A dominated ergodic estimate for L_p spaces with weights

by

E. ATENCIA and A. DE LA TORRE (Malaga)

Abstract. In this note we characterize those positive functions w such that the ergodic maximal function associated to an invertible, measure preserving ergodic transformation on a probability space is a bounded operator in $L_p(wd\mu)$.

1. Introduction. Let (X, \mathcal{B}, μ) be a non-atomic probability space and let $T: X \to X$ be an ergodic, invertible measure preserving transformation.

For each pair of non-negative integers n, m we define the operator $T_{n,m}$, acting on measurable functions, as

$$T_{n,m}f(x) = (n+m+1)^{-1} \sum_{k=m}^{n} |f(T^k x)|.$$

It is well known that in order to study the a.e. convergence of the averages $T_{n,m}$, it is enough to prove a Dominated Ergodic Estimate (D.E.E.) with respect to the measure μ, i.e. if

$$f^*(x) = \sup_{n,m \geq 0} T_{n,m}f(x),$$

then there exists a constant, namely $p/(p-1)$, such that

$$\|f^*\|_p \leq \frac{p}{p-1} \|f\|_p$$

for all $f \in L_p(d\mu)$

which certainly holds for $p > 1$ [8].

Our aim is to study the a.e. convergence of $T_{n,m}f$ but with respect to another measure $wd\mu$ where w is a positive integrable function. We are thus led to try and characterize those positive functions w such that the D.E.E. holds but with respect to the measure $wd\mu$. Let us fix $p > 1$. We will say that T satisfies the D.E.E. with respect to the weight w if

$$\frac{1}{k} \int f^p w d\mu \leq C_p \frac{1}{k} \int |f|^p w d\mu$$

for all f in $L_p(wd\mu)$.

(1.1)
Our main result is given by the following:

Theorem. In the above situation (1.1) holds if and only if \(w \) satisfies the condition:

\[
(A'_k) \quad \text{There exists a constant } M \text{ such that for a.e. } x
\]

\[
k^{-1} \sum_{j=0}^{k-1} w(T^j x)(k^{-1} \sum_{j=0}^{k-1} w(T^j x))^{1/(p-1)} \leq M
\]

for all positive integers \(k \).

Condition \((A'_k)\) is nothing but the condition in Theorem 10 of [2] with a constant independent of \(a \) and the natural analogues of the Markov property for the Hardy-Littlewood Maximal Operator [4].

Observe that if \(w \) satisfies \((A'_k)\), we have a D.E.E. for \(T \) as an operator from \(L_p(wd\mu) \) into \(L_p(wd\mu) \). \(T \) is obviously a positive operator but it is not, in general, a contraction in \(L_p(wd\mu) \) and its powers do not form, in general, a uniformly bounded group of positive operators, i.e., we obtain a D.E.E. for an operator \(T \) which, even though it separates supports, is not power-bounded as in [3].

2. Main results. In this section we will prove our result using the ideas in [2] adapted to our situation.

Our main tool will be the idea of “ergodic rectangle”.

Definition. Let \(B \) be a subset of \(X \) with positive measure and \(k \) a positive integer such that

\[
(T^kB \cap T^jB) = 0, \quad i \neq j, \quad 0 \leq i, j \leq k-1.
\]

Then the set \(B = \bigcup_{i=0}^{k-1} T^iB \) will be called an (ergodic) rectangle with base \(B \) and length \(k \).

Obviously \(\mu(B) = k\mu(B) \).

In the proof of the theorem we will need the following two results:

(2.1) **Proposition.** Let \(k \) be a positive integer and let \(A \subset X \) be a subset of positive measure. Then there exists \(B \subset A \) such that \(B \) is base of a rectangle of length \(k \).

(2.2) **Lemma.** \(X \) can be written as a countable union of bases of rectangles of length \(k \).

Proof of the proposition. First we will consider the case \(k = 2 \). We may assume \(\mu(A) \approx 1 \). Since \(T \) is ergodic, \(A \) is not invariant. If \(\mu(A \cap TA) = 0 \), then we choose \(B = A \) and we are done.

