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Cohomology groups of sheaves &L and splitness of
Dolbeault complexes of sheaves J .

by
NGUYEN VAN KHUE (Warszawa)

Abstract. It is shown that if X is an increasing union of Stein open sets and
& a coherent analytic sheaf on X, then H?(X, $¢L) = 0 for every ¢ > 2 and for
every Hausdorff complete locally convex space L and HYX, ¥ &F') % 0 for every
Fréchet space F which does not admit a continuous norm. We prove algo that on such
manifolds Dolbeault complexes of sheaves Jp,; split only at positive dimensions,
where V is a cloged submanifold of X, & a holomorphic Banach bundles over X and J 7,8
ig the sheaf of germs of holomorphic sections of & on X vanishing on V.

Introduction. Let X be a topological space, & a sheaf of Hausdorff
complete locally convex spaces and L a Hausdorff complete locally convex
gpace. By &L we denote the sheaf on X given by the formula

U (U)éL for all open sets U in X,

where &(U) &L = HOM,(L,, &(U)) is the &-product of &(TU) and L [3]
(L denotes the vector space of continuous linear functionals on L equipped
with the compact-open topology and HOM,(L,, &(U)) the space of con-
tinuous linear maps from I, into & (U) equipped with the topology of
uniform convergence on equicontinuous subsets of L’).

If X is an analytic space, & a coherent analytic sheaf on X and I
a Fréchet space, the cohomology groups of sheaves &L are investigated
by several authors [2], [3]. If L is o Hausdorff complete locally convex
space, the cohomology groups &L are investigated in [11]. The aim of
this paperis to continue study the cohomology groups of & &L. The obtain-
ed results arve applied to study the splitness of Dolbeault complexes of
the sheaves Jp .

In §1 we study the groups H¢(X, &6 L), where X cither is an increasing
union of Stein open sets or has a Stein morphism. The main results of
this section are Theorems 1.2 and 1.6. We prove that if X is an increasing
union of Stein open sets, then HY(X, #EL) = 0 for every ¢=2 and for
every Hausdortf complete locally convex space I and H'(X, SEF') %« 0
for every Fréchet space ¥ which does not admit a continuous norm.
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Section 2 iy devoted to prove this statement for the sheaves Jp &L
The cohomology groups of the sheaves # &L of meromorphic functions
on Riemann surfaces with values in Hausdorff complete locally convex
space L are investigated in § 3. We prove that H* (X, #&L) = 0 for every
Hausdorff complete locally convex spaces I if and only if X is compact.
The results of § 2 are applied to give the splitness of Dobewult complexes
_of the sheaves Jp, on complex manifolds which are increasing unions
of Stein open sets only at positive dimensions.

§ 1. Cohomology groups of the sheaves &L, Let & be a sheaf of
Hausdorff complete locally convex spaces on a paracompact space X.
Then the groups

dof
HY(X, &) = lim HY (%, &)
—>

are equipped with the inductive topology (where % is an open covering of
X and .

det
HY (%, $) = Ker 64/Im 671
if .
8 = $ U, £): O, &0 (U, &)
are the coboundary maps and 6%(%, &) are endoved with the produet topo-
logy).
1.1. ProrosrrioN. Let X be an analytic space which is an imcreasing

wunion of Stein open sets, & a coherent analytic. sheaf on X and L ¢ Hausdorff
complete locally convex space. Then
[HY(X, SEL)], =0 . for every ¢>1.

Here for each locally convem space L by L, we denole the space L[{0}.

Proof. (a) We write X = (_J X,;, where {X,} is an increasing sequence
na=l

of Btein open sets. Let #, = {X,,..., X}, % = {X,,..., X,,...}. Then
for each U e %(L), where #(L) denotes the set of all balanced convex
neighbourhoods of zero in L, and for all #,¢>1 we have [3]

Tm 8 (#,, #8L(U)) = Kersda, S6L(T)).
det.
L(U) denotes the completion of L/g;; = L/op'(0) equipped with the norm
¢y generated by U. This implies that )

1.1) Tmé** (%, SEL(T)) . is dense in Ker 82 (w4, 6L(T)).
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(b) Given «eHYUX,#EL), g>1. Take a representative &
e Ker 84(%,, S€L) of a, where %, < % is a Stein open covering of X.
It suffices to show that

1.2) n(U)d e Tm 87 (@, EL(V)) for U eu(L),

where n(U) is the canonical map of L into L(U). Since # and %, are Leray
coverings of X for the sheaf S€L(U), we find &, € Ker 6‘1("1/, 5’6’1}(17))
guch that

(1.3) w{(U)&— & % e Im 6N, SEL(T)).

