Norm inequalities relating singular integrals and the maximal function

by

ERIC T. SAWYER* (Hamilton, Ont.)

Abstract. We prove that if the weighted L^p norms ($1 < p < \infty$) of the Riesz transforms are bounded by the weighted L^p norm of the maximal function, then the weight function satisfies the G_θ condition of B. Muckenhoupt. Conversely we show that if the weight function satisfies the G_θ condition for some $\theta > p$, then the weighted L^p norm of any standard singular integral is bounded by the weighted L^p norm of the maximal function.

§ 1. Introduction. We consider the problem of characterizing the non-negative weights ω for which $(1 < p < \infty)$

$$\int |f|^p \omega \leq C \int |f|^p \omega$$

for all appropriate f where $T_f = K f$ is a singular integral in \mathbb{R}^n with kernel K satisfying the standard conditions

(i) $|K|_\infty \leq C,$

(ii) $|K|_1 \leq C |\omega|^{-1},$

(iii) $|K(x) - K(x+y)| \leq C |y|^{n-1}$ for $|y| \leq |x|/2.$

R. Coifman and C. Fefferman have shown ([1]; Theorem XIII) that (1) holds for $1 < p < \infty$ provided the weight ω satisfies the A_{∞} condition. B. Muckenhoupt has shown ([1]; Theorem 2.1) that in the case when T is the Hilbert transform, inequality (1) does not imply that ω satisfies the A_{∞} condition. He has derived ([7]; Theorem 1.2) the following necessary condition for (1) (with T the Hilbert transform) which has been conjectured to be sufficient.

$$(C_\theta)$$

There are positive constants C_0, c such that

$$\int_E \omega \leq C((|E|/|Q|)^c) \int_{|E|} \omega$$

whenever E is a subset of a cube $Q \subset \mathbb{R}^n$.

* Research supported in part by NSERC grant A3149.
Here \(|E| \) denotes the Lebesgue measure of \(E \) and \(M \) is the maximal operator defined by
\[
Mf(x) = \sup_{x \in Q \subset E} \frac{1}{|Q|} \int_Q |f|.
\]

Our first result is that if (1) holds for the Riesz transforms, then the weight \(w \) satisfies the \(C_p \) condition. The one dimensional case of this result was obtained by B. Muckenhoupt ([7], Theorem 1.2). Our second result is that if \(w \) satisfies the \(C_p \) condition for some \(q \geq p \), then (1) holds. The question of whether or not \(C_p \) implies (1) remains open. We now state these results precisely. Throughout this paper \(Q \) will denote a cube in \(\mathbb{R}^n \) with sides parallel to the co-ordinate planes and for \(R > 0 \), \(RQ \) denotes the cube concentric with \(Q \) having diameter \(R \) times that of \(Q \). Finally, the letter \(C \) will be used to denote a positive constant not necessarily the same at each occurrence.

Theorem A. Let \(1 < p < \infty \). If the weight \(w \) satisfies
\[
\int \log^p (|f|w^{1-p}) |f|w
\]
where \(\delta_j \) denotes the \(j \)-th Riesz transform (formally \(\delta_j f(x) = \int \frac{x_j}{|x|^{n+1}} f(x) \)), then \(w \) satisfies the \(C_p \) condition.

Theorem B. Let \(1 < p < q < \infty \). If \(w \) satisfies the \(C_p \) condition, then (1) holds for all singular integrals with kernel satisfying (i), (ii), and (iii) above.

An Application. We give sufficient conditions on a pair of weights \((w, e)\) in order that
\[
\int |Tf|^p w \leq C \int |f|^p w
\]
for all singular integrals \(T \) as above. Recall that the pair of weights \((w, e)\) satisfies inequality (3) with \(T \) replaced by the maximal function \(M \) if and only if (8)
\[
\int |M(\frac{1}{q} e^{1-\nu})|p w \leq C \int e^{1-\nu} w
\]
for all cubes \(Q \).