If \(\mu(A \cap TA) > 0 \), then \(\mu(A - (A \cap TA)) > 0 \) since otherwise \(A \) would be invariant. So now we pick \(B = A - (A \cap TA) \); obviously \(\mu(B) > 0 \), and \(B \cap TB = \emptyset \).

The general case follows by applying the same method.

Proof of the lemma. Let \(\mathcal{B}_2 = \{ B \subset X : B \text{ is base of a rectangle of length } k \} \). Because of the proposition, \(\mathcal{B}_2 \) is not empty. Let \(\eta_1 = \sup_{B \in \mathcal{B}_2} \mu(B) \).

Clearly \(0 < \eta_1 \leq 1 \). We pick \(B^1 \in \mathcal{B}_2 \), \(\mu(B^1) > \eta_1/2 \). Let

\[
\mathcal{B}_1 = \{ B \in \mathcal{B}_2 : B \cap B^1 = \emptyset \}, \quad \eta_1 = \sup_{B \in \mathcal{B}_1} \mu(B),
\]

and choose \(B^2 \in \mathcal{B}_1 \), \(\mu(B^2) > \eta_1/2 \). We proceed by induction and define

\[
\mathcal{B}_n = \{ B \in \mathcal{B}_1 : B \cap \bigcup_{i=1}^{n-1} B^i = \emptyset \}, \quad \eta_n = \sup_{B \in \mathcal{B}_n} \mu(B)
\]

and choose \(B^n \in \mathcal{B}_n \), \(\mu(B^n) > \eta_n/2 \).

If for some \(n \) \(\mathcal{B}_n \) is empty, then \(X = \bigcup_{i=1}^{n-1} B^i \) a.e. Indeed, if \(X = \bigcup_{i=1}^{n-1} B^i \) is a.e. and \(\mu(A) > 0 \), then by the proposition there is \(B \subset A \), \(B \in \mathcal{B}_1 \), and obviously \(B \cap \bigcup_{i=1}^{n-1} B^i = \emptyset \) against \(\mathcal{B}_n \) being empty.

If no \(\mathcal{B}_n \) is empty, we obtain an infinite pairwise disjoint sequence \(B^1, B^2, \ldots, B^n, \ldots \) and we claim that

\[
X = \bigcup_{i=1}^\infty B^i.
\]

Let us prove it. First of all note that \(\lim \mu(B^n) = 0 \) since the sets are disjoint and \(\mu(X) \) is finite. If \(X = \bigcup_{i=1}^\infty B^n = A \) and \(\mu(A) > 0 \), we choose \(B \in \mathcal{B}_1 \), \(B \subset A \), \(\mu(B) = \mu \geq 0 \). Then there is \(n_0 \) such that \(\mu(B_{n_0}) < \mu/3 \) and observe that \(B \in \mathcal{B}_{n_0} \) which means \(\mu(B_{n_0}) > \mu/3 \) by the method of choosing \(B_{n_0} \) it should be \(\mu(B_{n_0}) > \mu/2 \) against \(\mu(B_{n_0}) < \mu/3 \).

Condition (1.1) implies \(w \) satisfies \((A'_k)\); let \(k \) be a non-negative integer and let us fix a rectangle with base \(B \) and length \(k \). For each integer \(n \) we consider the subset of \(B \)

\[
B_n = \{ x \in B : \mu(B_n x) > \mu/3 \}.
\]

Clearly \(B = \bigcup_{n=1}^\infty B_n \).

