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H* js a Grothendieck space
by
J. BOURGAIN (Brussels)

Abstract. It is shown that a non-woakly compact operator on H* fixes an *-copy.
In particular, 2% has the Grothendieck property and I* embeds in any infinite-dimen-
sional complemented wubspace of II*.

1. Introduction. This work is a continuation of [3] (cf. also [4]). Let
us recall gome definitions. II' denoties the circle and m its Haar measure.
H; is the space of integrable functions f on IT such that }'(rn) = 0 for n < 0-
‘We use the notations ¢: L*—IL/H; and o: L'/H;—L* for the quotient
map and the minimum norm lifting, respectively. The duality

Sy 9y = [ fpdm

identifies the dual (L*/H;)* with the space H® of bounded amnalytic func-

tions on the wunit dise D. )

Tt was shown in [3] that H> has the Dunford—Pettis property (DPP)
and (H*)* is weakly sequentially complete (WSC). We establish here
the Grothendieck property (GP) of H®. Recall that a Banach space X
hag GP provided weak*-null sequences in X* are weakly-null, or, equiv-
alently, each operator T': X-»¢, is weakly compact. In fact, a stronger
result is obtained. If T: H*®- Y is an operator, then T is either weakly com-
pact or there exists a subspace Z of H*®, Z isomorphic to I, on which T'
induces an isomorphism.

As corollary it follows that 1™ embeds in any infinite dimensional
complemented subspace of H®, solving one of the questions raiseld in [18].

Lattor results where previously announced in [B].

IL. Operators on ™ and the Grothendieck property. Classical examples
of G-gpacos are the L®(u)-spaces. Next result, implying the G-property,
emphagizes the same.bebaviour of H® and L* in several aspects. '

TapoREM L. Assume T: H*—Y is an operator. If T is not weakly
compact, then T is an isomorphism when restricted to a subspace Z of H™,
Z isomorphic to 1.
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It was shown by 8.V. Kigliakov [15] and independently by F. Del-
baen [7] that non-weakly-compaet operators on the disc-algebra A fix
a Cy-COPY.

The proof of this result makes crucial use of the Riesz-decomposition
of A*

A* = MDD I,

where M, (IT) denotes the space of singular meagures on I7.

Such a result does not hold for (H*)*. We will use the more general
approach which already enabled us to prove DPD of H*. The technique
consists in establishing a finite-dimensional result for L!/H} which can
therefore be carried over to (H%)* by arguments .of local reflexivity.
' The purpose of this section is to state the local L'/H}-theorem and
derive Th. 1 from it. The proof of the I*/Hi-result is rather technical and
will be presented in the next two sections.

As » formal consequence of the DPP of H* and Th 1, we get
) COROLLABY 2.1 embeds in any /mf'bmte dzm(mswnal complemented sub-
space of H*.

" Tt looks reaonable o con]u,tmc tha‘r a complemented subspaee oi II°°
ig either an I° or an H*-isomorph.

THroREM 3. For each 6> 0, there emist 6, >0 and a function a(n)

‘satisfying lim (a(n)/n) =0, so that the following property holds:
N->00

Lt fiy ey o be disjointly supported functions in LA(IT) such that .
() 2l a0 I<m<n). "
Then there exist H*-functions Py P (1 <  L) fnllelw g

(j]) I(pm]"-l"/)ml < fOr each ’m',
(i) e Mipal<al),
v) T (fm, Oy = 43‘]“‘ for “edch m!

The reader will find some further’ (onmmm.s on Cl‘h 3 in ‘rhe rommk&
at the end of this paper.

Our first objective will be to - devive from Th. -3 the fullﬁwmg result
on, (H7)*. : :

. PROPOSITION 1. Thm exists v > 0 and 1> 0 cmd a fmwlwn ﬁ(n) Jor
which llm( (m)/n).=.0. such that the: following property holds:

Let @1, ey Dy ben dements in zhe umt ball of H°° aml a%wme

(*) Hzam@m ”/ —7) v Iaml (am € C

©
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Then there are H™ functions g, 1/;m 1 m< n) salisfying

(1) a . ‘%J -+ |1/}77L[ <§ ' fO'f each m,
(i) Y =l < B,
@) . iy =x  for each m. .

TaMMA 1. Prop. 1 holds if one replaces (H*)* by L*/Hj.

Proof. Taking in Th. 3 § = 1/2 provides some §, >0, Take v = (1/4)d,
and » = (1/2) 8y, Assume @y, ..., @, in the unit ball of I H} satisfyir'lg.(*).