Thus if the weight pair \((w, e)\) satisfies (4) and if \(w \) satisfies the condition \(C_{p+\epsilon} \), for some \(\epsilon > 0 \), then inequality (3) holds. We remark that \(C_p \) weights, unlike \(A_p \) weights, can vanish on open sets.

§ 2. Proof of Theorem A. We first give an alternate description of the \(C_p \) condition due to B. Muckenhoupt ([7]).

Lemma 1. (Muckenhoupt). The weight \(w \) satisfies the \(C_p \) condition if (and trivially only if) there is \(C < \infty \) such that
\[
|E|_w \leq C \frac{1}{(1 + \log(|E|/|E|_w))^{1/n}} \int_M |M_{wQ}|^p w
\]
whenever \(E \subset Q \), a cube. Here \(|E|_w = \frac{1}{w} \int_E w \).

The case \(n = 1 \) of this lemma is contained in [7] and the proof given there extends to \(n > 1 \) with minor modifications which we sketch in an appendix below. In any event one can verify that all arguments using the \(C_p \) condition in this paper hold just as well using (5) as the definition.

Proof of Theorem A. The key step here is the observation that \(\log Mf \) is in \(\text{BMO} \) if \(Mf \) is finite a.e. ([21]; p. 643). Suppose \(E \subset Q \) a cube and set
\[
f = \log^{1/n} (|Q|/|E|) M_{wE}.
\]
Simple computations show that there is a constant \(C \) independent of \(Q \) and \(E \) such that
\[
\int f = |Q|^{1/n} \int f \leq C,
\]
and
\[
\|f\|_{\text{BMO}} = \sup_{Q \subset E} \int f |f|^{-1} |f - f_Q| < C.
\]

From (8) and the duality of \(L^1 \) and \(\text{BMO} \) ([3]; Theorem 3) we obtain
\[
f = f_Q + \sum_{j=1}^\infty |R_j f_j|
\]
where \(|f_j| \leq C, 0 < j < \infty \). Let \(g_j = \sum_{j=1}^\infty |R_j f_j\) for \(1 < j < \infty \). Here \(2Q \) denotes the cube concentric with \(Q \) and twice the side length; \(2Q' \) denotes its complement. Let \(x \) be the centre of \(Q \) and set \(A_j = |R_j f_j(x)| \). Then for \(\epsilon < Q \) we have by property (iii)
\[
|\int_{Q'} |R_j f_j(x)| dx \leq C \int_{2Q} |h_j(y)| (|x - e|^{-1} |y - e|^{-n+\epsilon}) dy \leq C \quad (\epsilon < Q)
\]
and thus also
\[
|\sum_{j=1}^\infty A_j| \leq C \frac{1}{|Q|} \int \sum_{j=1}^\infty |R_j | h_j + C \frac{1}{|Q|} \int |f| + \sum_{j=1}^\infty |R_j f_j| + C
\]
since \(f = f_Q + \sum_{j=1}^\infty |R_j f_j| + \sum_{j=1}^\infty |R_j f_j| \). However,
\[
\frac{1}{|Q|} \int |R_j f_j| \leq \int \frac{1}{|Q|} \int |R_j f_j|^2 \leq \frac{1}{|Q|} \int |f|^{2/n} \leq C
\]
by Hölder's inequality, the \(L^1 \) boundedness of the Riesz transforms and the boundedness of the \(f_j \). Combining this with (7), (11) and \(\|f\|_{\text{BMO}} \leq C \) we obtain.
\[\left| \sum_{j=1}^{n} A_j \right| \leq C \text{ and (10) now yields} \]
\[\left| f - \sum_{j=1}^{n} E_j g_j \right| \leq C \text{ on } Q. \]

From this and equation (9) we have
\[\sum_{j=1}^{n} |E_j g_j| \geq \log \left(\frac{|Q|}{|E|} \right) - C \text{ a.e. on } E \]
and from (2) we now obtain
\[|E| \log \left(\frac{|Q|}{|E|} \right) - C \leq C \sum_{j=1}^{n} |E_j g_j|^p w \leq C \sum_{j=1}^{n} |M g_j|^p w \leq C |M X_Q|^p w \]
which is (5). Lemma 1 now completes the proof of Theorem A.

\[\text{§ 3. Proof of Theorem B.} \]

We begin with a variation of the Whitney covering lemma used in [3].

