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One also uses the fact that by extending a Wi L, (2) function by zero
outside 2, one gets a W™L, (R") function. This allows us to avoid the

cone property for 2. m

We remark that when 2 is bounded, the above arguments can be
carried through without using Lemma 7. The coefficient 4 is then chosen
so that 8b/4 D*u € %4,(£2) for |a| = m, where b iz the number of picces
of the covering {U,;} needed to cover &2.

Ag for Theorem 1, one can show by a simple modification of the
proofs that the u,'s in the statement of Theorems 3 and 4 can bo taken
50 that D*u,—D%y in norm for |a| < m.
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A simple proof of the atomic decomposition for
HP(R"), 0<p<1
by
J. MICHAEL WILSON (Los Angeles, Calif.)

Abstract. A simple proof of the atomic decomposition for distributions in
HP(R"), 0 < p< 1,is given. The proof uses Green’s Theorem and a result of Fefferman
and Stein. It does not use their “grand” maximal function.

We define H?(R") to be the space of functions u,(z,y) harmonic
in R% = {(w,y) = e R" y >0} for which the maximal function
wp(e) = sup  [u(t,y)|
1] <1009V
is in ZP(R"). We can define an H® “norm” by
ltolp = llesgl -
Fefferman and Stein showed that for u, € H?, limu,(o, y) = f exists
Y0
in the sense of tempered distributions and that f uniquely determines
#y. We may thus define H? as a space of distributions with “norm”™
1F 1L = ltoll - See [31. .
We call a function b(x) a p-afom if:
(A) b is supported on a cube @ = R™
B) bl < 1Q17* (@] is the volume of @).
f b(s)o*do = 0 for all multi-indices a = (a, ay ..., a,) With
Ja| = a1+ A a, < [m(p—-1)], the integer part of n(p~'—1).
We prove the following:

TunoreM. A tempered distribution f is in H?(R™), 0 <p <1, if and
only if there ewist p-atoms a; and positive numbers A; such that

= i lid,;

C =1
in the sense of distributions. The A; satisfy:
1) Clf 1L, < D) < Ol

Oy and (O, only dépend on p and n. &
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This theorem was proved for # = 1 by Coifman [1] and for general
# by Latter [4]. Their proofs used the “grand” maximal function of
Feiferman and Stein [2]. Ours does not. It uses these (somewhat) simpler
facts:
(I) For w,eH® we may define the conjugate harmonic functions
Uyy +. .y 4, Such that
0H oH oH
F<w7 @/) = (“0; Upy vony ’Ll«n) = '@‘7'5{”—1’ ’EE)
for some H harmonic in R%H,

(II) Define |F| = (21:’ [2,/) and set
j=0

F'2) = sup |B(,9).
la—t|<100yVn
Then !IF*Hng’HuoHHp. See [3].

Before going on, we wish to thank John Garnett for his encour-
agement and prodding.

The “if” half of the theorem and, with it, the left inequality in (1)
are easy. See Latter [5]. We prove the other parts. We shall first do the
case p = 1 and then show how to adapt the proof to p < 1.

Let f e H' « L' and define for % = 0, 41, 42, ...

B, = {z e R, F*(x) > 2%},

Clearly By is open. Let {2 be a decomposition of B, into Whitney
cubes. These are dyadic cubes which satisfy:

() Ek = jU Q;ﬂy
=]
(B) § #1=(2)°n(2f)° = @,
(y) diameter(Q}) < distance(Q¥, B2) < 4 diameter (2f). (See [5].)
Let (2})* be the cube in R whose bottom face is QF. Define:

G = {(t,9) € 8(2H*: ¥y >0 and (¢, 9) ¢ 9(QF)" for any 1 # j}.
We call this the free boundary of (25)*. Recall that F = VH and sot

[’j;r [ vEai, oco,
hk(ﬁ) = ll jiaf(gf)'

where @i denotes the outer normal with Tespect to (Q%)*,

e ©
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We claim that || < 02%. This is clear for x ¢ By, since u, = the
Poisson integral of f. For o € B, it will follow from