Applying L. Dor’s lemma (see [8]) to the minimum norm llftll:lgﬁ
a(@y), -.vy 0(2,) yields disjoint measurable subsets S, of II for which

"fm”l (L= 7) tz'king fm, = ,O'(mm) XSy
Now
”(l f'm ] ”J"'m“ - ”O’({Um fm”l = ”.fm"l > 1/2 N

Thus, applying Th. 3, H* functions ¢, and u, < m< n) are obtained
satisfying (ii), (iii), (iv) of Th 3. Since for each m=1,...,%

|<q7m7 ‘1’m> <"p'm.? fm>| "fm""’ G(’I}m ”1 == ""‘(1 _T)z < 61/27
we got } . :
1Py B} > . C

Replacement of ¢, by gy for some ¢, & C,la,| < 1, leads to the required

concelusion.
Let us next observe that (i), (11) of Prop. 1 can be reformulated as

follows in Banach space language

R '
(i) o + byl <17 if lal, lbl
(i) 13 am(t =)

By loeal reflexivity, it will thevefore be enough to obtain %w z/),',} L<m<mn)
as clements of (H®)**, replacing conditions (i), (i) by (i), ().

A simple way to achieve., ﬂns iy uging the isometrical embedding
of (H™)* in some ultra-power B = (I* [H})y of I!/H}. The reader is referred
to [18] and [19] for the theory of ultra-produets of Banach spaces. We use
the notation 1 for the clement of B* defined by (£, 1) == llm j ét, where: &

= (£)ser I8 an clement: of B, |

LLMMA . Prop. 1. holds, replacing (H®)* by B, 'H™ by B* and (1), (ii)
by (i), (i) (subst?wng Lto the Lifunction).. . &

< f(m) Whenever lam[<1
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Proof. The argument is completely straightforward. Fix some ¢

< @< 1 and assume £(1), ..., &(n) in the unit ball of B satisfying
|3 angm)|| = 1—e) Yianl (2 € 0).

It follows from the definition of the norm on B that there is some element
U in the ultra-filber % such that for ¢ e U the L'/H}-elements

&)y -oey &(m)
behave almost isometrically to
E(L), ..., £(n).
In particular, we can assume
1)) 10l 2| 3 anilm)||= 171 —e0) 310l (a € €),

where 17} (1—p1) >1—1.
If we fix ¢ € U and define

By = AT (m) (LK< m < n),
application of Lemma 1 gives H -functions ¢;(m) and y;(m) (1 < m < ny
satistying (i), (ii) of Prop. 1 and
CEi(m), @i(m) > = 4 L@y, @i(m)) = Do

Next, define for each m =1, ..., n the following elements of B*

& pm> = 11';}1 <&y pi(m)>
and k

<y = 1i1;11 &y pe(m)).
One verifies immediately (i), (ii’). Moreover,

E(m)y > = A (LS m<m).
This proves the lemma.

It remain now to restrict the elements Py Y OF B* obtained in Lem-
ma 2 tq (H)* in order to obtain (H*)** elements satigfying (i), (ii’). The
9n1y thing to notice here is that, from the embedding properties of (H®)*
in B, the restriction of 1 to (H®)* is-1 e H™. This completies the proof
of Prop. 1.

We now turn back to Th. 1. Assume T: H®—Y i a non-weakly
compact operator. Then the set

K ={T*(y*); y* e T* and Jy*| <1}

e ©
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ig not weakly compaect and therefore, sinee (H™)* is WSO, not weakly
conditionally compact. Applying the James-regularization principle for
P-sequences, it i possible to construet in some multiple of K an infinite
SOQUENCE (Pl =12, ... Satisfying the hypothesis of Prop. 1

LeEMMA 3. There ewist & > 0 and a sequence (n,),.,,q,... of H™-functions
so that :

(@) )l <1,
Ml

(ii) D,y 5, = & where (D,) 48 a subsequence of (P,).

The extraction of the I-subsequence (1) of (n,) such that T induces an
igomorphism on the w*-clogure of span[r,; r =1,2,...] is then done
using the standard procedure (seo [17] for instance).

Proof of Lemma 3. Fix a sequence (e,) of positive numbers and
positive integers (N,) such that p(¥,) < &N,.If p € H® and @ e (H™)*,
define p® & (H®)* by {p®, ¢> = {D, py). Notice also that if y,, (1 < m < n)
are H™-functions satistying (ii) of Prop. 1 and @ e (H*)*, then

9~ @) << (B(n)/n)|9]  for some m =1,...,m.

We now make the following construction.

Defining D, = N and fixing the first N, clements @,, @y, ..., Py,
of Dy, we apply Prop. 1. The preceding observation allows us to fix some
my =1, ..., N, for which

”qjm_"/’ml‘pm" <&
holds for all m in an infinite subset Dy of D,. Also
|‘pm11 -+ I"/’mﬂ <1
and ‘
<¢ml! ‘Pm1> == .
Starting again with the N, firgt elements of D, yields some m, €Dy, my
> myy, HP-functions g, 9, snd an infinite gubset D, of D, so that
”q)m"""/’mz(pm” <& dor  meDy,
l‘]’mzl - l"/’mg! <L <¢m21 %nz> = %.
Continuing in this way, a subsequence (P, ) of (;b,,,) is obtained. Define

for each r the H®-function

Uy = Yony¥my =+ * Yo,y Pomy*
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Since at each step ‘
| |+ I | < 1y
then 5, satisty (i) of Lemma 3. Now for m € D,_;, one has

. . o SR AT (RN Lir—l
"@m_ (wml A 1/)7n,,_‘1)‘¢m“ < “@m“‘lpml(pm”"l' e gpm_q1/)7"'1'—1(157“” < 2 &g

=1
Therefore ‘

Ky 11 > KB n, 1= 3 e = = Y-
So we just have to fix ¢ = u/2. and a sequence (s,) with 3 e, = &.