Whitney Covering Lemma. Given \(E \ni 1 \), there is \(C = C(E, n) \) such that if \(\Omega \) open in \(E^n \), then \(\Omega = \bigcup Q_j \), where the \(Q_j \) are disjoint cubes satisfying
\[\begin{align*}
& (i) \quad \delta \leq \frac{\text{dist}(Q_j, Q_j')}{\text{diam } Q_j} \leq 15 \delta, \\
& (ii) \quad \sum_{Q_j \ni \omega} \leq C \delta.
\end{align*} \]

Proof. Conclusion (ii) is a consequence of (i) and a geometric packing argument ([3]; p. 16). Conclusion (i) in turn can be established easily by standard arguments — see for example [6]; Theorem 2.1.

In attempting to prove Theorem B by the methods of R. Coifman and C. Fefferman in [1], we will be led via the \(A_\infty \) condition to consideration of integrals of the form \(\int |T f|^p w \) where \(\{Q_j\} \) is a Whitney covering of the open set \(\{T f \geq \lambda\} \) (\(T \) is the maximal operator associated to \(T \) — see Lemma 2 below). We thus begin by investigating the operator \(M_{\rho, \gamma} \) defined below in terms of Marcinkiewicz integrals.

Definition. Let \(1 < p, q < \infty \) and suppose \(f : \mathbb{R}^n \to [0, \infty) \) is lower semicontinuous. Let \(Q_0 \ni f > 2^p \) and define
\[\left(M_{\rho, \gamma} f(x) \right)^p = \sum_{E \ni x} \frac{\rho(E)^{p(n-1)}}{\rho(E)^n + |x - y|^2} dy \]
where \(\rho(y, E) \) denotes the distance from \(y \) to the set \(E \).

Fix \(E \ni 1 \) and let \(\Omega_k = \bigcup Q_j^k \) be as in the Whitney covering lemma. Then
\[M_{\rho, \gamma} f(x) = \sum_{J \ni x} \rho(J)^{p(n-1)} \frac{\rho(J)^n + |x - y|^2} \int_{Q_j^k} dy \]
in the sense that the ratio of the right and left sides is bounded between two positive constants depending only on \(E \) (and not on \(x \)). We use only this latter expression for \(M_{\rho, \gamma} f \) in the sequel.

Lemma 2. Suppose \(1 < p < q < \infty \) and that \(w \) satisfies the \(C_q \) condition. Let
\[T^w f(x) = \sup_{t < \epsilon < \epsilon < \infty} \left| \int_{Q(t)} K(y) f(x - y) dy \right| \]
where \(K \) is a kernel satisfying (i), (ii), and (iii) of § 1. Then for all \(f \) with compact support we have
\[\int \left(M_{\rho, \gamma} (T^w f)^p w \right)^{1/p} \leq C \left[\int |T^w f|^p w + \int |f|^p w \right] \]

The proof of Lemma 2 is fairly long and will be postponed to § 4. We remark that Lemma 2 may fail when \(p = q \) even for weights \(w \) satisfying the \(A_\infty \) condition. For example when \(p = q = 2 \), let \(f \) be the characteristic function of the unit interval in \(R \). The \(L^p \) transform of \(f \) is given by \(T f = \chi \), hence \(\int \chi \frac{\rho(J)^n + |x - y|^2} \int_{Q_j^k} dy \]
where \(\rho \) is a kernel satisfying (i), (ii), and (iii) of § 1. Then for all \(f \) with compact support we have
\[\int \left(M_{\rho, \gamma} (T^w f)^p w \right)^{1/p} \leq C \left[\int |T^w f|^p w + \int |f|^p w \right] \]