Let us fix \(n \) and let \(A \) be an arbitrary measurable subset of \(B_n \) with \(\mu(A) > 0 \). Let \(\mathcal{B} \) be the rectangle with base \(A \) and length \(k \). From the definition of our maximal operator it is obvious that

\[
(2.3) \quad (w^{-1/(p-1)} A)^\ast(T^j x) \geq k^{-1} \sum_{m=0}^{k-1} w^{-1/(p-1)}(T^j x) \geq 2^n, \quad x \in A, \quad 0 \leq j < k.
\]
The last inequality on the right holds since \(a \in A \subset B_a \). Raising to the power \(p \), multiplying by \(w(T^ax) \), and integrating over \(A \) we obtain
\[
\int_A \left(\int w^{-1/p-1} \right) \mu \left(T^ax \right) w(T^ax) \, d\mu \geq 2^{np} \int_A w(T^ax) \, d\mu.
\]
Adding up in \(j \) from 0 to \(k-1 \) and keeping in mind that \(\mu(T^jA \cap T^kA) = 0 \), \(0 \leq i, j \leq k-1 \), we have
\[
2^{np} \int \frac{w(y)}{\lambda} \, d\mu \leq \int \left(\int w^{-1/(p-1)}(\lambda) \right) \frac{w(y) \, d\mu}{\lambda} \, d\mu.
\]
But using (1.1) the last term is majorized by
\[
\sum_{\lambda} \left(\int w^{-1/(p-1)}(\lambda) \right) \frac{w(y) \, d\mu}{\lambda} = \sum_{\lambda} \int w^{-1/(p-1)} \, d\mu,
\]
I.e.
\[
2^{np} \int \frac{w(y)}{\lambda} \, d\mu \leq \sum_{\lambda} \int w^{-1/(p-1)} \, d\mu
\]
and raising to the power \(p \) and using (2.5) we get
\[
\mu(A)^{-1} \int \left(\int w^{-1/(p-1)}(\lambda) \right) \frac{w(y) \, d\mu}{\lambda} \, d\mu \leq 2^{np+1}
\]
and raising to the power \(p \) and using (2.5) we get
\[
\mu(A)^{-1} \int \left(\int w^{-1/(p-1)}(\lambda) \right) \frac{w(y) \, d\mu}{\lambda} \, d\mu \leq 2^{np+1}
\]
which can be written as
\[
(\lambda) \mu(\lambda)^{-1} \int \frac{w(y) \, d\mu}{\lambda} \, d\mu \leq 2^{np+1}.
\]
We call it \(A_\lambda \) because it looks like condition \(A_\lambda \) in [4] but with the special rectangles \(B_\lambda \) instead of the cubes of the classical case.

Write \(A_\lambda \) as
\[
\mu(A)^{-1} \int \frac{1}{\lambda} \sum_{\lambda} w(T^ax) \, d\mu \mu(A)^{-1} \int \frac{1}{\lambda} \sum_{\lambda} w^{-1/(p-1)}(T^ax) \, d\mu \, d\mu \leq C_p 2^{np}.
\]
Since this holds for every \(A \), arbitrary measurable subset of positive measure of \(B_a \), we easily obtain \(A_\lambda \) for almost all \(x \) in \(B_a \). A straightforward application of the proposition and lemma gives \(A_\lambda \).

Before proving the converse we will state some results that will be needed in the proof. These results are a discrete version of the Calderón–Zygmund decomposition [9] and of some results in [1]. The proof follows the same pattern as in [1] and we will include it only to make the article self-contained.

Calderón–Zygmund Decomposition. Let us fix the integers 0, 1, 2, ..., \(k-1 \) and let \(\lambda \) be a real number such that
\[
\lambda > k^{-1} \sum_{\lambda} w(T^ax)
\]
where \(x \) is a fixed point of \(X \). Then for the set of integers 0, 1, 2, ..., \(k-1 \) we can choose a (possibly empty) family of disjoint subsets \(I_1, ..., I_l \) each of them made up of consecutive integers and such that the following holds:

(a) For each \(I_i \), \(i = 1, ..., l \)
\[
\lambda < \frac{1}{|I_i|} \sum_{\lambda} w(T^ax) \leq 3\lambda
\]
where \(|I_i| \) denotes the number of integers in \(I_i \).

(b) If \(j \not\in \bigcup_{i=1}^{l} I_i \), \(0 < j < k-1 \), then \(w(T^ax) < \lambda \).