HI. Some preliminary lemmas. In this section we will give several
lemmas which will be used in the proof of Th. 3. Some of them appear
also in [3], but we repeat them here for the sake of completeness. We denote
by # the Hilbert-transform. H* is seen as subalgebra of L®(II).

Liwa 4. Assume o in I°(IT) such thai 0 < a <1 and log(1—a) is

integrable. Then there is an H™-function f satisfying
) Ifl =1=—gq..on 8D,
(@) @~ —flls < a1l +log((1 — a)/(1 ~1))

Proof. Since log(l—a) is in LY(II),.we can consider:the funetion f
defined. by -. I ) ,

L whenever 0<I<1.

1) = exp{ [log (1 —al((e” + )/(e” — ) m(a0)}
for # € D. Then f has boundary value : Lo
f=@0—a)e", wlhere 7.=.(log(l—a).
Now
(1= —fI < la— ¥+ 1 —6"| = |a—1|+42[sin(z/2)| < la 1] + 7],
implying . o G
' L —2) =flla < e —Ulyliele-
Since

#{log(1—a)) =a# (log{(x —a) /(1 —1))),

it follows that

el < flog (12 @)/t =)

providing the required estimate.
R o ¥

2
o BRI
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LuMmA 5. Let A be a measurable subset of IT and 0 < & <1/e. Then
there exist H*-funclions ¢ and v such that '

(1) ol -+ pl < 1,

(ii) lp(@)—1/3|< /3 for zeAd,
(iii) lp@)<e for zeA,

(iv) llolls < (log (1 /e)) m(A)Ve,
(v) 1=l < 6 (log (1/e) m(A)v2,

Proof. Take ¢ = 1—e. Application of Lemma 4 with a = gy, yields
fin H® guch that (i =

fl =Ll—oxqy on aD

and
L —flls < m(A)¥24- (log (1/e)) m (4)Ye.

Thus |f(2)}] <& on A. The function ¢ = (1/3) (1—f) satistics (i) and (iv).
Remark that |p| < 2/3. Apply again Lemma 4 taking now a = |p|. We
obtain an H%-function ¢ satisfying (¢ = 0)

ol =1—lpl on 4D
and

L —glle < llglle -+ flog (L — lp])]lz
< lipllz+3llplls < 4 (log (1/e)) m (4)V2,

Define y = gf. Then (i), (iii) obviously hold. Moreover
I —plla < I —Flla+ 11— gl < 6 (log (L/e)) m(4)22,

completing tho proof,

In the following lemma, we make u esnreful analysis of & well-known
congtruction in peak-set-theory. Thiy vesult is important in order to realize
condition (iii) of Th. 3 and was not used in [3].

Lemma 6. Given 0 << v << 1fe there is a constant O, < oo such that if
(8;) s a sequence of measurable subsets of II and (&;) @ sequence in [0, 1],
there are H®-functions f and ¢ satisfying o e
1) fi+lol<1,

(i) FR—1<eg if 268,

7 — Studia Math, 75,2
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(iif) If ==l < G, ) &7 m (8,
(iv) lg—L—D)IE <O, D) o7 m(Sy).

(The constant C, 4s of order (log(1/7))*.)

Proof. We start by recalling the following elementary estimates
for 2, w e C

lexpe—1|< d®—1 and  |expz—expw| < eERAROWy _gp|,

It 3 s7m(8;) = oo, we just have to take f=1,¢ =0. So assume
3 &7°m(8;) < oo. It is easily seen that we can assume the sets §; to be
mutnally disjoint. Consider the harmonic function « on D with boundary
value

U = —228?%*&

where y, denotes the characteristic function of §; and v = ¢~¥? . Notice
that # < — 8. Let » be the conjugate of w and define

f = exp(1/(u+iv).

Then f is analytic on D and since

Ifl = exp{u/(ur+07) <‘1,

f is an H*™-function.
We firgt verify (ii) and (iii).