The proof of Lemma 2 is fairly long and will be postponed to § 4. We remark that Lemma 2 may fail when \(p = q \) even for weights \(w \) satisfying the \(A_\infty \) condition. For example when \(p = q = 2 \), let \(f \) be the characteristic function of the unit interval in \(R \). The \(L^p \) transform of \(f \) is given by \(T f = \chi \), hence \(\int \chi \frac{\rho(J)^n + |x - y|^2} \int_{Q_j^k} dy \]
since property (ii) of the kernel K shows that $T^* f \leq CMf$ outside $2Q$. If in addition f is bounded, then (9); see 6.2, p. 58) $\int e^{2\pi i n \cdot \xi} d\xi < \infty$ for some $a > 0$ and thus $\| x \| e^{2\pi i \lambda} \leq C e^{-\lambda/2Q}$ for $\lambda > 0$. Applying the C_2 condition to this latter inequality and integrating we obtain

$$\int |T^* f|^p w \leq C \int |M_{Q^2}|^p w \leq C \int |Mf|^p w < \infty$$

since $q > p$ and $\sup \| f \| < Q$. Thus (1) holds for bounded f with compact support and a simple limiting argument proves the general case. Indeed, if $\int |Mf|^p w < \infty$ then f is locally integrable and so $T^* f \leq \lim inf \| T^* f \|_w$ where $f_\delta(x) = f(\delta x)$ if $|x|, |f(x)| \leq R$ and 0 otherwise. An application of Fatou's lemma now completes the proof of Theorem B.

§ 4. Proof of Lemma 2. We begin with two preliminary lemmas. The first is a variant of Lemma 5.1 in [7].

Lemma 3. Suppose w satisfies the C_2 condition, $1 < q < \infty$. Then for all $\varepsilon > 0$, there is $C(\varepsilon) < \infty$ so that whenever $(Q_i)_i$ is a collection of disjoint subcubes of a cube Q, then

$$\int \sum_{i \in J} |M_{Q_i}|^p w \leq C(\varepsilon)\|Q_i\|_w + \varepsilon \int |M_{Q_i}|^p w$$

for all $R \geq 2$. Consequently,

$$\int \sum_{i \in J} |M_{Q_i}|^p w \leq C \int |M_{Q_i}|^p w$$

Proof. A classical estimate for the Marcinkiewicz integral (see [4]; Theorem 1 (3)) shows that $|E_1| \leq C e^{-\alpha |Q|}$ for $\lambda > 0$ where α is some positive constant and $E_1 = \left\{ |f| \leq f \right\}$. Since $\sum |M_{Q_i}|^p w$ is bounded outside $2Q$, the C_2 condition implies $|E_1| \leq C e^{-\alpha |Q|}$ for $\lambda > 0$ sufficiently large and this in turn yields

$$\int \sum_{i \in J} |M_{Q_i}|^p w \leq C e^{-\alpha |Q|} \int |M_{Q_i}|^p w$$

Choosing λ so large that $C e^{-\alpha |Q|} \leq \delta$ we obtain the conclusion of Lemma 3 with $C = \lambda$.

Lemma 4. Suppose $1 < q < \infty$ and that w satisfies the C_4 condition. Then for all compactly supported f

$$\int |M_{p,n}(Mf)|^p w \leq C \int |Mf|^p w$$

Proof. Let $Q_b = (Mf > 2^b) = \bigcup Q_i^b$ be as in the Whitney covering lemma with $R = 10$. Let N be a positive integer (to be chosen later) and fix a Whitney cube Q_i^b. We now claim

$$\int \sum_{i \in J} |Q_i^b|^{p-N} \leq C 2^{-N} |Q_i^b|^{p-N}$$

where C depends only on the dimension n. Indeed, let $g = f_{x_o}M^{N-N}$ and $h = f - g$. Property (ii) of the Whitney covering lemma shows by a standard argument (see e.g. [9], p. 19) that $Mh(x) \leq C 2^{N-N}$ for x in $5Q^b_i$. Now $Mf \leq Mh + Mh$ and thus for N so large that $2^{-N-N} \leq 1/2$, we have

$$\int \sum_{i \in J} |Q_i^b|^{p-N} \leq \int \left| (Mg > (1/2) |Q_i^b|) \right|$$

$$\leq C 2^{-N} \int |g| = C 2^{-N} \int |f|$$

since M is weak type $1,1$.