Proof. Let us call a set of consecutive integers an interval. Split 0, 1, ..., \(k-1 \) into two disjoint intervals \(I_1, I_2 \) where \(I_1 = 0, 1, ..., \lfloor (k-1)/2 \rfloor \). Now consider
\[
\frac{1}{|I_i|} \sum_{\lambda} w(T^ax), \quad i = 1, 2
\]
If this average is bigger than \(\lambda \), we select this interval and we have
\[
\frac{1}{|I_i|} \sum_{\lambda} w(T^ax) \leq \frac{k}{|I_i|} \frac{1}{k} \sum_{\lambda} w(T^ax) \leq 3\lambda.
\]
If this average is not bigger than \(\lambda \), we repeat the process. This process will finish in a finite number of steps. The chosen intervals satisfy (a) and if an integer \(r \) is left out, then obviously

\[
w(T^r x) \leq \lambda.
\]

In what follows we will often use for the averages the notation established in the introduction. In particular remember that

\[
k^{-1} \sum_{i=0}^{k-1} w(T^i x) = T_{k-1} \cdot w(x).
\]

Lemma. Let \(w \) satisfy \(A' \); then there exist positive constants \(a, \beta \) depending only on the constant \(M \) of condition \(A'_p \) such that if

\[
E = \{ i : 0 \leq i < k-1 : w(T^i x) > \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x) \}
\]

then \(\# E > a k \) (\(\# E \) is the number of integers in \(E \)).

Proof. Observe that for any positive \(\beta \) if \(E' = (0, 1, \ldots, k-1) - E \), then

\[
\beta^{-1} k^{-1} \# E' \leq T_{k-1} \cdot w(x) \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x) \right)^{p-1}
\]

this is because in \(E' \) is \(w(T^i x) \geq \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x) \). But the last term in (2.7) is, obviously, dominated by

\[
T_{k-1} \cdot w(x) \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x) \right)^{p-1} < M \quad \text{since} \quad A'_p.
\]

Choose \(\beta < M^{-1} \), \(a = 1 - (M\beta)^{p-1} \) and the lemma is proved.

Notes. If instead of \(0 \leq i < k-1 \) we start with any other interval \(I \), then we have

\[
\# I \left(i \in I : w(T^i x) > \beta |I|^{-1} \sum_{i=0}^{k-1} w(T^i x) \right) > a |I|.
\]

The Calderon–Zygmund decomposition and the preceding lemma allow us to prove, in our context, the "reverse Hölder inequality".

Lemma. Let \(w \) satisfy \(A'_p \), \(1 < p < \infty \); then there exist positive constants \(C, \delta \) such that

\[
k^{-1} \sum_{i=0}^{k-1} w(T^i x) |T^{i+1} x|^{1+p} \leq C k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

for every \(k \) and \(x \).

\[\text{Proof. Let } \lambda \text{ be a positive number such that } \lambda > T_{k-1} \cdot w(x). \]

We want to estimate \(\sum w(T^i x) \) extended to those \(i \)'s, \(0 \leq i < k \), where \(w(T^i x) > \lambda \). Using the Calderon–Zygmund decomposition for this \(\lambda \), we have a family of disjoint intervals \(I_j \) satisfying (a) and (b) of the said decomposition, so

\[
A(\lambda) = \{ i : 0 \leq i < k : w(T^i x) > \lambda \} = \bigcup_j I_j.
\]

Now

\[
\sum_{i=0}^{k-1} w(T^i x) \leq \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) \leq M \sum_{i=0}^{k-1} |I_i| \leq M \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) > \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

this is because in \(E' \) is \(w(T^i x) \geq \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x) \). But the last term in (2.7) is, obviously, dominated by

\[
T_{k-1} \cdot w(x) \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x) \right)^{p-1} < M \quad \text{since} \quad A'_p.
\]

Choose \(\beta < M^{-1} \), \(a = 1 - (M\beta)^{p-1} \) and the lemma is proved.