():  1f—11 < exp(1Vut+02) —1 < (1/Vul+0%)exp (1) u? +0%)
< (3/lul)exp (1/jul)
and hence
fe) =1 < (g/2)exp(g/2) <&, for zed;.
(i5i): |f— 7] = |exp (1/(w+iv)) — exp( —1/8) | < IL/(w-iv) +1/0]
< 07%(Ju- 8- o).
Therefore
If =715 < 267 (I + 813 -+ lloll3) < 467w 8]l = 16 ‘5'42 e " ().
Owr next goal is to estimate

[Rog {(2 — 1)/ =) -

icm
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For A> b, one has
{6 € IT; 1/(1—1f(e")) = 2} < {lul/(u*-+v%) < — log(1—1/A)}

< {lul = A/4}u{vr = 6 2/4}.
It follows from the definition of # and the fact that A4 >12>6, that

{lul > 4/a} = U 8;.
By Tchebycheff's inequality, wo find following weak-type estimation
MmO~ |f)7 > AT << 4472 Zsf ul + 467127 [ ot
LI
<1227 e im(8,) +4670 -0l
4

< 28671271 D e7'm(8y).
i

Write :
(A= IfIL—7) = 1—(fl—D)/(1=7).
Since ' .
log(l—a)| < Tlw] for —oo< <4/,
[ log*(@— 1)/ —7) <49 (1—5)~*ff — =)}
1If}<4/5]

<TB4(L—7) 8 D erm(Sy).

On the other hand, applying the weak-type inequality

log(1—1f)/A—m)<2 [ loga1/(1—Ifl)+
[1f1>4/51 [171>4/51
+2log2(1—7)m[|f] > 4/5] < 4log®s m[(L—|f))~" > B+

4 [ m(L— [f)7F > A(logA/A)dA< 120 67 3 67'm(S,).
Combﬂﬁng inequalities

Fomem e m(S)).

[[log (1 —1)/(L —7))

Sinee in particular log (L —|f]) is integrable on 17; we may apply Lemma 4
taking o = |f] and ¢ = v. Thus an H*-function ¢ is obbained satisfying
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(i) and, since

llg— (L—2)llf < 20f -7l +2 || log (L — IfD /(L =) ||,

also (iv).

LeMMA 7. Assume (A,,) to be o sequence of disjoint sets in II. Let for
each m a sequence (B, ) of disjoint subsets of II be given and let (8S;) be a se-
quence of sets in II. Take ¢ > 0 and (%), (s;) sequences in 10, 1].

Then there ewists for each m H™-functions @, and v, salisfying

) (el + 1900l < 1

(ii) lom| <%, O Bm,lci

(iii) L—y,|<e on 8,

(iv) Il < Cue7'm(4,,),

@ D el <e X m{dn)+ 00 D w5 m(By )+ 0y 3 6tm(8,),
m Apg m,k

(vi) =9l < Cre™ m(Ay) + Oy Y7 m(S,)

For any sequence of disjoint subsets @, of IT

D =yl <0 3 m(d,)+ 0,

ﬂl-ﬂ

(vii) & m(8;)
¥1>0 and O < oo denote numerical constants).

Proof. We assume 3 #;'m(B,,;) < oo since otherwise g, =0,
m =1 satisfy. .l

Fixing m and applying Lunma 4, an H*-funetion 7, is obtamed
satisfying .

(vii) il =1— X' (1—2)gs,, on oD
k
and (t = 0)
(ix) L ~7lf <2 3 m(Bp i) +2 3 10g¥1 r)m (B, )
< con stZ';ck (B, 1)

We also obtain from Lemma 5 H*®-functions ¢, v/, such that

(x) [ZARSAES

(xi) I‘P';;(z)"ll‘gl < 6/3 for ze Am’
(xii) llprlle < const s~ 'm (4,,),
(xiti) L~} < consts™m(4,,).

icm
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Finally, application of Lemma 6 to the sequence (8;),

taking 7 = 1/e,
provides H*-functions f and ¢ fulfilling

(xiv) I+lgl <1,

(xv) lf(z)~1l<e¢/2 for zed,,

(xvi) IIf 1 ]ell; < const ' er*m(s,),

(xvii) flg— (1—1/e)J < const Merim(8,).
Define

me = g(q, n) N and oy, = f4 P+

Then clearly

(xviil) 7l + 9] < 1
(X.LXI) ]‘p;rltl i_ Ky on Bm,k'
Since

< P=fl+lgl <

(iil) follows from (xv). From (xii), we get

|1_"/"mi 2ll ""fl’

(xx) lpall < const e7'm (4,,).

Combining (ix), (xi) and (xvii), we see that

> /eyt —1/e)—

Ay,

(xxi) Pl
e 2 m(4,,) - const Z %5 m(B,, ;) ++const 2 & m(8;),
sk

using the fact that the sets 4,, are mutmlly disjoint. Define

— (12)[2/9)(L—1/e) Gl and oy = (1/2.9%(1—1/e)?
Then (xxi) implics (v) and, since o] < lomly also (i), (ib), (iv) follow from
(xviii), (xix), (xx), respectively.

Let us verity (vi) and (vii). Since
Il‘"‘"pm’ 8 ]L/G’"ﬂ"}'[ l""]-/d —yl-+]1 ‘"""/)':14.’7
the required inequalities are deduced from (xiil), (xvi), (xvii).