From (1.1) and (1.3) we infer that (1.2) holds.

1.2. THEOREM. Let X be an analytic space which is an increasing union
of Stein open sets. Then

() HYX, SEL) = 0 for every q=2 and every Hausdorff complete
locally convew space L

(il) HY(X, FEF") 5= O for every Fréchet space F which does not admit
a continuous norm and for every coherent analytic sheaf & on X with
dimsupp & > 0;

(ili) For every m =2 there ewists a coherent analytic subsheaf & of the
sheaf 0 on C" such that

H(C", SEF') 5 0

for some Hréchet space which has a continuous norm.

We need the following

1.3. LEMMA. Let X be an ireducible analytic space of dimension 1
and & a torsion free coherent analytic sheaf on X. Then H' (X, &) has a con-
tinuous norm. )

Proof. Let K be a relatively compact open subset of R(X), K # @,
where R(X) denotes the regular part of X. It suffices to show that if o
e H*(X, &), o|K '= 0, then o = 0.

Since 0, is a domain of principal ideals for z € R(X), it follows that
Z|\R(X) is locally free. Hence, by the connectedness of E(X) we infer
that ¢/R(X) = 0. Let 2 ¢ R(X) and (U, =, 4) be an analytic covering on
some neighbourhood U of 2, where 4 = {# € C: |] < 1}. Since x is proper,
by the Grauert theorem [4] it follows that 7% is coherent analytic on 4.
Obviously m, is torsion free. This implies that =, is locally free on 4.
Combining this with the relations o|U e H'(U, &) = H'(4, m), o|B(U)
= 0 we infer that ¢ = 0 on U. Hence ¢ = 0.

The lemma is proved.

Proof of Theorem 1.2. (i): For X being Stein (i) has been proved
in [11], Theorem 1.2. Let us note that the proof in [11] gives also a proof
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of (i) if we write X = {J W,, where W, are relatively compact open
n=1 )

sets in X, such that
W, = W, = 0(X,) —hull(W,) © Wy,

where {X,} is an inereasing sequence of Stein open sets in X.
(ii): Assuming the eontrary, we have

(1.4) HY(X, PEC=") =0

since by a theorem of Bessaga and Pelezyiski ¥ contains a complemonted
subspace isomorphic to C* [1].

(a) We first assume supp & contains an irreducible subvariety V of
dimension 1. Let &, = &[J &, where J - denotes the ideal sheaf associated
with V. By (i) and by the exactness of the cohomology sequenceiagsociated
with the exact sequence

(1.5) 0+ J P EC® S EC™' 5, 6C™ 0
it follows that
(1.6) HYV,$,6C"") =0:

The exactness of sequence (1.5) follows from a result of Bungart [3],
Corollary 17.2.

~ Let T'(%,) denote the torsion subsheaf of &,. Since for every #
eR(V), 0, is a domain of principal ideals, it follows that %, = &)y, is
non-zero torsion free on V. Note that &, satisfies (1.6).

By R(¥,) we denote the set consiting of points at which &, i locally
free on supp &, = V. It is known [4], Corollary 2.13, that R(%,) is open
and dense in V. Since V is non-compact and dimV =1, V is Stein [7].
Thus there exists o € H*(V, &,) such that ¢ s 0. Take a discrete sequence
{#} = R(&,) In V¥ such that o(z;) # 0 for every j > 1. Select a holomorphic
function f on ¥ and an open covering % = {U;}2, of V such that

flg;) =0, zelU, UnU;=@ foralldjx=li+#j
and
‘ FH0)AT, =@.
Put .
fy=0 for 4i>1 and fi = —f, =o/f®¢ for j>0,

where ¢ = 0, ¢; =(0,...,0,1) € C*' for every jz>1. Obviously -
S ‘
(fy) e Ker 8" (%, &, £€~).
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Since H(V, &,6C~") = 0, without loss of generality we can assume that
there exists (f;) € C°(#&C™) such that & (f;) = (f3). Thus we have

o®e-+ffi =oQe+ff; on  U;nUji,j>0.
It follows that the formula
& =0oQe+ff; on U, j=0
defines an element & e H*(V, &, §C°').= HY(V, #,)C> such that
d(z) = o(z)®e; for every j=0.