@) |VH| < 02%  on 3,([2;“)*

ince b : )i 2)1241.
since the surface area of 9,(2j)" is < (2n+ % _
' Leb (t,y) € &,(QH*. It QF touches QF, and we set I¥ = side length

(2%, then:
" > 31,

Therefore y > %1% (see Figure 1).

x — f| <100y VA a(Qf)*

|F(,p) < 2" /

1 b

=t
Ekc X EE:f

of
E;

Fig. 1

By (y), there is an « e Bj, such that:
|w —1] < B diameter(2F) < Byl < 20 yyn.
Thus |VE(E, )| = P, )| < @) < 2%, Tnequality (2) and the fact that
P* < oo a.e. imply

)
f= 2 Fpr — by, B0

Jor ~00
Now consider the integral
[ gy — ) deo.
of
It equals the integral R
(3) jk VH-dn
@)
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where we define:
Z(Q}’) ={(t,9) € 3(2)*: >0, (t,y) ¢ &,(2F)* and either
Gy U @) o (e U g4,

ket ok To--1_ ol
Q =8a; a2y c!)]

Here is why. The infegral [ ,,,d» equals the integral of H’s normal
ok

derivative (in the direction indicated in Figure 2) on the surface

= @anhn( U 4@y

k-+1_ ok
'Ql cnj

(on BR*nI" we may treat f(z) as though it were H’s upward normal de-
rivative by doing everything at = 2-™ and letting m—co).

_-L','li”‘ilHlIIIHIIHIlHIII
: "
: I Fe—
Ex O - (ol of

Tig. 2

The integral — fr hydz equals the integral of H’s inward mnormal
.o;

derivative on §,(2%)*. Now look at Figure 2 and see where the arrows,
mdlca,ti.ng normal derivatives, are Dointing. Some of them point into
the region R. The rest point out of (2F)*. The integral over the first set
of arrows and an application of Green’s Theorem +o R, plus the contri-
bution of the second set, yield (3). See Figure 3.

We claim that for j s 1:

(4) Dl @hnaely = (@ ool
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E¢ Q
Fig. 3

almost everywhere relative to surface measure (in R%*'). To prove (4),
let (, y) belong to the left-hand side. Then (¢, y) € I(R2F)*. IE (¢, ) ¢ 3 (2
then there is an Q¥ < QF such that (t,y) e 0(2F )*\,(QF+)* (since
{t, y) € 8(QF)* implies (¢, y) ¢ 5,(2H)*). Thus (¢, 4) lies on an edge of (2F+)*
or also lies on some (25, with Q¥ = QF. The set of edges has measure
zero. The second case contradicts (¢, y) € Y (2F). Therefore the left-hand
side is contained in the right, and the other conclusion comes from sym-
metry.
Define:

i Lok i
P (@) = [ f VH-dn
g F@hnoaly

(d% is outward relative to (2F)).
An argument like that for (3) implies |kl < €2 For fixed

3§, @k 5= 0 for at most (12)"1 (see [5]). It ¢f; % 0, then gk ¢f is supported

on a cube 2 such that 2% < Omin(]Q¥, |QF), and:

[ (h+el)as =0

'y
ﬂjl

since what is outward for one cube is inward for the other. Obvi-
ously:

f(h,”l—hk— prﬁ) do = 0.
{

k
fiy
{.7
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Now we let 4 >0 be large and define atoms:

4 ;‘[ b1~ g — Z‘PJZJ
A2k |0

-
ay =

yi — PO

= i<
i1 Azklgﬁl (G<?)

and constants:
l}‘ = A2’°|£27’.“|,

2A2’“{21m1+2f i}

Jo=-—00 J<i

vh =A% |1Qk (< ).
Now:

() 21"+ Zy,z
Jd

0

<A Z'Z’“ 1B < CIF* Iy < Cf U
k=—o
And:
ZA;%;F—FZ PEDE = 2 (71,k+1—hk eru)—F 2, %z’(“l’u
ki k k=—co kanw
i<t

= Z‘ (g1 —hz) = F ace.
k=—o0
Inequality (5) implies the convergence as distributions and justifies the
change in the order of summation. This proves the case for p = 1.
To complete the proof in the spirit of the first part we define, for
any monomial #° in , ..., ®,:

il —1 v
o) = o A,
k=0

1 _(—1)F O iy .
=2 eyt Vg AN a<i<m

(@, Y)

where A* denotes the k-fold application of the Laplacean operator, with
A° = the identity. Observe that each v (%, y) is o polynomial in ay, ...