IV. Proof of Theorem 3. Weo will use a decomposition procedure for
the functions f,,. Our first lemmy solves the problem in the case the fune-
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tions f,, are It-normalized characteristic functions of digjoint subsets
of II.

However, in orderto make the result applyable in the general situation,
additional conditions must be added.

LuMMA 8. Assume (A, iamens (2im)iamen 10 b6 finite sequences of disjoint
sets and (S;) @ sequence of sets. Let for each m, (B,, ;) be a sequence of disjoint
sets. Let ¢ > 0, n >0 and (%), (g;) sequences in 10, 1]. Then there emist for
each m H®-functions g, and v, Satisfying

@) Il + 9l < 1,
(i) ol <% on Bug
(iif) L—p,l<eg on 8,
(iv) D L=yl <,

) ol < Cae™'m(4,),

(vi) (e &men=2) 3 m(4,,)+

Z flq’m_'yll
Ao .

i) FEMET D) a7 m(8)),

+0,4e7! Z %5 'm(B

m,k

D=yl < &)™ X m(d,)FnE(n) D & m(Sy),
D =< 0™ Y m(4,) 40, _)jsrm(si)-
Dy .
Here yy is the constant of Lemma 7, Oy < oo 48 a nuwmerical constant and

&(n) is a function depending on 7.
Proof. We first partition {1,...

M ={m

, n} into sets M, N taking
m(d,) >0 Ym(4,)} and N ={l,...,n}\H.

Notice that card M < nY2 Let us first deal with the small set M. Appli-
cation of Lemma 7 yields H®-functions (¢,)mesrs (Wi )menr Sabistying (i),
(i), (iii), (v) and

() D [lr—gml <o 3 m(4,)+03 D) i m(Brr) +0y Yerm (8
M Ay, M maldk

(x) 1=yl < Cre™'m(Ay) -0y D) 87" m(Sy),

(xi) Z f -yt < Oy Zm(flm -0y D erm(Sy).

Denote by d a positive integer (depending on ) which will be fixed later.

icm
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The set NV will be partitioned into subsets N,, card ¥, = d, and a “negle-
gible” remainder Nye.

To each a, we will assocnte SYSEeS (Pr)men, AL (Y ery, 0F HO-fune-
tions fulfilling (i), (ii), (iii), (v) and moreover

(xii) ;VZ 1 — ) < 3022,
(i) ) [lpn=pl<em(d,) for meX,,
(xiv) & =l < (208" (™ Zimldn)+ 3 et (s,),
o [ !
(xv) f 1 —ynl*< 10 Oy 'm(d,,) for meN,.

”m
The noeglegability of N, 18 in the senge that

‘ZmA

Nypm,

(xvi)

where we define for simplicity

0 =8 &0, 3w 'm(Bp) + 85720, e a1 Ym(4,,) +
m,k
+ Y etm (8}
Suppose Ny Ny, ... , N, arc already obtained. Define N’ = NN\(N,UN,U
UN If 2 m(d,,) <0, take N = N’ and dofine for m € Ny,

¢n =0 and g, =1,

Then, obviously,

(xcvid) D [len—mi<20

Nrem Am

I 3 m

S .N’ buppose wo have already obtained my, my, ...,
guch that following condition is satisfied:

A,) > 0, then wo can proceed to the extraction of a subset N,
m, (r<d) in N,

(xviii) = Py, << (2028 s *12m(Am, -I-Ze;'”m(S,))

for s =1,...,r. Define the set

]
U, ={0ell; ) L=y, ("1* > 1},

g
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for which, by (xviii),

r
(xix) m(U)< @C)E (7 Ym(d,)+ 3 erm(s)).
b=l

Apply then again Lemma 7 considering tho sets (Am)meNr', where N,
= N"\{my, ..., m,}, and adding the set U, to the sequence of the (8,)
to which we associate the value =2 H™-functions (p,,),. ! A (P ey

| r
are obtained satisfying in addition to (i), (i), (iii), (v).

(xx) M-yl <d?* o U,

(i) N [ In—onl<(e/) 3 m(4,)+ 0, 3wt m(B,,) +
4 5, Nk

’
m
menN, »

+ 01 ) m(S)+ 2 (Gl (7 Sm(d,,)+ Y erm(8),

i

r
(XXii) IL— "Pm”é < 4018_]7” ('Am) + (201(12)”.1 (5*1 ‘{‘\J m (-A-m”) +

bum}

+ ) s 'm(8)),

(exit) 3 [yl <407 Sm(d,) + @0 e Nm(d,,)+
meN; o N;_ =1

4 2 e;ﬂm(S,;)).

Since now

b
2 m(d,,) < dn~ Zm(zim),
=1

we find

»

0y ) % m(B,, )+ (20,d)+ (7 X m(d,,) + 2 e m () < (1/8)20.