Notes. If instead of \(0 \leq i < k-1 \) we start with any other interval \(I \), then we have

\[
\# I \left(i \in I : w(T^i x) > \beta |I|^{-1} \sum_{i=0}^{k-1} w(T^i x) \right) > a |I|.
\]

The Calderon–Zygmund decomposition and the preceding lemma allow us to prove, in our context, the "reverse Hölder inequality".

Lemma. Let \(w \) satisfy \(A'_p \), \(1 < p < \infty \); then there exist positive constants \(C, \delta \) such that

\[
k^{-1} \sum_{i=0}^{k-1} w(T^i x) |T^{i+1} x|^{1+p} \leq C k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

for every \(k \) and \(x \).

\[\text{Proof. Let } \lambda \text{ be a positive number such that } \lambda > T_{k-1} \cdot w(x). \]

We want to estimate \(\sum w(T^i x) \) extended to those \(i \)'s, \(0 \leq i < k \), where \(w(T^i x) > \lambda \). Using the Calderon–Zygmund decomposition for this \(\lambda \), we have a family of disjoint intervals \(I_j \) satisfying (a) and (b) of the said decomposition, so

\[
A(\lambda) = \{ i : 0 \leq i < k : w(T^i x) > \lambda \} = \bigcup_j I_j.
\]

Now

\[
\sum_{i=0}^{k-1} w(T^i x) \leq \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) \leq M \sum_{i=0}^{k-1} |I_i| \leq M \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) > \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

this is because in \(E' \) is \(w(T^i x) \geq \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x) \). But the last term in (2.7) is, obviously, dominated by

\[
T_{k-1} \cdot w(x) \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x) \right)^{p-1} < M \quad \text{since} \quad A'_p.
\]

Choose \(\beta < M^{-1} \), \(a = 1 - (M\beta)^{p-1} \) and the lemma is proved.

Notes. If instead of \(0 \leq i < k-1 \) we start with any other interval \(I \), then we have

\[
\# I \left(i \in I : w(T^i x) > \beta |I|^{-1} \sum_{i=0}^{k-1} w(T^i x) \right) > a |I|.
\]

The Calderon–Zygmund decomposition and the preceding lemma allow us to prove, in our context, the "reverse Hölder inequality".

Lemma. Let \(w \) satisfy \(A'_p \), \(1 < p < \infty \); then there exist positive constants \(C, \delta \) such that

\[
k^{-1} \sum_{i=0}^{k-1} w(T^i x) |T^{i+1} x|^{1+p} \leq C k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

for every \(k \) and \(x \).

\[\text{Proof. Let } \lambda \text{ be a positive number such that } \lambda > T_{k-1} \cdot w(x). \]

We want to estimate \(\sum w(T^i x) \) extended to those \(i \)'s, \(0 \leq i < k \), where \(w(T^i x) > \lambda \). Using the Calderon–Zygmund decomposition for this \(\lambda \), we have a family of disjoint intervals \(I_j \) satisfying (a) and (b) of the said decomposition, so

\[
A(\lambda) = \{ i : 0 \leq i < k : w(T^i x) > \lambda \} = \bigcup_j I_j.
\]

Now

\[
\sum_{i=0}^{k-1} w(T^i x) \leq \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) \leq M \sum_{i=0}^{k-1} |I_i| \leq M \sum_{i=0}^{k-1} \sum_{i=0}^{k-1} w(T^i x) > \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x)
\]

this is because in \(E' \) is \(w(T^i x) \geq \beta k^{-1} \sum_{i=0}^{k-1} w(T^i x) \). But the last term in (2.7) is, obviously, dominated by

\[
T_{k-1} \cdot w(x) \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x) \right)^{p-1} < M \quad \text{since} \quad A'_p.
\]

Choose \(\beta < M^{-1} \), \(a = 1 - (M\beta)^{p-1} \) and the lemma is proved.

