STUDIA MATHEMATICA, T. LXXV, (1983). .

Spline characterizations of H'
by

SUNYUNG A, CHAN G* (Los Angeles, Calif.)
" and ‘
Z.CIESIELSKI (Sopot)

Abstraet. Thore are given charactorizations of the Iardy H! space on the circle
in terms of the orthogonal system of polynomial gplines of fixed order treated earlier by
one of the authors. One of the results says : a function from It belongs to H! if and only
if its corresponding spline’ Fourier series converges unconditionally in .I'. Moreover,
two more characterjzations of H* are given in terms of the corresponding square and
“area” functions.

1. Introduction. Before describing the main result we introduce the
basic definitions. The one-dimengional torus in this paper is identified
with I'=[—1/2,1/2). In the Hardy space H'(4), 4 = {z: 2] < 1},
we have the norm ) ) _ .

3

17 latay= sup I (mg”m) iz -
0<r<i C

To each f e H'(4)there corresponds % function on 7, f(e**) = u () +iv (x).
Notice that Imf(0) = 0 iff [v(#)dz = 0 and.if it is the case, then
= FAg ‘

: M(M;y)*u(m—y)

v(@) = i(a) z,mox»}f tan (ny) .
Thus
Hy(4) = {f e H'(4): Tinf(0) = 0} -
is linecarly isomorphic to
HYT) = {u e LY(T): & e L' (1)}
* Resparch. sﬁpp’ortad e part: by the Natibnil ‘Seience :Foundation: © 1o
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with the norm
Nllziery = Nl + Nl g2y

We know that the dual space (H*(T))* can be identified with BMO(T)
by the result of C. Fefferman [10]. The norm in BMO(T) is defined by

Wiswoa = | [7|-+sup /i) [ 1f i,

where f; = (1/II]) [ f and the sup is taken over all ares I < T.
b

In this note we will give characterizations of H*(T) using periodic
spline bases of order 7, 2> 2. Our paper is motivated by the work [11] of
B. Maurey, where existence of unconditional bases for H(ZT) is proved,
and also by the works of L. Carleson [3] and P. Wojtaszezyk [14], where
explicit unconditional bases for H*(T) are given. It should also be pointed
out that our result is a continuous version of theorems of Burkholder—
Gundy [2] and Davis [9] corresponding to the martingale case, i.e. to
r = 1. Related work in H” spaces for 0 < p <1 was recently done by
8jolin and Stromberg in [13].

This note is organized as follows. In Section 2, we indicate some
definitions and basic facts about spline systems, where the reader is re-
fexrred to [6], [7]for more details. In Section 3, we state and prove our main
result. And in the last Section 4, we make some comments on our result
and indicate & generalization of it to the polydise.

2. Preliminaries. We will use the following notation. To each natural
integer n > 1, we assign dyadic interval (n) as follows:
(=1/2,1/2)
((v—1)j2™—1/2, vj2™—1/2) for

for n =1,

(n) =
n=2"+91l<<rg<2"m=0.

The orthonormal in L*(T) periodic spline system of order » ig denoted
by (F{,n>1) and it is defined as follows:
. FO (@) = VorPM(na),
where 7 = m+2 and F™ on [—=x, ) is defined as in [6]. Thus, F{" = 1

and (1, FD) = 0 for n > 1. Using the technique ag developed. in [7] we
can prove for some congtants ¢, 0 < ¢, <1, depending on » only, that

(2.1) B (3)] < Gr%1/2q;1d(m,(n))’
and
(2.2) IFD() — D (y)] < ¢, d (@, y) nditgHdem) rdlwo)

where d is the usual -distance on the torus T and aA b = min(a, b).

icm
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Asg a gimple consequence of (2.1) we find that for each r =1 there
is a constant a, > 0 such that

(2.3) (FD@)2dw > 1/2

d(x(n))<a,/n

for wn>1.
The following lemma ean be proved by simple compactness argument.
LemMA 1. Letr > 1 and 0 < 8 < 1 be given. Then there is a constant C.s

such that for any w € P, (a polynomial of degree < r—1), any interval I, a'riy
measurable set B < I, [B| > 61|, we have

Swl<o, [ ol
I i

3. Main result. Before we state our main result let us introduce gome
more notation. For f e L(T), the square function is defined to be

Qf(@) = f ((f, PO (@) )"

Ne=1
and the “area” function
Af (@) = 3 (HEDF im)) .
xe(n)

Notice that when r = 1, i.e. when the F{’s are the Haar functions, AWf
=QUf. Moreover, for given & = (s,), &, = +1, we define

fo=Def, FOFD.