.y @y, Y (since A%(27) = 0 for large k). Also, if wo stz = y then v, vy, ...
.., v, i8 a Riesz system, ie.:

. o ouf .

@ T aw, OSUISm
.. 2 o

(i) % o,

0w;

=0

icm®

as is easily verified. Note also that:
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2%, =0,
% (2, 0) = )
0, ¢ 50,
Define V*(z,9) = (0§(#, %), ..., ¥3(#,9)). For P a polynomial in
A S’aw" let

P)(@,9) 2aV“<m,y = ((Po(@, )5 .-y Py(®,9)).-

Clearly Py, ..., P, is a Riesz system.
Note that if ay, ..., @, and by, ...,
then the vector field

N n
{a, b = (a'obo“ Z“ibi: Qb +ay by, ...
im1

b, are two Riesz systems in R+

y toby, -+ %bo)

has zero divergence. See Koosis [4].

Let @, be the cube in R" of side length one centered at the origin.
Let IT%, ..., IT* be polynomials, orthonormal in I?(Q,, d), that span
the space of polynomials of degree < [n(p~*—1)].

Let f € H? nI'. Define, for k¥ = 0, +1, ...

B, = {z e R*: F*(z) > 2"/7}
and let {2F} be a Whitney decomposition as before. Define
#f = the center of QF

and let
3 Hm k) lh
; _ Zc’m—l/ — /’), e QF,
(@) = - 19271
F(@), ©¢ B
where we seti:
= 1_k f (B, BT (@ —af) 1, y [B)) i
‘/IQ’ af(x:j’*

By the same argument as for p = 1, we have |k << 0 27 and that

f= Z Py — by, a0,
k=—co
Since g, %y, ..., %, 18 2 Riesz system, Green’s Theorem and elementary
Hilbert space theory imply, as in the proof of (3), that:
[ —harde = [ B, V-dn
af B
for all |a] < [n(p~-1)1
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For v e QF detine

L
o = N ™ {(@ —af) 1)
m=1 }/I_Q;"{
where
w=—ae [ @, o), g ) dn.
1/I“Q:ii zaynaaly

Clearly |¢fi| < € 2" and (R, —h,— 3 ¢l < 0 2%7 (this is exactly as for
i
p =1). Much as before, and for the same reagon:

[ (e —te— X dharae =0, [ (gh+oly)ado =0
ok l a%
E] I
for all |a| < [n(p~™' —1)]; 2 is as before.
Define p-atoms:

X,%c I 12 o71)
= A oM | Ok il ’

% I
i+ @ .
bl = AT 2,’0,1,]%]1,1] G<?

and constants:
A= AN QRN — 4 9k Qi (j < 1)

and proceed as in the first case.

The passage to general f e H? uses the density (in the ||-||%» topology)
of H?nL' in H? (see [3]) and an easy limiting argument, given in Lat-
ter [5].

After writing this paper I was told of another construction by A.P.
‘Calderén which resembles mine in some ways. See [1].

References

[1] A.P. Calderén, An atomic decomposition of distributions in parabolic HP spaces,
Advances in Math. 25 (1977), 216-225.

12] R.R. Coiftman, 4 real variable characterization of H?, Studia Math. 51 (1974),
269-274. :

©

A simple proof of the atomic decomposition 33

{31 C. Fefferman and E.M. Stein, H? spaces of several variables, Acta Math.
129 (1972), 187-193.

[4] P. Koosis, Sommabilité de la fonction mawimale at appartenance & H,, cas de
plusiours variables, C. R. Acad. Sci. Paris, Sér. A 288 (1979), 489-492.

{81 R. Latter, 4 characterieation of H®(R") in terms of aloms, Studia Math. 62
(1978), 93-101.

(6] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton 1970.

Received December 9, 1980 (1657)

8 — Studia Mathematica 74.1


GUEST




