if ¢ = [Vu|™ -
+|Fw™, § =1, and r =R, then

(3.3) 1w <2 [ (7u[™-dm? [ |fmio-D,

Bp g zig

On the other hand, if r = ¢ < B/2, ¢ =
arbitrary positive number, then

= [P (we)|™ and f still remaing

(3.4) f |I7ul™ — o]

B,

J [| P10 (@)™ — | P ()™ | - B fqui’" + 26+ 1)m flflm’(""”

g

icm
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By Lemma 9 and inequalities (3.3), (1.6) we get
170 (@)™ — | P ()|
< (m)2) (|0 (@) + [P ()™ [Vao(2) — Vo ()]

<m0} (m)(e/B)" [ 170l < Om, By (o[ [ [ 17urm+ [ ifmion].
Br Br Bg

Put this into (3.4) and use the definition of the Hardy-Littlewood maxi-
mal function

J17urm—oo| < 18-+ 0 (m, Mo/ Ry 1171+
B,

2(f+1)m*
B

ThlS inequality holds for any g, any R > 2¢, and any positive f. Take

+ [0<m, N)(o/B)*+ (E/e)N]MIJ"I"‘""‘”"~

= g~V with f< 27° and write U = [Fu™, F = [f{™"=Y, Then, using
mequahty (1.12), we obtain
8 O(m, N .
U (@) — ol ds < C(m, N) BT (@) + wﬁ(ﬁ%,—) MF(my).

Be(mo)

In view of Lemma 2 woe conclude that the maximal function U%(w,) sat-
isfies the inequality

O(m, )

(3.5) T(@o) < O(m, 7117\7/:—

N)BMT o) + MF (w,),
where we still have freedom to choose the parameter < 2% Now, we use

Lemma 3 as expected. For any s> 1 this gives

C(m, N)B,

MU, < BC(m, N) AN

BSHJVIUHS + ”MF”s

At last take f so small that pC(m, N)B, < 1/2. Then

(3.6) WU, <

According to Lemma 1L

O (m, N) B3| 2L

5”6‘ 1/8
3.7 U< 20(m, N) (z———f) BENa| ), whenever 1<g§< oo,
For s = p/m we have

(3.8) 1Vally ™ < Ay (10 N)l|fllpjim—1y s
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where
(3.9) o
P (m~1)/p 1)t N)ima (V P
== () N LS, II'- e Mo a: O (10
Ay, (my, Ny = C(m, )(fp—-m) i, [Cy () »

Here B,'is the constant of Lemma 3. ‘

This eompletes the proof of inequality (0.11). Reeall that we have
assumed Vu e LP(BY, RY). To eliminate this extra assumption we use an
approximation argument, .

Let f; be a sequence of O (RY, BY) mappings which converges to f in
Lpltn— ‘)(R‘V RY) and in L’"’(""“)(RV BY). Define the sequenge ay un
golutions to the equations

Aiv | Va2V = divf;.

By Corrollary 1, Pu; belongs to I? (RN, RY). This fact allows us 10 writo
inequality (3.8) for the solutions w,j == 1, 2, .

(3:10) HVM Hmnl < A[;(m” )i ,J”p/(m.-l)

On the other hand, the sequence Fu; converges to Vu in 1™ (RN, RY).
In fact, for any test function # such that Py e I™(RY, RY) wo have

[ <P vuy, — | Va2 v, Vi) = [ <t Vup.
Put 7 = w;—u and apply inequality (1.5); then

[ 17u;— v < g2 f 15— f| Vs, — V|

Here we have used the Holder inequality. Therefore

f“?ﬂ'j”‘ Va™ < me !f ___flm/(m—l)._.ro'

What has been done implies that Va e LP(RY, RY) and inequality (0.11)
Iy satisfied (as the limit case of (8.10)). Tn this way we complete the proof
of Theorem 2.