Bl

The result can now be formulated.

TunoneM. Lel f € INT) and let r > 2; then the following properties
are equivalent:

(3.1) T feHV(TD);

3.2) Q") f e IN(T);

(3.3) sup Iz < oo

(8.4)  The series 2 (f, BN converges unconditionally in L' (T);
Rem]

3.5) AVF e TA(T).

.Fuﬂhermore, the norms corresponding to (3.2), (3.3) and (3.5) are
equivalent norms in H*(T).
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Before we pass to the. proof of the Lhwrem wer w111 qust phmbhsh

some auxiliary results.
LEMMA 2. If 7= 2, then there is a fzmte numbe’r Cr such, that

|]I‘§f’[lnl(1) ¢ n'””, S 1.
Proof. Sincé the dual space to H*(T) is the BMO(T), it suffices to
verify that e
\ f 1ﬂ§{>¢dm[ < e plpo,  for ¢ € BMO(T).
T

To see this, let us for given ¢ € BMO(T) and n divide T' into dyadic inter-
valg of equal length f(n)] Call this collection of intervals in its natural
ordering {(n);} with (n), = (n). Then by property (2.1) we have for n>1

i!-ﬁﬁ{’qbfimll =|fF§;)(¢—¢(}z)o)d¢l v o

_|\1 fl?“”(qv Py yda 4 fl,v(r) Py — ‘P(n)o)dﬂ”[

FRR 0T (n);

—~ 9 -—-
< 2_, e g0 lpllsao +20 =g elsacorr)

7
< ¢, ”/fm"q’]lBMO(T) ‘

This is the desired estimate.

Remark. For a different proof of this lomma, we lcf(r to [14]

In what follows the H! and BMO spaces corresponding t0 the dyadlc
(martingale case) are denoted by Hy and BMOd, respectively.

n=1

S lant =00 L e

(m)=(n)

LevwA 3. Let f e LH(T) wnd Tet fro= Za FO, Then the condition

8 equivalent 1o
a) f e BMO(T) for r > 2;
)feBMOdfm ro=1. ‘

Part (a) is an extension of G‘wlewnb [3] and Wojtaszezyk's [14]
result to higher order splines, it can bo proved similarly as in [3] and
[14] using properties (2.1) and (" 2) of {1’(')} onee “wo ]mvo Lmnnm 2.

Part (b) is well-known::

Remark. In both cases wo havc (111 cuse r = 1 we r()pl'ue BMO by
BMO,) .

(3.6) a [ ~~up((1/ o)) - Dty

(myc(ny v

iom®
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Using the fact .that BMO, is the dual of H! we obtain immediately

COROLLARY. The system (FY), n>1) is unconditional basis in H(T)
if r=2 and i Hj iof r =1.

Of course the ease » =1 (Haar or martingale case) is well known.

About the following known abstract lemma we have learned from T.
Figiel. Wl‘rh his penmsqmn we pwsent it here with his proof.

TEMMA 4. Let <X [I'l> be @ Banach space, and let (@,) be o sequmce in X
such thit er . converges unconditionally. Then

| Sem <

where the. sup. is taken over all & = (e,) with e; = 1.

Proof. Define a linear operator A: X*—I' by the formula Aax*
= (w*(w,)). Sinee the series

! n

converges unconditiendlly, it follows that it is absolutely convergent.
The operator A hag closed graph. According to the closed graph theorem,
Al < co. The Hahn-Banach theorem implies that for each & there is o*
in X* such thab [fo*]] =1 and

”% Enfly, =k (;anmn)’:Z‘%w* (‘I}n) < 2 Iw* ()

= [Aa* |l < AN < 0.

Proof of the Theorem. The implications will be proved in the fol-
lowing order: (3.1)=-(3.4)=(3.3)=(3.2)=(3.1) and (3.1)«(3.5).

(3.1)=(3.4): Apply. the Corollary to Lemma 3.

(3. 4) (3.3): Apply Lemma 4.

(8.3)=>(3.2): Denote by 7,(t) the nth Rademacher funemon Then by

Khintehin’s  inequality = (I = (0,1)),

sup el \f |l 2 7a(t) aﬂl'-’ﬂ"

: [f[z (t) @, I (2 wt]
g
= 0@ ey - Wheve  a, = (f, T).

