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Hopf’s theorem on invariant measures for
a group of transformations

by
D. RAMACHAND RAN (Caleutta) and M. MISIUREWICZ (Warszawa)

Abstract, Lot @ bo a group of measurable and nonsingular transformations on
(X, o, F). Bomo results on the equivalence (by countable decomposition) of measur-
able gets are proved, using which Hopf’s theorem on invariant measures for a group
of transformations is derived.

L. Introduction. Lot (X, o, P) be a probability space, and let G be
a group of measurable and nonsingular transformations defined on
(X, =, P). Hopt [4] gave a necessary and sufficient condition for the
exigterico of a finite invariant measure u on & equivalent to P for the
case where G is a eyclic group. In this paper we prove that condition (F),
the analogue of Hopf’s condition, when & is a general group of transtor-
mations, is necossary and sufficient for the existence of a finite equivalent
measure invariant under every g in @. The only known alternative proof
(see Hajian and Ito [3]) of Hopf’s theorem for a group of transformations
i through the equivalence of condition (H) and the condition of nonexisten-
ce of weakly wandering sets of positive measure introduced by Hajian
and Kakutani. While Hajian and Tto use functional analytic methods
in their proot, we use a direct argument motivated by an idea of Tarski
(see [6], Definition 1.25) regarding measures on semigroups. Our proof
construety the invariant measure and shows that it is the unique, finitely
additive, G-invariant measure equivalent to P which equals P on almost
invariant sets.

2. Definitions and notation. Let (X, o, P) be a probability space.
A finitely additive measure 4 on » is said to be equivalent to P it u and P
have the same sets of measure zero, that is, w(4) = 0 iff P(4) = 0 for
every 4 e, A moagurable map g of X into itsclf is called ozonsi/n,gula( if,
for evary 4 e o, P(4)> 0 implies P(g7'4) > 0. For 4, Bess, A L£p
iff P(4 A B) =0, where A is the symmetric difference.

Suppose that G is a group of measurable and nonsingular transfor-
mations defined on (X, s, P), that is, each g € G is a 1-1 bimeasurable and
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nonsingular transformation defined on (X, #, P) and the multiplication
in @ is defined by composition. A finitely additive measure u on o is
said to be G-invariant if for every ¢ € & and F e o7 wo have u(gl) == u(#).

A set B e o is called almost invariamt if P (gl —1T) = 0 for cvery g e @,
It is easy to check that the collection

*={Beal: B is almost invariant}
iy a sub ¢-algebra of &/ Given A €., there is & minimal almost invariant
set A* e containing 4. Minimal means that Ay e o™, 4] o A implies
P(A*~4}) =0 (see Lemma 4). Note that as a consequence we huve

bt « P %
(UlAn) = nU] 4.
n= =
We use the motation A = C+D, A = ZA, and A = ZAj to
mean, respectively, that 4 is the union of the A mo«mnra,blo dlS]Olnt

sets € and D, 4 is the union of pairwise disjoint sets {4,, Aa, ..., 4,} =&
and 4 is the union of pairwise disjoint sets {4;: j =1,2,..} < J&/ .

3. Equivalence of measurable sets and condition (X). Two -
measurable sets F and F are said to be equivalent, in symbols B ~ I, if

0 o0
P ¢ oK
BEZF =3B, FZF = 3§
j=1 j=t
and there is a sequence {g;} < @ such that;
P, =g, 8; for every j.
A set B es is called bounded if it is not equivalent to a measure-theoreti-
cally proper subset of itself, that is, F < @ and ¥ ~ F implics ¥ Ly
The group @ is bounded it X is bounded. We now consider the following
condition, introduced by Hopf for eyclic groups:
Condition (H): @ is bounded.
We have
Lemua 1. Ew-y measurable subset of & bounded set is boundod. In
particular, if (H) holds, then every A e.of is bounded.

Lzvma 2. Let B, F et If H ~ I and B = (3, then thero is o map h
Jrom E to ¥ such that

(1) his 1-1, onto and bimeasurable a.c. [P, and
(it} for every B, e /NI, By ~ h(H,).
Proof. Let
EXp = ZEﬁ U 21@.,
je=1 Jel

and let {g} = @ be such that g; B; = F, for all §. The function b on B de-
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fined by
B9 on E,nNE,
v el elsewhere

has the required properties.
TvemA 3. If B is bounded and if {4,: n > 1} © o is a sequence of
pairwise disjoint, mutually equivalent subsets of B, then P(An) 0 for all n.
Proof. If B is bounded, then, by Lemma 1, since “ A4, ~ Z A, we

-xl

have P(4;) = 0. Since cach g @ is nongingular and 4, ~ 4,, _P( n) =
for all n.
TovMA 4. Lot A eof. There ewists A* e o™ such that

(i) 4 < 4%,
(i) A’; e, A = A}=P(A*—A}) = 0,and
(i) 4 U gn-A. for some {g,: n >0} = G.

Proof. Ta,ke g, = identity. Let a; = sup{P (g4 —4)}. Choose g, €&
geG
such that P(g; 4 —4) > «,/2. Use induction as follows: Let

N1

= gupP(gA — Ugj )s
el

and choose g, such that .
-
Plg, A~ jU g d) = a,/2.

Set A" = C) god . Since P(4*) = P(4)+ Z a,/2, we have lime, = 0.
N0 N—»00

For ged,
=1
Plgd —~A"Y<P(gd~ | g;4) <, for every m,
iz

and so P(gA —A*) = 0. Henee, for every ge @,

o0
P(gA* — AN < D) Plggd—4%) =0,
() .

and thus 4% e o7*. By construction, (i), (il) and (i) hold.