Remark. Observe that A4, = 4,,(m, ¥) iy wnbounded when p comes
near to m. It is unexpected on aceount of 4,, = L, Thiy abnormal situation
appeared when we used Lemma 1 in passing imm (8.6) to (3.7). Nince wo
are interested mogtly in Iarge exponents, we do not diseuss the question
how to make the constant A, better. There ave many reasons for expecting
that inequality (0.11) (‘]ll«ll]lh true for any m--1 < p < oo ay it doey in
the linear case, Le. for m = 2. Iu this case we have two methods at our
disposal. One of them has been presented in the Introduction, when wo
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were making wse of the Caldérén—Zygmund theorem for the Riesz trams-
form. Another way is to adopt duality arguments. Unfortunately neither

method works for non-linear operators. We shall derive from the Themem
the following auxiliary lemma:

Lpvva 10. Suppose that we are given p>m, G: RY—>GL(N, R)
which satisfies (0.12) and (0.13), g e I™(RY, RY)nL?(RY, RY),

He Lml(m—l (RN, RN) mLM(an—al) (RN, IﬁN)
and a Junction w which solves the equation
(8.11) div<@(Vu—g), Vu— gm0 (Fu—g) = divH.

If Vue D™RY)ND?(RY), then for any positive 0 we have the inequality

(3.12)  IVulp™ < [(1+ )" Ky — 114, | Vulr=t +
+ (1 + 1/0)m—2KaAp|].‘71|§’;_1 +-A~17”H”pl(m—1)!
where A, = A, (m, N) is the same consiant as in Theorem 2.

Proof. For the proof we formally transform eqlmhon (83.11) into the
following form

(3.18)

wherce

div | Pu[™ Py = div(P-+H),

=@ = {G(Vu—g), Vu—gy" DG (Vu—g)— |Pu— g™ (¥ —g)+
+ |Vu—g[™ (Vi —g) — | Va|™*Vu.
Then by (0.16) and (1.8) we get the estimation
1P| < (Bg—1)|Vu— g™+ [(1+ 0"~ — 1] Pae[™ + (1 + 1 By 2|g|™*.

The first term of the right sum can be estimated by using inequality (1.7).
This leads o :

(3:14) 0] [(L4 0/ K,— 11| Pul™ 4+ (1-+-1/0)"*Kolgi™~".
Now, apply inequality (0.11) to (3.13)

Vel ™ < A 1Py ~+ A1 )
This together with (3.14) implies (3.12)

4. Proof of Theorem 1. First we prove incquality (0.7) when
Pf e I? (RY, RY). Observe that equation (0.6) is a special ease of (3.11)
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when G = E, H =0, g = f. In this case inequality (3.12) reads
IPAI < [(LA4- 0™ —LLA PS4 (L1 1/ 0)™ 24, I
Now it is ﬁme to fix the free parameter 0. Let us take
0 = ((m-1)2""4,)" < 1;
then by elementar;y computations we simply get
A+ 0 -1 (m—~2)2m 0124, and  (L41/0)"* < 4;4”‘2""‘4@1;;““.” .
Theso inequalities imply that |
WP < RIS - fAm Az .
Hence
(4.1) 1Pl < 4™ A f 1

Therefore inequality (0.7) holds for B, = 4"4,.

To complete the proof of Theorem 1 we again appeal to an approxi-
mation argument. We construct a sequence f; e & (RY, RY) which con-
verges in I™ (RN, RV)nL?(RY, RY) to the given f. Trom Corollary 1 wo
see that Pf; e L? (RY, RY) and then wo may write inequality (4.1) for f;:

(4.2) IPfl, < 4™ Ayl filly

As in the previous section we prove that the Pf’s tend to If in the spaco
I™(RY, R¥) and conclude that Pf e L7 (R¥, RY). In particular, inequality
(4.1) is true for the map f not neccesarily smooth.

5. Proof of Theorem 3. Wo begin by reducing the problem to the
case where G is a smooth matrix-function. Take a measurable G: Q-
~GL(N, R) and extend. it ag the identity matrix outside 2. Now, ap-
proximate & by smooth matrices G = Gsg;, where the convolution i taken
with ¢* functions ¢; which are non-negative and Jo(a)dm =1, supp gy
< By;(0). The maps ¢;: RY—>GL(N, R) aro smooth and converge to @
almost everywhere, One can check that such approximation gives

o1& < <Gy (w) &, HLVEF and Kg, < Ey.