(8.2)=(3.1): This proof is based on some probabilistic ideas (¢f. [1]
and also [4]), Tt is sufticient to prove with some constant O, << co that

(8.7) A 1 < Gz 9 lmmo ey

pas (r) dt
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for g e BMO(T) and given f e I!(T). Since (FY) is a basis in H'(T'), we

have
f = Zanm)‘
n

For a given dyadic interval (n) we denote by s, the middle point of
(n). Moreover, we will fix a > 0, § > 0 (to be chosen later) and let

(n)e = {01 [o—s,] < al(0)][2}; ()] = al(n)l, 2 = QWf > 24,
7 = {(n): [(n)an | > Bal(n)], |(n).0 2] < Pal(n)(},
B ={M(xo,_)) > B

where M is the Hardy maximal operator. Since it is of weak type (1,1),
we have for some € >0

| < (O/B) 2.
First we are going to prove that the following inequalities imply (3.7):
(3.8) D ai<0 [ (QWf(w)* do,
(n)ery, By N2
where C is a constant depending only on our choice of a, #; and

(3.9) 2 Y, < Ol 9l Emoiry »

{n)evy,
where

f=2ar), g= 3b19.
n=1

n=l

The proof of (3.7) goes as follows. Using (3.8) and (3.9) we obtain

JI=2eb =3 3 ab,

k (n)evy,

<CS( [ @ B P lghasson

ko B\

< OMIIBMocr)Zk’.?’“IEk-l! < Ollgllssor) Y, 2@
[

< 0lQ™"y ey llg ”BMO(T)'
We will now verify (3.8). First we notico

f (O™ 1) dw > 2 f (Fﬁ’(w))“dw.

Ep—1\9% (n)ery, L,G~1\a,a
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Now for (n) € v, we have (n), = E_, by the v?ay we define E,’s. Thus
it suffices to prove
(3.10) [ (FQ(@)2dw> 0, for some constant C,.
(n)a\2
To see this, let e = (n), \2;. Suppose we choose a = 2p-+1, p i3
a natural number chosen later, then

(n)y = U{ )+4} -

If we then choose f << 1/4a, then
[(n)g—el = |(n)a2 | < (1/4)I(n)],
hence [en{{n)+j} = (3/4)|(n)] for each |j| < p. Thus the portion of ¢ in

each dyadic interval in which ) is a polynomial is at least 1/2. Applying
now Lemma 1, we obtain for each [ji< p

(FO@)do >0, [ (FD(@)do,
en{(n)--5} n)+3}

and therefore

(3.11) [ (#9@)dw = f (FO(@))2d0 > 0, [ (F(@)*da.
()e\2 (n)y

It is now apparent that if we choose a = 2p -1 50 that
(n), = [dle, (n)) < oyfn},

where o, is the constant appearing in inequality (2.3), then an application
of (2.3) to the right hand side of (3.11) gives (3.10). From which the desired
inequality (3.8) follows.

The proot of (3.9) is edsier. Notice that (n) & 7, implies that (n), = By,
and this in turn implies (n) = B,_,. Thus by Lemma 3 ‘

3 b < CliglBuatouny B
(n)ary

which complotes the proof of (3.2)=>(31
(8.1)<>(3.5): First we notice that if a, = (f, FY), then

oo o
(A9 @) = 3 a1/im)gm(@ = D) ax(FD @),
nesl =k

where the F’s are the Haar functions. If we name g(z) = Y a,F%(2);
1

Tana
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“then AN z1ery = 1@Wlz1z) While QMg 21y ~ gtz by result of Davig
[9]. However, by Lemma 3, we have Ug[lﬂ,:i ”f”zzl(ﬁ): thus | 4®f Iz
~ flziz as desived. .- . - . ,
Remark. The implications (3.1) = (3 2) and (3 1)=-(3. &) in the non-
periodic case are treated in [12]. -

4. Some comments.

1. There is some difference between the real Banach space HYT)
used in this note and the space H* (which we will denote by H(I)) used
in [12] and [14]. HY(I) is better defined if we use the atomic characteriz-
ation of H* (cf. [8]) with atoms supported in subintervals of I. To describe
the relation between Hl(] ) and Hl(T), for each w eH‘(I) ]et

. (2 for. 0<. 2,
Pua) = ( ) for. 0 z< 1/
44(~2m) - fer =12 w<0.
Then , L
Pu(z+1) l’u,(m ‘and  (Pu, Po)p = (u, v)g,

where the last inner product is equal to f u0.