Since H*(V, &,) has a continuous norm, it follows that
n
1.7) ¢ = ZVf@ef for some n,
j=1

where y; € H*(V, &,) for every j=>1.
By (1.7) we have

n '
- -y
G (2py1) Dlppr = 2_, ¥; (Znr1) D 6.
=1

This is imposible since o(z,.,,) 5= 0. Hence the case where supp & contains
an irreducible subvariety of dimension 1 is proved.
(b) In general it sutfices to show that supp# contains an irreducible
gubvariety of dimension 1. First we show that H*(X, &) # 0. Let
' . det
2 € R(&) = R((y/Jsuppf)ylsupPy)'

Consider the exact sequence

n T
HY(X, &) >H (X, P [Joy )+ HHZX, Ja¥)—0.
Sinece
AmAYN (X, & |J0ns) = AimH® ({2}, F/[J2F) < oo,

it follows that dimH" (X, Jz9) < co. By Proposition 1.1 we infer that
H(X, J=&) = 0. This implies that the map » is surjective. Thus H' (X, #)
# 0. P
By considering the sheaf & /J %, where V is an irredueible subvariety
of supp< of dimension > 0 and by ilic proof in (a) we can assume that
supp is irreducible. Take o e H*(X, &), olB(&) # 0. Consider the sheaf
&, =& /c0. Then &, satisfies (1.4). Thus we can assume that supp ¥, is
irreducible and supp & = supp ;. Since o0 # 0, this implies that

dimS, fin,S, > UM, fm,F,
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for all z € B, (#)nR(F), o(2) # 0, where m, denotes the maximal ideal
I (Opypp ), Note that B(F)nR(5,) is dense in supp &.

Continuing this process wo get a coherent analytic sheaf &, on X
such that &, satisties (1.4), supp #, is irreducible and

&im Py S, =1

for every 2 belonging to a dense open subset of supp <.

' Let p e H'(X, %), fIR(#y,) # 0. Consider the sheaf &' = % [po.
Then $* # 0, * satisfies (1.4) and supp &' containg an irreducible "sub-
variety X, of dimension < dim X. Using the above argument to &' [J 5 51
we get an irreducible subvariety X, of X, of dimension < dim .X;. Conti-
nuing this process we infer that supp & contains an irreducible subvumiow
of dimension 1. l

(iii): Let 4 = {z e C: |3 < 1}. Select a holomorphic function f on
4 such that f is not locally bounded at each point of d4. Then the map
yi 0% givenby p(2) = (2, f(2)) is a proper embedding of 4 into C* = €*,
Let J denote the ideal sheaf associated with y(4). Since it does not exist
a continuous linear extension map from 0(y(4)) into ¢(C") ‘( [9], Prop-
osition 5.3), by the exactness of the eohomology sequence associated
with the exact sequence

0T EF' 08T 0[] EF' 0,

where F == 0(y(4)), it follows that H*(C" JEF') = 0. The theorem is
proved.

Let X be an analytic space. We say that X has a Stein morphism if
there exists a holomorphic map = from X into a Stein space W such that
= (U) is Stein for every U belonging to some Stein open covering % of W.

Since #(dn~' (V)) = &V for every open subset V of W, it is easy to
check that #~' (V) is Stein for every Stein open set V in W contained in
some U & %. Thus by the covering lemma of Stehlé [18] there exigts a Stein
open covering {V,} of W such that

(8) 2 =1J V, are Stein;
=
(8y) 2,nV,,, are Runger in V,,,;
(8y) % = {X; ==a""(V,)} is & Stein open covering of X.
Since X, is Stein, by (8,) it is easy to check that X " an,_,_l is Runger

in X~}+1~, X, = @ (£2). Tako a Stein open covering %, of X such that %.
<Y, %, forms a basis of open sets in X and '

U\ Xy = %, IXJU@ﬂX}-i-l ’
where for every open subset G of X we write ‘

UF = {Ue®:Tc G}.
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Then by an argument as in {8], Theorems 1 and 2, we get the following

1.4. PrOPOSITION. Let X be an analylic space having a Stein morphism
and & o Fréchet sheaf on X satisfying the following conditions:

(i) HY(U, &) = O for every Stein open subset of X and for every ¢ 1;

(ii) The restriction map H"(U, )->H"(V, #) has dense image for
every Runger domain V in any Stein open subset U of X.