Mk (2]

By hypothesis

0< MmN m(d,)+(1/2)6.
N? NI

© @
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Thus we deduce from (xxi) and (xxiii)

(xxiv) 2 [ =gl <e2Y m(4,,),
N Am Y
r r
_ (xxv) ) f|1~¢,,,|2<5013-1277»(44,”)..
s N; Gy, I

So we can choose wm,.,, e N, fulfilling (xiii) und (xv). From (xxii), it is
clear that (xviii) will hold for ¢ = »--1. Summation of (xviii) provides
inequality (xiv) for the system (?Fm)mszva.,.l-

Sineo, by eongtruction

r

! - -
[ >, =, 2 1] € [y, <71,
=

onc has

D —plr<6
Naty
sinee |yl < 1 for cach m. Thus the family {Pmdmen,,, Satisties (xii)s
This completes the construetion. Tt remains to chooge the integer @
and precise the function &(z).
First, one has by (xii)

2 - wml < E [l . "Pml + Z 2 11~ 'lium.l -+ 2 - 1/"171.'
M : u N,

Nrem

< 2092 4-34V2(n/d)
= (207 R 4847y

Thus it sutfices to take d ~ 5~ assuming » large enough with respect
to 7. If this is not the cuse, it will follow from the definition of Z(z) that
P =0, , =1 alvendy satisfy the lemma.

Detine

&(n) = (40,0,

Then (vi) Tollows from (ix), (=iil), (xvii), (vii) follows from (x) and (xiv),
(viti) follows from (xi) and (xv).

This complotes the proof,

Remark. The funetion £(g) obtained by preceding estimations is
of the form y=comstn=? Tuking the first term of the right hand side in
inequality (vi) in aceovnt, it is clear that the lemma will only be useful
for 5 = (logm)=*+e,
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LEMMA 9. Assume & >0, 6 > 0,7 >0 and n o positive integer satisfying
the imequalities
0 < (l/i yete ()t
et (A phicmen be & sSystem of disjoint subsets of IT such that
I<k<E

and 0 > 70 (n)2.

-A[k’] = U Am I

meal

m(A[E]) < dm(ATk+1]), where

Then there exists o system of HX-functions (@pp)s (Yims) Sulfilling

(1) Ime,kl -+ W’m,k[ < 1
(ii) Pyl < &7 o Ay, for B>,
(iid) l[?’m sl < Cye™ m(Am,k)7
(iv) ' [ G —ral < 3em(ALE]),
m Ay
(v) Z = il < 0,
(vi) [211 Pual > &) € (V= 9al <& Jor B>1,
<Vii) 2 f 11 EWm,klﬁ < Oa‘gﬁlm (-A- [&]), takmg -Am = LEJAm,Ic .

m Ay

(C; is again a numerical constant). .
Proof. We construct the H*-functions by induction on k. Let us
define for convenience

Upy = [2 11—, il > 8"‘%]

m

and

v = ) I — Pl

m
Then, by Cauchy-Schwartz and Tchebyeheff
(viii) m(Uy) < 0=y,

Step 1. Application of Lemma 8 to the sets (4,,,) gives H™-functions
satisfying (i), (iii), (v) and

Z f [P — 91l <

Am,y

(ix) (e &(n) e~ n ™ Pm (A[1]),

icm®
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(x) D [l it < O m(A[L])  (tuke .0, =4,),

Ay,
v < Ene™ m(ATL]).

Inductive step. Assune the construction done up to level k. We apply
Lemma 8 in the following situation:

'Am == -A'm,IH-D Qm = Am,
Bm.l = Am,l 1< T),

(xi)

=
8 = Uppy

Jop 1l

(I< k),
& =y =g Ik,

This gives H*-functions (¢, rer)y (Wmpe) flfilling (i),
(replacing & by k--1) and, from (viii)

(i), (iif), (v), (vi)

i) X [ gl
m A, 1
< (s4&(n) e n ) mA [4-1]) +Cps™? 2 & (AT +
i<k
+ 5("7) gt Z e&(l—k-—-l)n-—l,p“
<k
i) 3 [yl < O m(A+1]) 40, 3 B0y
m Ay, i<k
(xiv) 2 L~ Pl << ECn) e M [B411) +E(m) > 07Dy,
<k

Z

Lot us next estimate »,, using (xi) and the recursive inequality (xiv).
Detfine for convenience
e T M NP N B B G P
Reformulating (xi) and (xiv),
Vopr < §(n) e m (A +1]) + E(n) e T
and hence
Dy € E(m)e™ m (A [T ++17) + (L &(n)) 6T
< &y o(m (Al 1]) +-17)
taking £,, =2 &(n)e~* Tteration leads to the inequality
Ly < &y im(AB]) + & an(A [l — 1) ... - & m(A[L])
and from the hypothesis on the A[k]

TS by (L/(L— 88,0)) m (A []) < 2, ,m(A[K])
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since 84, , < 1/2. Thus we have in particular
< 26, /m(A[k]).