$$\leq C 2^{-N} \left(C 2^{N-N} \int |Q_i^b|^{p-N} \right)$$

by (i) of the Whitney lemma

which proves (16).

Now let $S(\delta) = 2^{2b} \sum_{i \in J} |M_{x_o}Q_i^b|^{p-N}w$ and $S(\delta; N, b) = 2^{2b} \sum_{i \in J} |M_{x}Q_i^b|^{p-N}w$. Since $Q_i^b \cap Q_j^b = \emptyset$ implies $Q_i^b \subset 5Q^b_j$, we have

$$S(\delta; N, b) \leq 2^{2b} \sum_{i \in J} |M_{x}Q_i^b|^{p-N}w$$

$$= \int + \int = I + II$$

for N large.

By (14) of Lemma 3

$$I \leq C(\varepsilon) 2^{2b} \int 10Q_i^{b-N}w + \varepsilon 2^{2b} \int |M_{Q_i^b}|^{p-N}w$$

where $\varepsilon > 0$ is at our disposal. Simple estimates on $M_{Q_i^b}$ show that if x_o^{b-N} denotes the centre of Q_i^b.
Thus for \(N \) large
\[
S(k) \leq \sum_{j \in H} S(k; j; N, i)
\leq C(\delta) 2^{\alpha p} \left[\int \sum_{j \in H} \chi_{Q_i^1}^{1=-N} w \right] w + [\alpha^{2^p} + C2^{Np-\alpha}] S(k-N)
\leq C \cdot 2\delta^p \cdot \Omega_{k-N} w + (1/2) S(k-N)
\]
for \(N \) sufficiently large and \(\delta \) sufficiently small upon appealing to property (ii) (with \(R = 10 \)) of the Whitney covering lemma. Thus with \(S_M = \sum_{k \in M} S(k) \), we have
\[
S_M \leq (1/2) S_M + C \int |M|^{1/p} w \quad \text{for all } M.
\]

Recall now that \(f \) has compact support, say \(\text{supp} f \subset Q \) a cube. Let \(2^L < |Q|^{-1} \int |f| \leq 2^{L+1} \). Then \(\Omega_{k} \subset 2Q \) for \(k \geq L+1 \) and (15) of Lemma 3 shows that
\[
\sum_{k \in f_{Q_i^1}} \sum_{j \in H} 2^{\alpha p} \int |M_{X_k}^{1} w| \leq C \sum_{k \in f_{Q_i^1}} |M_{X_k}^{1} w| \leq C \sum_{k \leq f_{Q_i^1}} |M_{X_k}^{1} w| < \infty
\]
since \(m < p \) and \(\int |M|^{1/p} w < \infty \) (otherwise there is nothing to prove). On the other hand if \(k = L \), then \(\Omega_{k} \subset 2^{L-k} \cdot Q \) and (15) of Lemma 3 yields
\[
\sum_{k \in f_{Q_i^1}} \sum_{j \in H} 2^{\alpha p} \int |M_{X_k}^{1} w| \leq C \sum_{k \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1-L} w| \leq C \sum_{k \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w| < \infty
\]
since \(\sum_{k \leq f_{Q_i^1}} 2^{-np} |M_{X_k}^{1} w| \leq C_{p, \alpha} |M_{X_k}^{1} w| \) for \(p > 0 \). Thus \(S_M < \infty \) for all \(M \) and (17) now yields
\[
\int |M_{X_M}^{1} w| \leq C \sum_{k \in f_{Q_i^1}} S_M \leq C \int |M|^{1/p} w
\]
and this completes the proof of Lemma 4.