Then '

(i) HY(X, &) = 0 for emery ¢ > 2;

(ii) The coboundary map

8 0%, #)—+Ker 8 (¥, &)

has dense image.

Since for every coherent analytic sheaf & on X and for every Fréchet
gpace I the sheaf S&F satisfies the conditions in Proposition 1.4, by an
argument ag in Proposition 1.1 we get the following

1.5. PROPOSITION. Let X be an analytic space having a Stein morphism,
& a coherent analytic sheaf on X and I a Hausdorff complete locally convew
space. Then g

[HYX, SEL)], =0  for every q=1.
1.6. THEOREM. Let X be an analytic space having a Stein morphism
and & o coherent analytic sheaf on X. Then
(i) HY(X, SEL) = 0 for every q > 3 and for every Hoausdorff complete
locally convex space L;
(ii) If H' (X, %) has a continuous norm, then
H (X, SEF") # 0
for every Tréchet space F which does not admit a continuous norm.

Proof. (i): By Theorem 1.2 (i) we have H%(Z, FEL) = 0 for every
¢ > 2 and for every Stein open subset Z of X. Thus by induction on j and
by considering the Mayer—Vietoris sequence of pairs (X;, X;.,) we infer that
(1.8) HYX;, #6L) =0 for every ¢ = 3and j>1.

Take a flabby. resolution
dg 4y
0+SFEL—>dy—>d ...

of &EL. We prove that for every j=>1 and ¢ >3 the restriction map
Kerdy_,|X;,1—~Kerd,_, | X;

is surjective.
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Given o e Kerd, ,|X;. Since X;nXj,, is Stein and ¢—1>2, we find
nedy(X;nXj,,) such that
dy o) X;n X, = aIX,-nX}‘“.

Let 7 be an cxtension of x on Xj,. Setting

alX; =a and aX;, = Aol Xiia®
we get an element & e Kerd, 11X, extending a. Now let a € Ker ﬂq, q=3.
Take B, €J,_,(X;) such that

dy_1| Xy = alX;.

By (1.8) there exists f; eJ,.,(X,) such that

) ‘Alq—ﬂxzﬂ; = a|lX,.
Silllce (Bs— B Xy eKert?lq“[[Xl, we find By EKeraél,l_lllif2 extending
(B2 —F1)| Xy, Put f, = f,—p;. Then

Bred,a(X) and  BIX; =By dy,|Xefy = ol X,
Continuing this process we get elements g, ed,_,(X,) such that
ﬁann_l = By, and fi,‘,d!X,,ﬁn o alX, for every nz=2.

Thus the formula BlX, = B, for every n > 1 defines an element § e J,_, (X)
such that d, .8 = a. Hence (i) is proved.

(ii): By the proof of Theorem 1.2 it suffices to show that if
HY(X, 60"} = 0, then

H(X,#) #0 and dim0(X)>1.

Obviously dim@(X) > 1 since X has a Stein morphism. That H® (X, &) # 0
follows from Proposition 1.4 and from the proof of Theorem 1.2 (ii). The
theorem is proved.

§2. Cohomology groups of sheaves J,.6L. Let X bo an analytic
space and & a holomorphie Banach bundle over X. Let V be a subvariety
o.f X. By Jp;we denote the Fréchet sheaf of germs of holomorphic sec-
tions of £ on X vanishing on V. In this section we investigwte the cohom-

ology groups cf the sheaves J . £L, where L is a Hausdorff complete
locally convex space.