The function « can be approximated in W (2) by a sequence of more
regular functions, namely by the solutions w of the following Dipichlet
problem :

o

(3.1) . {di" <Gy (@) Vg, VY= DBG () Py == 0,
w—w e WL(Q).
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By Lemma 8 the gradients Pu; are locally bounded. In particular, they
belong to If, (L2, RY) for any p > 1. Suppose for a moment that we have
proved inequality (0.17) for the functions w,; This implies that Fu
€ IP. (02, RY) with p announced in Theorem 3 and » must satisfy (0.17)
as well,

Therefore we may assume, without logs of generality, that ¢ is smooth.
In such 4 case Vu is locally bounded. This property ensures that the in-
tegral formulas below make sense. That is why we wanted to have it.

The proof of inequality (0.17) is based on induction with respect to p.
We shall show that if (0.17) holds for some exponent p’ > m, then it also

' provided that (Ez—1) 4,

N
N-1
Fix concentric balls B, = Bp < 2, R>r and take a function ¢
such that '

(5.2)
. o O(N
0<9<l, p=1 on B, Ipl<gl and pelR(B),

holds for any p such that m <p<
<1l

where ¢ = (r-R)/2 < R. Since (0.14) and (0.17) are invariant under the
replacement of @ by any additive constant, we may assume that

(5.3) f Ju@ay =o.
Ba

Multiply both sides of (0.14) by ¢™*
(B.4)  Aiv<G(Vpu—uVe), Vou—uVpdm=EG( Vou —uVep)

= (GVu, Pudm = LGVu, Vg™ 1y,
For simplicity we introduce the following auxiliary functions:
(6.5 v=gu, g=uPp &= GV, Fu)mGry, Fgmrty.
All of them have a compact support in the ball B, Thus the cquation
(5.6) Qv <GP —g), Vo —gYm=BG (Vo —g) =h
muy be considered in the whole space RY with arbitrarily cxtended G
= GH(@) outside Q. Wo fix the extension by letting & be the identity matriz
in RY\ Q. In order to make uso of Lemma 10 we express the right-hand
gide of (5.6) in the drvergence form

(5.7) h = divH,
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swhere H is the vector ficld defined by for mul(l {1. 18) 'I‘hon forany p > m
fmd .my positive 6 we have’
[+ 0" Ky —1: ]A Vol -

-+ (1 ]"1/ )'mw ZKGApIIg”p -1 - A})”]I“p/(m~])'

Accordmv to the assumption (Kg—1)4, <1 one ean choose 0 so small
that [(1.-- )m”zKG——l:]A <1, For such 0 inequality (5.8) takes the form

(6. 8 I Pollp= <

(5.9) 7ol < U(’m N, P2y ) gl - ey 5

where C(m, N, p, K) doegnot dopvnd on the bally B, « B, & B,,. Now, wo
analyse all the terms in (.) 9).

(5.10) 1Poll, = ( f Wl > ( j .
1,
By (5.2), the Holder ineguality, and 1‘.he‘§1.ﬂsumption p<p'N /(N -1) we
geb: ' '
Iglly < Ce™2(R—)=( [ 1ul?)" < O™ (R~ )7 [ puprir-n) =iy

Ho 1,

We prolong these incqualities applying (5.3) and Lemmy 5:

(5.11) lolp < Oy B (B—r)™ ( [P0}
He

In order to estimate [[H |,y We sball check that [ h(y)dy

= 0. By tho
definition of & we have

f Ti(y)dy = f GV, Vadt=2R G Py, Per=1y,
The last integral vanishes Dbecause the identity
[ <@V, Puym-2 G, vy == 0
holds for any test function 9 e P (). This equation iy JJ()’IJning but the weak

form of (0.14).

This allows us to use Lemma 7 with s == p/(m--1) and ¢ = 2 p' [ (m 1),
N

Observe that in view of the assumption m < p < Vo p' we havo

q>m'\x‘ 1 il Theref bt
' gy Therlore we obtain

Il sy < Ol (25 1) ““’("”"”’“( j Ihl”""‘ R

icm

(EW-DI 1) A
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It follows from the definition of »’ and ¢ that ]hi
Hence we get the following estimate:

O (m) (B — 1) | Puf™,

ONR” N(m~1){p

- T Nm=-1)fp
» .
B_r (f Pul )
B,

3

(5.10), (8.11), (5.12) all together yield

(5.12) My <<

Inequalities (5.9),

, \em—=1)ip
(B}f |Pu|? )

Rm=1(1+NIp)
< Oy(m, p, Ky) [

(R—ry™1

R1+(m—1)NIp e A(m—1)/p*
+ R—r ](f“—,-mp)"‘ .