Proof of Lemma 2. Let \(\Omega_{k} = (T^k f > 2^p) = \bigcup_i Q_i^1 \) be as in the Whitney covering lemma with \(R = 20 \). A fundamental inequality of R. Coifman and C. Fefferman states (11), (8), p. 248
\[
|a \in \bigcup_{i \in Q_i^1} (T^k f > 2^p)| \leq C \cdot 2^{-N} |Q_i^1|^{-1}
\]
whenever \(10^{Q_i^1} \in \{ Mf > 2^{k-N} \}, \quad N \geq 1. \)

Let \(\{Mf > 2^p\} = \bigcup H \) be as in the Whitney covering lemma with \(R = 20 \). We observe that for each cube \(Q_i^1 \) there are two cases (\(N \) will be chosen later).

Case (1). \(10^{Q_i^1} \subset \{ Mf > 2^{k-N} \} \) in which case \(10^{Q_i^1} \subset \{ T^k f > 2^p \} \) for some \(L \) where \(c_L \approx 15 \cdot 2^{10N} \approx 3000 \cdot 2^{10N} \) (choose \(R = 20 \) to contain the centre of \(Q_i^1 \)).

Case (2). \(10^{Q_i^1} \subset \{ Mf > 2^{k-N} \} \) in which case (18) implies \(\sum_{j \in f_{Q_i^1}} |Q_i^1| \leq C \cdot 2^{-N} |Q_i^1|^{-1} \).

Now let
\[
S(k) = \sum_{i \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w| \quad \text{and}
\]
\[
S(k; i) = \sum_{j \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w| \leq \sum_{j \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w|.
\]
The last inequality follows from the fact that \(Q_i^1 \subset \{ Mf > 2^{k-N} \} \) whenever \(Q_i^1 \subset \{ Mf > 2^{k-N} \} \) (property (i) of the Whitney lemma). Thus
\[
S(k; i) \leq \sum_{j \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w| = \sum_{Q_i^1 \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w|.
\]

By (14) of Lemma 3 we have
\[
I \leq C(\delta) 2^{\alpha p} \sum_{i \in f_{Q_i^1}} \int |M_{X_k}^{1} w| \leq \delta \int |M_{X_k}^{1} w|
\]
where \(\delta > 0 \) is at our disposal and if \(z_{Q_i^1} \) denotes the centre of \(Q_i^1 \), then
\[
II \leq C_{2}^{\alpha p} \int_{|w - z_{Q_i^1}|^{1-p} w(z)} dV \leq C_{2}^{\alpha p} \int_{|w - z_{Q_i^1}|^{1-p} w(z)} dV
\]
in case (2)
\[
\leq C_{2}^{\alpha p} \int_{|w - z_{Q_i^1}|^{1-p} w(z)} dV
\]
Combining the estimates for \(I \) and \(II \) we obtain
\[
S(k; i) \leq C_{2}^{\alpha p} \sum_{j \in f_{Q_i^1}} 2^{\alpha p} \int |M_{X_k}^{1} w| \leq C_{2}^{\alpha p} |z_{Q_i^1}|^{2^{p-N}R} \int |M_{X_k}^{1} w|
\]
whenever \(Q_i^1 \subset \{ Mf > 2^{k-N} \} \) is a case (2) cube. Thus
\[
S(k) \leq \sum_{Q_i^1 \in f_{Q_i^1}} S(k; i) + \sum_{j \in f_{Q_i^1}} S(k; i) = III + IV.
\]
Now since each Q_i^j intersects at most C of the Q_i^{j-1},
\[
III \leq \sum_{Q_i^j} \sum_{Q_k} 2^{2p} \int |M_{\chi_{Q_i^j}}|^p w \leq C \sum_{Q_k} 2^{2p} \int |M_{\chi_{Q_k}}|^p w
\]
by (15) of Lemma 3 and the inequality $M_{\chi_{Q_k}} \leq C M_{\chi_{Q}}$. For the remaining term we have by (19)
\[
IV \leq C 2^{2p} \int \left(\sum_{Q_k} 2^{2p} |\chi_{Q_k} |^p \right) w + (\delta + C 2^{-N}) \sum_{Q_k} 2^{2p} \int |M_{\chi_{Q_k}}|^p w
\]
\[
\leq C 2^{2p} \left(\Omega_{Q_k} \right)^{1/p} + (\delta + C 2^{-N}) \sum_{Q_k} |M_{\chi_{Q_k}}|^p w
\]
by property (ii) of the Whitney covering lemma (with $R = 20$) and upon choosing δ small enough and N large enough. Combining III and IV we have
\[
(20) \quad S_k \leq (1/2) S_{k-1} + C 2^{2p} \Omega_{Q_k} |w| + C 2^{2p} \sum_{Q_k} |M_{\chi_{Q_k}}|^p w.
\]
Now let $S_M = \sum_{k=0}^M S_k$ and sum inequality (20) over $k \leq M$ to obtain
\[
(21) \quad S_M \leq (1/2) S_M + C \int |T^* f|^p w + C \int |M_{\rho_d}(f)|^p w
\]
\[
\leq (1/2) S + C \left(\int |T^* f|^p w + \int |M_{\rho_d}(f)|^p w \right)
\]
by Lemma 4.