21 THEOREM. Let X, V and & be as above. Let X be an increasing wnion
of Stein open sets. Then ‘ )

() HYX, I, ;#L) = 0 for every q > 2 and for every Hausdorff com-
plete locally convex space IL; .

icm
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(i) HY(X, Iy, :EF') # 0 for every Fréchet space F' which does not admil
a continwous norm and for every V, dimV < dim X, :

‘We need the following

2.2, LuMmA [14]. Let

{7a} {0n}
0">'{Gn’ ﬁﬁ‘}'* Fm w"rn‘}"){Em a:zn}"yo

be a complew of projective systems of Hréchet spaces and, let

Kerf, =0, Imf, =XKerg, ond TImg, = E, forall nz=1.
Then the map lim g, is surjective if and only if for every my there exisls n(ny)
= ny such that

2.1 Tm ™ is dense in T Puiny for every n = n{m).
n (

0
Proof of Theorem 2.1. (i): We write X = {_J W, as in the proof of
! n=1

Theorem 1.2 (i). Since every holomorphic Banach bundle over a Stein
gpace is complemented in some trivial Banach bundle [19], Theorem 3.9,
by a theorem of Bungart [3], Theorem B¥, it follows that

(2.2) HYW,, Jp L) =0 for every ¢,n =1,

From (2.2) by an argument as in the proof of Theorem 1.2 (i) we infer
that HY(X, Jp €L) = 0 for every gz 2. '

(ii): For a contradiction we have HYX, Jp,:£C™') = 0. Let W be
an irreducible subvariety of X such that WX NV is infinite for suf-
ficiently large =, let

y: 0->0/Jg and  yg OOy Tw,s O =Jp,e
be the canonieal maps. Put & =y (Jy), e = ¥ (I p,g)- Then & is coherent
analytic sheaf and supp & nX,, is infinite for sufficiently large n. It is easy
to check that if £|U = B, where B denotes the trivial bundle over U with
fiber B, then

(2.3) Kery|U o Kery*|U6B, .U = #|USB
and ’ ;
. (2.4) Kerpig, == Ker i@ Keryy,

where 3° = ylJy, % =7eldre- ‘
From (2.3) by the associability of the &-product it follows that the

sequence o
(2.5) 0—)-‘Kerygé’C°°'-—>JV’513'0"“'»9"5:6”0“'—)0

iy exact. Since every holomorphic Banach bundle over a Stein spaceé is
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isomorphic to a complemented subbundle of a trivial bundle, from (2.4)
it follows that

(2.6) HYW,, Kery26C”) =0  for every g, n>1
and ‘
(2.7) © HYZ, S =0

for every ¢ > 1 and for every Stein open subset Z of X. By (2.6) as in (i)
we have

(2.8) HYX, Kerp{d ') = 0

f(l)lr every q= 2. From (2.8) by the exactness of sequence (2.5) we infer
that ‘

(2.9) HY (X, #:6C™") = H(X, &) = 0.
Consider the complex of projective system of Fréchet spaces

10
0 {F (X))}~ {0,y )}~ {Ker 8 (,, S )} 0,

where # = {Xn},%b ={X,, ..., X,}. By (2.7) &, are surjective and 4 is
a Leray covering of X for &, By (2.9) the map lim ) is surjective. Hence
the restriction mapg “ A

R?;z: ‘5’6 (Xn)—)"gpé(xn)

satisfy (2.1). We prove that the restriction maps R™: &
satisfy also (2.1). B T (E) S )
(a) First assume that £ iy infinite dimensional. Given n,. T
. . Take n(n

=N, such. that (2.1) holds for B};. Let n = n(n,). By a theorgm of Zajd(elﬁ
berg~Krejn—~Kusment-Pankov [19], Theorem 3.13, there exists o e 0:(X,)
such that o(z) # 0 for every 2z € X,. Let 5 denote the subbundle of E[)X’l
spanned by o(X,) and 0 the isomorphism of C onto # given by "

6z, A) = Ao(2) for all (2, 2) e C.

By (2.1) and since # is complemented in ) 3 i
that ImR;° is dense in III)nRﬁ?no) for eirlﬁgf('[nl gynqz?zj;).lem S I tollows
_ (b). Now assume that & ig finite dimensional, Consider the infinite
dimensional bundle ¢£B, where B is a Banach space dimB - co. Then
b;: (2.9) and by the nuclearity of the space C°(%, F) we in;fe.r that
H (X, #ean) = 0. Combining this with (a) it follows that the m@ps B
satisty (2.1): Sinee X, is Stein, and supp# X, is infinite for sﬁfﬂcientl;r
large n, we m‘fer that dim #(X,) = oo for sufficiently large ([12], Lemma
2.3). Henee Aim&(X) = co since the maps R satisty (2.1). On 1;’he othex
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hand, sinco
y(Xn) @E(ann) <= yé(xn)’