Notes. If instead of \(0 \leq i < k-1 \) we start with any other interval \(I \), then we have

\[
\# I \left(i \in I : w(T^i x) > \beta |I|^{-1} \sum_{i=0}^{k-1} w(T^i x) \right) > a |I|.
\]}
is not less than
\[\delta^{-1} \sum_{k=1}^{k-1} w(T^k x) \left[|w(T^k x)|^p - |T_{k-1} w(x)|^p \right]; \]
so we obtain
\[\delta^{-1} - C(1 + \delta^{-1}) \sum_{k=1}^{k-1} w(T^k x) \delta^{-1} \leq \left(\delta^{-1} \sum_{k=1}^{k-1} w(T^k x) \right)^{1+\delta}\]
and the lemma follows by choosing \(\delta \) small enough to make
\[\delta^{-1} - C(1 + \delta^{-1}) > 0. \]

(2.10) Lemma. Let \(w \) satisfy \(A^p \), then there exists \(\epsilon > 0 \) so that \(w \) satisfy \(A^{p-\epsilon} \).

Proof. Check first that if \(w \) satisfies \(A^p \), then \(v = w^{-1/p} \) satisfies \(A^p \) with \(p^{-1} + q^{-1} = 1 \). Applying now the preceding lemma to \(v \) we have for some \(\delta > 0 \)
\[|T_{k-1}^k v(x)|^{1/1+\delta} \leq C T_{k-1}^k v(x) \]
replacing \(v \) by \(w^{-1/p} \) and taking \(\epsilon = (p-1)/\delta(1 + \delta^{-1}) \) we have
\[\sum_{k=1}^{k-1} w(T^k x) \left(\delta^{-1} \sum_{k=1}^{k-1} w(T^k x) \right)^{1/1+\delta} \leq C^{1-\delta} \sum_{k=1}^{k-1} w(T^k x) \left(\delta^{-1} \sum_{k=1}^{k-1} w(T^k x) \right)^{1/1+\delta} \leq C^{1-\delta} M. \]

The following maximal function appears in a natural way associated to the weight \(w \)
\[M_w f(x) = \sup_{n \in \mathbb{N}, \|w\| < \infty} \frac{\sum_{k=1}^{n} |f(T^k x)| w(T^k x)}{\sum_{k=1}^{n} w(T^k x)}. \]

As we will see this maximal function controls \(f^* \). Indeed, if \(p^{-1} + q^{-1} = 1 \), we have
\[(n+m+1)^{-1} \sum_{k=n}^{m} |f(T^k x)| \]
\[= (n+m+1)^{-1} \sum_{k=n}^{m} |f(T^k x)| w^{1/p}(T^k x) w^{-1/p}(T^k x) \]
\[\leq (n+m+1)^{-1} \sum_{k=n}^{m} |f(T^k x)| w(T^k x) \left((n+m+1)^{-1} \sum_{k=n}^{m} w^{-1/p}(T^k x) \right)^{1/p} \]
\[\leq M \left(\frac{(n+m+1)^{-1} \sum_{k=n}^{m} |f(T^k x)| w(T^k x)}{\sum_{k=n}^{m} w(T^k x)} \right)^{1/p} \leq M(M_w f(x))^{1/p}. \]

A dominated ergodic estimate
\[\left(f^*(x) \right)^p w(x) d\mu \leq \int X f^*(x)^p w(x) d\mu \]
where \(p/q > 1 \); so if we prove that the maximal operator \(M_w f \) is bounded in \(L^p(w d\mu) \) for all \(r > 1 \) we will have
\[\int X f^*(x)^p w(x) d\mu \leq C \int X f^*(x)^p w(x) d\mu \]
and we will be done. Since \(M_w f \) is obviously bounded in \(L^p \), it will be enough to prove weak type \((1, 1)\) and use the Marcinkiewicz interpolation theorem.

(2.13) Theorem. The maximal operator with weight defined by
\[M_w f(x) = \sup_{n \in \mathbb{N}} \frac{\sum_{k=1}^{n} |f(T^k x)| w(T^k x)}{\sum_{k=1}^{n} w(T^k x)} \]
is of weak type \((1, 1)\) with respect to the measure \(w d\mu \).