BQ
Pinally

(5.13) ( [ 1vur)’” < oim ¥, p, K, R/r)( f Pu”)”,

By

where o = (r-+R)/2 as in (5.2).

Now, we make use of the induction hypothesis, which gives

( Jivup)™ < om, N, 9", Ko, Rio)( [ 170"
B, R

This and (5.13) show that inequality (0.17) is satisfied. This ends the proof

of the theorem.

6. Proof of Theorem 4. Theorem 4 is a simple consequence of The-
orem 3. Let f: Q>R be a K-quasiconformal mapping. Then each com-
ponent w = f%, i=1,2,..., N, satisfies (0.21). T we assume that
» 18 less than 1, then on account of (0.22) we also have

(K(;—l‘“]-)Ap < 1. By Theorem 3 we con('lude that

(f|l7u|1’)1/" C,(N, K, Rjr (fqulN)"N

Tnequality (0.23) now immediately follows from (0.18).
To complete the paper we prove inequality (0.22). The eigenvalues
of the inverse mutrix G7(@) are equal to
1 1 1
s & e 5, &€ —
ﬂN(w) B2 (®) AN
.. < By(®) are cigenvalues of GH{w). Since det@(w)
p’N =1 and consequently

B By <L < BN -

wheroe fy (@) < fa(2
== 1, wWo hwc ﬂlﬁg
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Therefore
(61) (L4167 (2)—B)"
— max (7%, (2—1/p)"") > fr Ve > m%:((;; _

On the other hand

<V

-1 < <)/ (%JX-)NMI :
1 ;

and

The last two inequalities gi-{m ‘

N \N—T
(6.2) (14167 (@)= BT < l/(/;:,((;v)) ) ’

Sinee inequalities (6.1) and (6.2) hold for almost all # € 2, we conclude
by the definitions of K __, and K, that

Kaq}l/‘l—i‘; ad K

S VEFT,

which is nothing but (0.22).
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On convergence in the Mikusifiski operational caleulus

by

JOZEF BURLYK (Katowice)

Abstract, A now description of the convergence of type I’ in the field of Mikusifiski
operators is given in terms of some family of functionals on the space L of locally inte-
grable functions on [0, o). As a consequence, sequential completeness of # and charac-
terizations of boundedness and precompactness in L, # and in some subalgebra #,,
of # are obtained. In particular, it is shown that a set 4 in & is precompact if and only
if 4 i bounded (with respect fo type 1’ convergence). .

1. Introduction. The field & of Mikusitgki operators, considered
in [7], has various applications, and is interesting also from fheoretical
point of view. A convergence used in the Mikusifski operational calculus,
called type I convergence, is not topological (see.[2], [9]). In spite of
this, it is sensible to consider completeness with respect to type I conver-
gence. In fact, wo can define Cauchy sequences in every abelian group en-
dowod with a convergence. We shall give two definitions (see [8], [6]).

Let X be an abelian group with a convergence &. A sequence {z,}
(@, € X) is called :

(i) P-Oauchy if w, . —oy —0 in G as n—oo0 for every increasing se-
quence {p,} of positive integers;

(i) @-Cauchy if @, — w4 —0 in G as n—>co for every pair of increasing:
soquences {p,} and {g,} of positive integers.

An abelian grouwp X with a convergence G is called P-complete (or
Q-complete) if every P-Oauchy (@-Oauchy) sequence is convergent in G.

Of course, cach P-complete group is also @-complete but not conver-
sely. The converse implication bholds if the convergence G satisties the
Urysohii eondition and, additionally, some¢ other natural conditions
(se0 [R)). o ‘

O prafessor J. Mikusinigki has posed the problem of P-completeness.
and  Qeeompletencss of the fleld # equipped with type I conver-
geneo, A ‘ ‘ ‘

* I this paper (Section 9) we shall show that & with type T convergence
(which does not satisfy the Urysohn' condition) is @-complete. The problem
of P-completeness of & (wiht type I convergence) remains open..
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