it follows that &(X,) # 0 for sufficiently large n. Hence F¢(X) #0
since R satisfy (2.1). Note that &(X)=+@,(W) and hence F(X) has
a contimuous norm. Let f € #(X) and f s constant. By the irreducibility
of W wo can assume that f is bounded since if a = sup|f(s)| < oo, We
replace f by the function (r—jf(2))™*, where Ir| = @ and r = 1limf(z,) for
gome sequence {z,} = X. Let o & 7;(X), o # 0. Take a sequence {7352, in
X such that o(z) s 0 for every j=1, |f(g)|-+c0 and. f(g) # f(e) for
every j # k. Let ¢ € 0(C) such that ¢~ (0) = {f (%)} Since {f(2)},
is discrote, there exists an open covering % = {U;}Z, of X such that

4 el, UnU;=0 foreveryd,j=1,19%]
and
gH0)nTU, =@, where g =o(f).

Since (X) has a continuous norm, using the proof of Theorem 1.2 (ii)
to &, U, o, and g we complete the proof. Theorem is proved.

2.3. TunorEM. Let X have o Stein morphism and V, & be as in Theorem
2.1. Then

(i) HYX, Jp 6L) = 0 for every q>>3 and for every Hausdorff com-
plete Tocally convew space Lj :

(i) If X ds irreducible, then H*(X,Jy, G £ 0 for every Fréchet
space I’ which does not admit o COnLinUous norm. )

Proof. (i) follows from Theorem 2.1 (i) and from the proof of Theorem
1.6 (i).

(ii): Since X is irreducible, Jp,¢(X) has a continuous norm. Hence (ii)
follows from the proof of Theorem 1.6 (i) and from the following

2.4, ProposITION. Let X, V and & be as in Theorem 2.3. Let V # X,
&0 and HY(X, Jp,) = 0. Then Jp(X) #0.

Proof. For a contradiction we get a commutative and exact diagram

0 > & - HYX, ¥')—~0
¥ ¥
0 (& &) O Hyy PV S0
y ! -
0->Ker 8 (4, &)~ Ker 84(#y, &)—~Ker 8 (%, &)

{
0

whe ~  sthe open covering of X as in Proposition 14,2 ¢V, & = Ipss
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S = Jvvpyy,, S = |¥'. Whence, we infer that Im & (%;, &) is closed
in Kerd!(%,, &) and hence by Proposition 1.4 we have

BYX, #') = Ker 8(dy, &) [Im & (%, &) = 0.

This implies that &, = 0 which contfradics £ s 0. The proposition is
proved.

§3. Cohomology groups of sheaves .#¢ L. Let X be a complex manifold
and L a Hausdorff complete locally convex space. A holomorphic funetion
fon a dense open subset @ of X with values in L is called meromorphic on X
if for each # e X there exist a neighbourhood U of 2 in X and a non-zero
holomorphic function o on U such that o f can be extended to a holomorphic
function on U.

By #EL we denote the sheaf of germs of meromorphic functions
on X with values in L. In this section we investigate the cohomology groups
of the sheaves .#4L on Riemann surfaces. We prove the following

3.1. THEOREM. Let X be a Riemann surface. Then the following con-
ditions are equivalent: l

() X is compact;

(ii) HY(X, #8L) =0 for every Housdorff complete lovally comvem
space L;

(iil) HY (X, #EF") = 0 for every Fréchet space F which does not admit
a coNTERUOUS NOrM;

(iv) For every closed subspace B of every Fréchét space F' the canonical
map H'(X, #6F)->H" (X, #EE') induced by the restriction map F'— B’
8 surjective.

Let f e H*(U, #&L), where U is an open subsct of X. Then the pole

P(f) = {z e X: f, ¢ (06L),}

is discrete in U [13], Theorem 1.1. Hence for every g, € U there exists
a Laurent expansion

o0
flz) = Zajzj, a, # 0
J=k
of f in some neighbourhood of 2, where 2 is a local coordinate in & neigh-
bourhood of 2. Tt is easy to see that the number % is independent of choice
of the local coordinate 2. Hence we can put ord, (f) = k.