By the choice of #, (ix) implies (iv) for & = 1. In general, we get from
(xii), (xv) and the hypothesis on the sets A[k]

(xv)

S mrr— ol < 2em(A [k 1]+ (o~ (L —70) m(A [E]) +
m A, k1

+(2&(m) &0 (1 —£8)) m(A[E])

leading again to (iv).
The verification of (vil) from (x) and (xiii) is analogue.
The next lemma, which is the final step in the proof of Th. 3 uses
a “decomposition” technique for functions which was also applied in [37, [4].
LeMMA 10. Fig 7> 0 and let n 3> (C.€(z/3))® be a positive integer.
Assume (f)icman POSitive, disjointly supported iniegrable functions on II.
Then there ewists H*-functions @, v, so that

@) D [ tulve—gul <7 D) [fus

(i) D=yl <,
(iii) @l lonl <L for each m.

Proof. Define for convenience
n=1t/3, M =Clly), &=M"2 &=(140)M™, d=11.
For —co<k< oo, fake A, = [M*<f, < M*']. Define further for
¢6=0,1,2,...,d—1
n
AlCls = Amapre  and  Af6], = U1A ¢, -
M=

For fixed ¢, we introduce the sequence (which may depend on ¢)
ky>ky>...>k,

of integers, where

(iv) m(Ald],) < dm(A[el, ),

(v) m(A[e]) < 67'm(4 ely,) for  ky>k> By 1y

(approximating the fm, we can restrict & to o bounded interval [ —Tk;, & 1).
Define further

L0 =0[c] = {k; $.=1,2,...,7}.

icm®
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Alel, = k’JA [clm,lc and  BJle], = U A [ojm,lc'
e ItO

First, using (v), we find

2 S In=3 ]

m  Bloly, kO m Alely, 1,
< M) Mom(4 [o],)

k0O

m]"{i:?

gl log>l>lig.q |

Mdla+cm (A. [0]1¢)

7
<2M5™ 3T Mo (A 6], )

g=al

QZMl_d(s"lZ f Frne

m Altly,

Henco

(vi) D [ fa<80u Y [ .

m Blely, m dlCly,

Since now 2, §, n and n satisly the conditions of Lemma 9 there are H®-
functions [0l e ¥[01n, Sabistying (i), (i), (i), (iv), (v), (vi), (vii) of
Lemma 9 with respect to the sets A [c],,.

For fixed m, let

pleln = @L0Tm1+ 9[0T ¥ [Tnr + - +@L00 s [0l o ¥[CTmems

and

Yoy = vl wlchnz o ¥[01n,y-
Then
(vii) lplelallpleln < 1.

Let us estimato

1] = 5 [ tn=podulfu

m Alely

EPEES)

m Alcly, e Blely, m L0 Alcly, 1

Write
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Then ‘ and hence
f =l < f Irr—oleln v clns - plClnsl+ ( viii) 21[0] 1Bo,M 2 ffm
A["]m,ka Alely, kg n -
+ f {leledpil+ .o +lplelme—il}+ Using the same technique as in [8] let us introduce the H>™-funchions.
Ao, kg 10 '
+ " (A [G]m,ks )(e —}—_82 + o ') ¢7ll = 2_14 {yil - H [yl - (p [G]Vll]}
taking (i) of Lemma 9 in account. The first term on the right is dominated o=t
by ‘ and
I [jlk [ (1—yplelual+ 3
h @ [6]y,6] —wylcly, )
Al kg Y ™e AlChm, g ™ . 1/11) c_“ "/J [c]n
+ 11’“’/’[0]%2]"}‘ [ '{'|l"‘"/)[0]m,r—-1|)' 10
It follows by (iv), (vii) of Lemma 9 and Cauchy-Schwartz thab for m =1, ..., 0. Since . |g,| < (1/11) Zu‘ lplelyl. (i) follows from (vi)
Further o=

2 f ]7"1 - [c]m,s"p [o]m,l e Y [0]1n,s—1[

m Al ey

(X  DR—wpal< Y@/ 3‘11 wlelnl < sup 2 11— L]l

§—1 )
/2 c=0
< 3em(4[oly,) + 0 N O M o B B R (D _
- i tg; ; " {A[;’{m " } Let us verify (i), taking p, = 27,
§—1
) 1212 ,~1/2 1/2 _
< Sem(Alel) + )y mAlely) 0 m(A L], 2 [tair =l =27 3 [fulLiys =g oL
8—1 .
<{3a+0§’23‘”22 61/2‘“")}m(A[0]k8) <24 3 [ fulyr—olelal
i=1 m,¢ Afely,
< dem(A[c),,). ‘ =27 3'1[0]
¢
By (iii) of Lemma 9, we find for the second term the estimation <O M! 2 f fn

Cys 7 {m(A [0 z) + WA [6T)) + oo M0 (A6, )}
and after summation over m In order to werify (ii), fix ¢ =0,...,10 and ev&lpaJte > Lt—wylell-
. By definition. of w[6],, "
Cye™H (O 48" L. - G)m(ALc],) < em(A[c],,). '