Proof. We may assume \(f \) is non-negative. Let \(\lambda \) be a positive number bigger than
\[\epsilon = \frac{\int \epsilon f(s) d\mu}{\int \epsilon w d\mu} \]
and let
\[O_0 = \{ s \in X ; M_w f(s) > \lambda \}. \]
The set \(O_0 \) is, clearly, measurable. For any \(x \in X \) we consider the orbit of \(x \) in \(O_0 \), that we denote by \(J_x \), i.e.
\[J_x = \{ T^k x \in O_0, k \in \mathbb{Z} \}. \]
We associate, in a natural way, to the orbit of \(x \) in \(O_0, J_x \), the subset of the integers given by
\[\{ k : T^k x \in O_0 \} \]
that we can express as a countable union of disjoint intervals \(\bigcup I^k \).
Let prove that, for almost all \(x \), no \(\mathcal{H} \) has infinite number of integers. The individual ergodic theorem tells us that

\[
\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) = \frac{1}{\lambda} \int \mathcal{V}(x) \mathcal{W}(x) \, d\mu \quad \text{a.e.}
\]

If for some \(i \), \(\mathcal{H} = \{ i, i+1, i+2, \ldots \} \), then, by the above-mentioned theorem, we have

\[
\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) = \mathcal{V}(x) \mathcal{W}(x) \quad (\text{a.e.})
\]

Thus, being \(\lambda > \mathcal{V} \), there exists a positive integer \(K \) such that

\[
\sum_{j=0}^{K-1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) < \lambda \sum_{j=0}^{K-1} \mathcal{W}(T^j x) \quad (K > K).
\]

Clearly, by the definitions of \(\mathcal{R} \) and \(\mathcal{O} \), there exists \(r \) verifying

\[
\sum_{j=0}^{r-1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \sum_{j=0}^{r-1} \mathcal{W}(T^j x) \quad (T^r x \in \mathcal{O}_1)
\]

where, by (2.15), \(r < K \). Considering now \(T^{i+1} x \) that belongs to \(\mathcal{O}_1 \) there exists \(r_1 \gg r+1 \) such that

\[
\sum_{j=0}^{r_1+1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{r_1+1} \mathcal{W}(T^j x)
\]

and applying the same process we obtain a sum of the type

\[
\sum_{j=0}^{s} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{s} \mathcal{W}(T^j x)
\]

where \(s > K \), in contradiction with (2.15). Therefore, there are not intervals of infinite length.

Choose now an interval \(I_i \), namely

\[
I_i = \{ i, i+1, \ldots, i+m \}
\]

which means that \(T^ix, \ldots, T^{i+m}x \in \mathcal{O}_i \) and \(T^{i+m+1}x \notin \mathcal{O}_i \). The aim is to prove

\[
\sum_{j=0}^{m} \mathcal{V}(T^j x) \mathcal{W}(T^j x) \geq \lambda \sum_{j=0}^{m} \mathcal{W}(T^j x)
\]

If this were not the case, then for every positive integer \(r \) we would have

\[
\sum_{j=0}^{m} \mathcal{V}(T^j x) \mathcal{W}(T^j x) = \sum_{j=0}^{m} \mathcal{V}(T^j x) \mathcal{W}(T^j x) + \sum_{j=m+1}^{m+r} \mathcal{V}(T^j x) \mathcal{W}(T^j x)
\]

\[
< \lambda \sum_{j=0}^{m} \mathcal{W}(T^j x) + \lambda \sum_{j=0}^{m} \mathcal{W}(T^j x)
\]

where we have used that \(T^{i+m+1}x \notin \mathcal{O}_i \), so for every positive integer \(r \) we would have

\[
\sum_{j=0}^{m} \mathcal{V}(T^j x) \mathcal{W}(T^j x) < \lambda \sum_{j=0}^{m} \mathcal{W}(T^j x).
\]

On the other hand, for some \(h \), clearly not bigger than \(m \) it should be

\[
\sum_{j=0}^{h} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{h} \mathcal{W}(T^j x),
\]

if we call

\[
\mathcal{h} = \max\{ \mathcal{h} : \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{h} \mathcal{W}(T^j x) \}
\]

then we claim that \(\mathcal{h} < m \).