PROPOSITION 1. Let HL{T'Y be the sub&paae of even. functions in H(T).
Then, P: H*(I)~H' (T) is a linear isomorphism and -

Pullgyry < Ml < 20Pullgygy-

The proof is straightforward if we use the atomic definitions.

Suppase now. that -we have a basis: (unconditional basis) (¢, #.3>1)
in HY(I). Then the recipe for obmmmg bagis (unconditional basis) in H(T)
is the following: take the sequence (P, ,P,,, » % 22 1). Thus, Wojtaszezylk’s
result [14] simply says that. if; (@, n-2>1) s the non-periodic Franklin
system, then (P, ,Pq, » w22 1) is an unconditional basis in HY(T).

2. Suppose now that we have basis (uneond]‘mon(»l basis) (y,, n = 1)
in Hl( )5 then (p,-+ip,, n = 1) is a basis. (uncondltmnal basis) in the real
Banach space Hj(4). However, H(d) = {S+Hy(4) and  therefore
By +iw,, m = 1) is a basis (11110011(11‘51011&1 bagis) in the real Banach
space H(A4). L :

3. Let us now. defing for given » 3= 2

Gy (@) =1,
Go) =1,
G,0) = (.P(T (@) 42 FD (a) }/1/‘7

After the remark 2 ma,de above we get from our Thoowm: :

icm®
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 PROPOSITION 2. Phe system (G‘n,"n> 0) is an unconditional basis in
the real Banach. space H*(A) and for. j € H' (/) we have

f= Zm; (f, G)

C s

with (f’ 9)a zg_[f.(j'
4, Now, for each B < {0,1,..
Puf = Y Re(f, 6,)46,

neld

.} define a projection

(P B < {0,1,...}) is a uniformly bounded commuting Boolean algebra
of projections acting in tho subspace H(4) of L1 (T'; C). Now, the result
of McCarthy [5] on product of bounded commuting Boolean algebras
of projections in L spaces (it can be extended to subspaces of L? spaces)
implies
TrrorEM 1. The system (G, @ ... @G, ,m >0, ...
conditional basis in the real H(A% for any d> 1. »
5. To construct an unconditional orthonormal basis in the complex
space HY(A% it is sufficient to produce a spline orthonormal basis in
HY(T), e.g. as in [15].

s Mg = 0) is an un-
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H* js a Grothendieck space
by
J. BOURGAIN (Brussels)

Abstract. It is shown that a non-woakly compact operator on H* fixes an *-copy.
In particular, 2% has the Grothendieck property and I* embeds in any infinite-dimen-
sional complemented wubspace of II*.

1. Introduction. This work is a continuation of [3] (cf. also [4]). Let
us recall gome definitions. II' denoties the circle and m its Haar measure.
H; is the space of integrable functions f on IT such that }'(rn) = 0 for n < 0-
‘We use the notations ¢: L*—IL/H; and o: L'/H;—L* for the quotient
map and the minimum norm lifting, respectively. The duality

Sy 9y = [ fpdm

identifies the dual (L*/H;)* with the space H® of bounded amnalytic func-

tions on the wunit dise D. )

Tt was shown in [3] that H> has the Dunford—Pettis property (DPP)
and (H*)* is weakly sequentially complete (WSC). We establish here
the Grothendieck property (GP) of H®. Recall that a Banach space X
hag GP provided weak*-null sequences in X* are weakly-null, or, equiv-
alently, each operator T': X-»¢, is weakly compact. In fact, a stronger
result is obtained. If T: H*®- Y is an operator, then T is either weakly com-
pact or there exists a subspace Z of H*®, Z isomorphic to I, on which T'
induces an isomorphism.

As corollary it follows that 1™ embeds in any infinite dimensional
complemented subspace of H®, solving one of the questions raiseld in [18].

Lattor results where previously announced in [B].

IL. Operators on ™ and the Grothendieck property. Classical examples
of G-gpacos are the L®(u)-spaces. Next result, implying the G-property,
emphagizes the same.bebaviour of H® and L* in several aspects. '

TapoREM L. Assume T: H*—Y is an operator. If T is not weakly
compact, then T is an isomorphism when restricted to a subspace Z of H™,
Z isomorphic to 1.
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