\”’ 1 —plo],l = vz [1—pLeln,sl-
Consequently w et "
Now for ench ¢ ==1,...,7, we get thut
[ el < TeMBHm(A[)) < TeM 3 [ fe B
m Aleln, iy . m <6, e (%) : . 2 L pleln,el <m0
n

So using also previous estimate (vi)

1[6]< (80, M=+ 7 11) F < 150,11 i g
%’14[({” me gm{n " () Syl >0 = ) L—plell <&

Morcover for s < i< r, by (vi) of Lemma 9,
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It is an elementary exercise to verify that () and (sx) inply that

r

22 L= ylelmel < (n+etett . 46 )m.

§=1 m
This completes the proof of the lemma,

Proof of Theorem 3. If fy, ..., f, are disjointly supported funetiong
in TMIT) satisfying (i) of Th. 3, there ave H™-functions /- (‘1\<~’m'<%)
satistying

Wl <L and  {fo gn> = 6.

For 7 > 0 (which we fix later) and n 2 (Cy&(z/3))%, let ¢, v/, be the HI~.
functions obtained in previous lemma, replacing f, by [f,.|. Sinco

D [ 1fnllve— gl < 7,

we see that
card (N) < wV2n
defining
N={m=1.c,n; [ Iful lra— i > 71,
Take
Pm = Pnlos Y =y I m¢N
and o
P =Gm Yu=0 i melkN,
Then

2=yl < 3T L=yl + eard () < (z--2")m.
mEN

If m ¢ N, then

<Fmr P> = Ve Fons D < [ 1Fl Ul Ity =l << <12
Taking v < 6%/4, we can put 8, = 3/2. For a(n), take 2 7 , where v mugt
be large enough to ensure the inequality n > (Cy&(v)3)),
V. Remarks. '

1. The disjointness hypothesis. for the funetiens Jm in Th. 3 ean bo
replaced by a weaker hypothesis, i.c.

H Z XAm

where 4,, = suppf, and B is some constant.

w< B

icm®
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2. In fact, Th. 3 can be combined with results of [3] as follows. Given

n-»00
6 > 0, there exist 6, > 0 and a funetion a(n) 5.5. a(n)/n — 0 so that the
following holds: . -
If fy, -y fu in LM(IT) are -Rademacher 1, i.e. if i

J1| 2 eveudi|], @ > 8 3 1o 1Al
and if .
la(fll = @ =8)lfls  (A<h<n)

(in particular, if the f, are minimum norm liftings), then there are H*-fune-
tons @y ...y @n a0d 9y, ..., p, satisfying following properties

(i) lpul+lwl <1 1<k n),

(i) Siml <1, ’
(i) D=l < a(w),

(iv) iy @ = Sallfylly

3. Our methods provides estimates of the form a(n)/n < (logn)~ 2+,
Is it possible to replace a(n) by a constant?
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H? estimates for weakly strongly singular integral
operators on spaces of homogeneous type

by
BENJAMINBORDIN (Campinas)

Abstract. Lot & bo a normalized homogeneous space. We define “weakly strongly”
singular kernel on X x X, and wo study the action of the “convolution” operator
indueed by this kernel on the atomic Hardy spaces HP (X), with 0 < p < 1. A bounded-
ness result is obtained. These operators are analogues of the wealkly strongly operators
on R* gtudied by ¢. L. Fofferman and E. M. Stein in [6].

1. Introduction. In this paper we study a generalization of convolution
operators induced by weakly strongly singular integral kernels.
Bxamples of these kernels, in the case of R* are given by ‘

k(@) = |o|~ y (@) expilal®,

where 0 < a <1, > 0 and yis o C* function on R, which vanishes near
zero and equals 1 outside » bounded set (see [5], page 21). The L® theory,
1 <p < +oo, for operators obtained by convolution with kernels (@),
has been studied by I. I. Hirschmann [7], S. Wainger [12], C. L. Feffer-
man [5], C. I. Fefferman and B, M. Stein [6], J. B. Bjirk [1] and P. Sjo-
lin [11].

Also in [8], C. L. Fefferman and B. M. Stein obtain boundedness
results for H?(R"), 12 p >py(a, f,n) >1/2. Estimates including the
limiting ease p = py(a, B, n) were obtained by R. R. Coifman in [2] when
o= 1.

Ifere wo consider a generalization of these kernels and the action
of the induced operators on H? spaces, p < 1, defined in terms of atoms
on spaces of homogeneous tiype. First we define what we mean by a weakly
strongly singular kernel on spaces of homogeneous type. In Theorem 3 wo
prove that the operator K induced by this kernel maps atoms into clements
of H?, p « 1. Intho proof of this theorem we extend some techniques used by
R. A, Macfag and O, Segovia in [9]. The extension of the operator to the
wholo space JI* requires the introduction of an auxiliary operator, namely
I, acling on the space Lip(L /p—1) of classes of Lipschitz functions.
This operator is an adaptation of the operutor K# considered in [9].
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