Let D be a divizor on X. By 0% we denote the subsheaf of the sheat
MEL given by the formula

Urs{f e H'(U,. #EL): ord,(f) > —D(e) for every z e U}.

icm
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‘We write 05 = 0. Note that 0y, 15 locally free and for every Stein open seb
U < X we have

(3.1) f e 05(U)<of € (06L)(U) = HOM(L;, 0(T))

«f e HOM/(L;, 05(U)) = (0p¢L)(T),

where ¢ € #(U), ord,o = D(z) for z e U. From (3.1) we infer that 0%
= 0,6L. '

Proof of Theorem 3.1. (i)=(ii): (a) We dfirst prove that
HY(X, 0,8L) =0 for every divizor D on X, degD>=>2¢-2, ¢
= dimH* (X, 0p). It is known [5] that H'(X, 0p)= 0. Hence by the com-
pactness of X and by Theorem 1.2 (ii) in [11], we infer that H' (X, 0p&L) = 0.

(b) In general, let # € HY(X, 0,6L) and let % be a finite open covering
of X such that 5 is image of a cochain (f;) € Ker §1(%, #¢£L). Since % is
finite, there exists a divizor D o X such that

degD=29—2 and (fy) e Ker (%, 0p¢L).

By (a) the cochain (f;;) ean be written in the form
fy =Fi—Tp

Hence (f;) = 6°(f;) and 5 = 0.

(ii)= (iii) is trivial.

(iil)=+ (i): Since C*" does not admit a continuous norm, it suffices to
prove that if X is not compact, then HYX, #&C™') # 0. Select an open
covering % = {U;}2, of X such that U;nT; = @ for every 4, j=1, i
# 4, UynU; is isomorphic to a bounded domain in C for every ji=1
and U, is connected. Obviously such a covering exists. For each j>1
we find an o; € 0(Uy, nT;) which is not locally bounded at every point
of (U, nTy). Pub

where  f; e H*(U;, 0,6L).

my =0 for j=0.

izl and my = —my = ge for
Then (my) € Kor 8'(4%, #EC™). We prove that m » 0 in H'(X, 4EC™).
For a contradiction there exists an open covering %' = {Vj}jz+, 4

= {0,1,...} of X such that

Vic Uy for j eZ*,
(3.2) ¥, is comnected for j ez”*,
m=0 in H (U, HEC).

For each z e U, take an open neighbourhood of 2 V, = UynVy, for sonlle
B(z) € Z+. Then @ = {V;, V,} <@ <% and m =0 in H' (%", #EC™).
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Thus there exist m; € H*(V,, #EC™') and m, € H(V,, £EC™') such that

Moy =My = Magiyas), s
(3.3) My — My = Moaesy = Ou(g)ags)s
My — My, = Myy = 0.
From (3.3) it follows that there exists i, e H'(U,, #EC®) such that

(3.4) ity — My = Oy Tor jeZt.

By the connectedness of U, and of V; it follows that

g

(8.5) g =Zm,‘;e,,, my, are meromorphic on U,,
k=1 . '
7!] )

(3.6) my; = Zm{cek, mj, are meromorphic on V.
k=1

Let j, € Z* such that a(j,) > n,. Since
U N Uaiigy &

U 7

)
a(fy=a(y)

there exists j, € Z* such that V; < Uagy, Vi nUy =0 and V U,
From (3.4), (3.5) and (3.6) we infer that my,, = oa(j,) on UynV,. Sinco
¥V, isconnected, ¥, U, and U, NVy, # 0, it follows that d(Tyn Ty
NV, 18 not diserete. On the other hand, since P{mi}l; ) is discrete, we infer
that oy, is locally bounded at some & e §( UonUa(,l)). This contradics the
choice of oy,

(ii)=(¢v): Since ' is Fréchet, it is easy to check that the sequence
0086 08 F' — 08 0,
where G = P|H, iy exact. Hence the sequence
(3.7) 0> MEF —+MEF ~MEE 0

is also exact. Thus by the exactness of the cohomology associated with the
exact sequence (3.7) it follows that the map

H'(X, #6F)~H" (X, #8H')
i3 surjective.
oo
{iv) = (1): Wo write X = {_J K,,, where {K,} is an incroasing sequence
Tzl
of compact subsets of X. Let