Suppose that \(\mathcal{h} < m \). Then \(T^{i+1}x \notin \mathcal{O}_i \), fact that implies the existence of a \(i \gg \mathcal{h} + 1 \) such that

\[
\sum_{j=0}^{\mathcal{h}+1} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{\mathcal{h}+1} \mathcal{W}(T^j x),
\]

and

\[
\sum_{j=0}^{\mathcal{h}} \mathcal{V}(T^j x) \mathcal{W}(T^j x) > \lambda \sum_{j=0}^{\mathcal{h}} \mathcal{W}(T^j x)
\]

adding up (2.17) and (2.18) we obtain a contradiction with the assumption that \(\mathcal{h} \) was the considered maximum. Therefore \(\mathcal{h} = m \), and the inequality (2.16) follows.

Call now

\[
B_i = \{ x \in \mathcal{O}_i : x, \ldots, T^{i+1}x \in \mathcal{O}_i, T^{i+2}x \notin \mathcal{O}_i \}
\]

\(B_i \) is clearly measurable.

Let \(B_i \) be defined by

\[
B_i = B_i \cup TB_i \cup \ldots \cup T^{i-1}B_i.
\]

It is obvious that \(T^m B_i \cap T^m B_i = \varnothing \), \(0 \leq m, \), \(m \leq i-1, \), \(m \neq m \) and that

\[
O_i = \bigcup B_i.
\]

Consider now \(x \in B_i \):

\[
\sum_{j=0}^{i-1} \mathcal{W}(T^j x) \leq \lambda^{-1} \sum_{j=0}^{i-1} \mathcal{V}(T^j x) \mathcal{W}(T^j x).
\]

Therefore

\[
\int \mathcal{W}(x) \, d\mu \leq \int \mathcal{V}(x) \mathcal{W}(x) \, d\mu.
\]
and summing over \(i \) we have:

\[
\int_{E_i} w \, d\mu \leq \lambda^{-1} \int_{E_i} f \, d\mu
\]

and the theorem is proved.

To prove that \(R_w \) is also of weak type \((1,1)\) we just observe that \(R_w f \) is dominated by \(R_w f - R_{w,1} f \) where \(R_w f(x) \) is what we called \(R_w f(x) \) while \(R_{w,1} f(x) \) is the corresponding operator defined as \(R_{w,1} f(x) \) but using \(T^{-1} \) instead of \(T \).

3. Final remarks. If \(w \) is constant, then clearly satisfies \(A_p' \) for any \(p \). But apart from this trivial case the natural question is if there exists a non-constant \(w \) satisfying \(A_p' \). In the case of the Hardy–Littlewood maximal function in \(B^p \) Stein provides [5] an example: \(|w|^p, -1 < p < 1 \). Unfortunately this does not make any sense in our context. There is another way of producing good weights. It is to find a function \(w \) such that \(w^\alpha \) is essentially dominated by \(Cw \).

In [7] it is proved that if \(f \) is any function in \(L^1(X) \) and we construct

\[
w = (f^\alpha)^{1/\alpha},
\]

then

(2.19) \[
w^\alpha(x) \leq C w(x)
\]

for any \(x \) where \(C \) is an universal constant.

Since \(T:a \leq w^\alpha(T^a) \), \(0 \leq i \leq k-1 \), then by (2.19) we have

\[
T:a \leq C w(T^a), \quad 0 \leq i \leq k-1
\]

and this certainly implies \(A_p' \) for any \(p > 1 \) with \(M = C \). Observe also that \(A_p' \) implies easily that \(w(T^a) \leq C w(x) \) where \(C \) depends only on the constant in \(A_p' \). This means what we said in the introduction, that the operator

\[
f \rightarrow T f \quad (T f(x) = f(Tx))
\]

maps \(L^p(w \, d\mu) \) into \(L^p(w \, d\mu) \) but, since \(C \) is in general bigger than 1, this is neither a contraction nor a uniformly bounded group of operators.

References