Now the argument used at the end of the proof of Lemma 4 to show that $S_M < \infty$ can also be used here to obtain $S_M < \infty$ for all M (use the fact that $T^* f \leq C M f$ outside $2Q$ if supp $f = Q$). Thus (21) yields
\[
\int |M_{\rho_d}(T^* f)|^p w \leq C \sup_M S_M \leq C \left(\int |T^* f|^p w + \int |M_{\rho_d}(f)|^p w \right)
\]
and this completes the proof of Lemma 2.

Appendix. We sketch a proof of Lemma 1. As already mentioned, the case $n = 1$ is in [7] and the proof given there extends to $n > 1$ with minor modifications. As that proof is fairly long, we limit ourselves here to a brief discussion of the required modifications, assuming that the reader is familiar with Sections 5 and 6 of [7].

Clearly Q_0 implies (5) so we now assume that (5) holds. Lemma 5.1 of [7] extends to E^n without any essential change in the proof. Thus we can find $0 < \delta < 2^{-n}$ so small that whenever (Q_i) is a collection of disjoint subcubes of a cube Q with $\sum_i Q_i \leq 2 \delta |Q|$, then
\[
\int \left(\sum_i |M_{\chi_{Q_i}}|^p \right) w \leq (1/2) \int |M_{\chi_{Q}}|^p w.
\]
Now given $E \subset Q$ a cube in E^n, let N be the least integer satisfying $\delta^N |Q| \leq |E|$. Define $E_1 = E$ and $E_j = \{ z \in E_{j-1} : \delta^j f \}$ for $1 \leq j \leq N$ where M_{ρ_d} denotes the dyadic maximal operator $M_{\rho_d}(f)(x) = \sup_{Q \ni x} |Q|^{-1} \int |f|$. Now $E_j = \bigcup_{i} Q_i^j$ where the Q_i^j are the maximal dyadic cubes I satisfying $|I|^{-1} \int_{2I} f > \delta^j$. Thus $\delta^j |E \cap Q_i^j| \leq |Q_i^j| \leq 2 \delta^j |Q_i^j|$ for $1 \leq j \leq N$ and all k.

Using (a), (b) and (22) we obtain
\[
\int A_j w \leq (1/2) \int A_{j-1} w, \quad 2 \leq j \leq N
\]
where $A_j(w) = \sum_i |M_{\chi_{Q_i}}(w)|^p$ and the proof can now be completed by iterating this inequality as in Section 6 of [7].

References

Received September 10, 1981

(1704)