0: 0(X) =T =[] [0(X)/0x,],

n=1

icm

©
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where gg,, is the norm defined by K,, be the canonieal embedding. Ap-
plying (iv) to the holomorphic map
Bo: X—-0(X)': [(Bv)z]o = o(z)

we get o meromorphic map
0 TN ,
f: X' = ®[0(X)]ex, ]
n=1
guch that

(3.8) [0'fz]o == o(z) 2eP(f) and o € 0(X).
By the connectedness of X it follows that

for

m
(3.9) feHY X, #¢& G—)l[@(X)/QKn]’ for some m.
N
Since NP (f) is dense in X, from (3.8) and (3.9) it is easy to see that
X = 0(X)—bull(&,,). Combining this with the fact that every non-com-
pact Riemann surface is Stein we infer that X is compact. The theorem
is proved.

3.2, TuroreM. Let X be o Riemann surface and F a Fréchet space.
Then H (X, #EF) = 0,

Proof. By Theorem 3.1 it suffices to consider the case, where X is
non-compact and hence X is Stein [7]. Thus H'(X, 08F) = 0 [3]. Whence
we infer that
(8.10) HYX, #6F) = H (X, #EF|0SF).

Since supp o is discrete for every ¢ € H* (U, 4 EF|OETF), it tollows that the
sheaf MEN|OFF is soft. Hence H'(X, #8F/08F) = 0. Whence, by
(8.10) we get HY(X, #&F) = 0. The theorem is proved.

§4. The splitness of Dolbeault complexes of sheaves J .. Let X be
a complex manifold having a countable topology, V a closed submanifold
of X and £ a holomorphic Banach bundle over X. For each ¢ > 0 by £¢ we
denote the sheat of germs of ¢®-forms of bidegree (0, ¢) on X with values
in ¢ Let 6: Ve X denote the canonical embedding and e*: Qf-Qf ,
where £ = £V iy the map induced by e. Let QF . denoto the sheaf on X
given by the formula

Urs{o € Q{U): e*o = 0}

for all open sets U < X. Since the maps égV commute with e*, we can con-
sider tho complex

-0 -1
oye  Ire

(4.1) 0—dy ;= Q% o= Dy o> ..oy

8 — Studia Math, 75.2
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where
0h,e = 01192
The complex

g’ UV,:E
(Jve) O*Jvh(x)”*ﬁve( ) - »QVe(X

b

of global sections of (4.1) is called the Dolbeawlt complex of Jy . on X,
We say that D(Jy,) splits at ¢ if there exists a continuous linear map

7gt IM8Y 0% (X)
such that 5‘1,,,57;(1 =id.

In this section we prove the following

4.1. THEOREM. Let X be an increasing union of Stein open sets and V, &
be as above. Then D(Jy ;) splits only at 4> 0.

4.2. TRROREM. Let X have a Stein morphism and V, & be as in Theorem

41, Then .
(i) D(Jy,e) splits at g >1;
(ii) D(Jp,;) does not split at 0.

Proof of Theorem 4.1. (a) First we show that the sequence
(4.2) 0-Jp (S L+ Q% S L~ &}y EL—...,

which is obtained by tensoring sequence (4.1) with L, is exact, where
L is a Hausdorff arbitrary complete locally convex space. Let o
& (Ker 0%, :&id)s,. We can assume that X = 4%, V = 47 x 0 and 2z, = 0.
In 11}, Lemma 1.11, we have proved that o = 6%7}f for some § € (2% ~8L),.
Put § = f—=ae*8, where m: A" A7 %0 denotes the eanonical projection.

Then
f = f—en*e"f = *f—6"f =0, B = 0.
(b) By the exactness of (4.2) and sinco the sheaves Q% .6.% are fine, we
get
(4.3) H?(X, Jyy . 6L) = Ker 8%, (8 1/Tm (557 6id)

for every » > 1. Let g > 0. Using (4.3) to L = [ImE e]m by the relation
L, =Im 6,, ¢ and by Theorem 2.1 (i) it follows that the map

ELOM,(Im 3%, 2%, : (X))~ HOM, (Im 3%, ., Tm 3%, )

induced by %’,‘7'5 is surjective. This gives the splitness of D(J re) at g
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Assume that ¢ = 0. Using (4.3) to L = C*, p =1, by Theorem 2.1
(ii) it follows that D(J ., ¢) does not split at 0. By Theorem 2.3 the proof of
Theorem 4.2 is similar as Theorem 4.1.
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