In the soquel we assumeo that () holds for &.

Lomwa B, Let A, B e, Thon there ewist Ay < A, B, = B, satisfying
the following conditions:

@) A%n4 2 4, and B4NB = B,.

(b) 4y ~B Jor some B <cBand By ~4A for some A’ < A.

(¢) A%LUBY £ A*nB*.

6 — Studia Math. 74.2
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() Ap and B, are the sets with maximal P-measurcs having propertiss
(a) and (b).

Proof. Let o, =sup{P(4dngB)}, and choose g, €@ guch that
eG

14
P(4dng;B)> /2. Then set A, = Ang,B, B, = g 4,. We proceed by
induction: suppose that pairwise disjoint sets 4,, 4,,..., 4, .; e and
pairwise disjoint sets By, B,, ..., B,_; € & have already been chosen; let

= uplela=3 4l 5 5l

choose g,, € ¢ such that

n—1 -1
2([4-3 ), (2- 5 B)) > e.m,
and set =t i=
n-l n~1
A" = (A —2 ‘A'f)ngn (B‘“Z Bj), _B" . !’;L-I-An-
Letting 7=l j=1
d K
.Ao = Z-An, BO = EBn’
=] =l

'we have 4, ~ B,, and since

o) = D P4,) > Y a2,

=l na=l

P4

we have lima, = 0. For g €@, P((4 —4,)ng(B—B,)) < a, for all n, and
50

P((A—A)ng(B~B,) = 0.
By Lemma 4 (ii*i), P((4 '—Ao)"n(B —By)*) =0. If we now define A,
=4,—(4 —4,)*, B, = B,~(B—B,)*, then it is easy to check (a) and
(b); (c) follows from Lemma 4 (iii) and the construction of A » and B, and
(d) follows from (H) and the construction of 44y By, dpand B, .

We remark that Lemma 5 containg as a special case Lemma 6 of [2].
Now for every n e=1, 2, ... let

X, ={1,2,..,n}xX
(we have X =X, c X, = ..)),

n
oy ={ 31 xAy: Ay cof for b =1,2

kﬂ’ll ’ ..., n},
Pn(Z {k} x 4y) = %SP(Ak)-
kw1 k=1

icm
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Then o, X&, where o, i3 the group of permutations of {1, 2, ...,n}, is
a group of monsingular transformations on (X, #,, P,), and hence the
preceding definitions and lemmas apyply for (X, o, , P,, ¢, x@). We have

LevmMA 6. Let A, B, D e, be such that ANB = @ = AnD, and let

A be bounded. Suppose A -- B is equivalent to a subset B of A-+D. Then B is
equivalent to a subset of .D.

Proof. Let A bo the map from 4 4 B to B given by Lemma 2. Let:

-Dl b h(B)nDﬂ El = hhl(Dl)y
D, = K (B—B,)nD, B, = h*(D,),
e S e
D, =W (B~ 3 B)nD, B, =1"(D,),
jem1

Since h is 1-1, onto from A 4B to B (a.e. [P]), it is easy to verify that
D,, D,,...is a sequence of pairwise digjoints subsets of D and that B, H,, ...
is a sequence of pairwise disjoint subsets of B. By Lemma 2 (ii), £, ~ #*( B,)

= D, for everyn > 1. Let B, =B — 3 ;. Clearly, B—B, ~ 3 D; < D.
el F=1

By the definition of A, we conclude ﬂjm.t {F*(B,): m > 1} is a sequence of
pairwise digjoint subsets of A each equivalent to h(B,). By Lemma 3,
P(B,) = 0.

LemmA 7. Condition (H) holds for o, XG.

Proot. We use induction. Clearly, (H) holds for o; X&. Suppose (H)
holds for o,_, x@ but not for ¢, x@. Then for some F < X,, B ~X,
and P,(X,—B)> 0. There is k¥ such that P,({k} XX —F)> 0. The set
A = X, —({k} xX) is bounded, and we can apply Lemma 6 with B = {k} x
XX, D = An({k} xX). We get B ~ F for some .F' = D, which is impossib-
le ginco (H) holds for @.

Luvma 8. Let I" e sZ. Suppose that for every m there are pairwise
digjoint sets By, ..., I € of , oquivalent to F. Then P(F) = 0.

Proof. We use induetion to find a sequence {F,: n > 1} of pairwise
digjoint subsets of 4, cach equivalent to F. Then we can use Lemma 3.
Weo set J, == F}. Suppose we have already defined Fy,...,T,_,.

»

-] Py
Denote ”):' By, =X, 3 F% ==L, Since K ~ L, we may use Lemma 6 with
Jowal

Jomal

to start drawing o picture). We find that B is equivalent to some subset
of D. Hence, BAF" ~ M for some M < D. Since Fy, is disjoint from L and
M <D< L, we have (F2 —B)-+M ~ Fy ~ F. Thus, we set F, = (F} —
—B)+-M; clearly 7, defined in this way is also disjoint from K.
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4. Hopf’s theorem on invariant measures for a group of transformations.
We ave now ready to prove our main result.

TaEoREM 1. There is a finite, G-invariant measure equivalent to P iff
(E) holds. ,

Proof. The necessity part is easy to verify. To prove the suificiency
part we note that it suffices to show the existence of o finite, finitely addi-
tive, G-invariant measure x equivalent to P (sco Fricdman [1], Theorem
3.13).

)Let A s/, and let 4, denote {L,2,...,n} x4 < X, forn =1,2,...
For Bed, It Bt =B nX est™. For 1<k<n lot AL - (X)) *
(see Lemma 5), A% = A% — A% Define the s*-measurable step fune-
tion f,(4) on X by

Fo==1

n "
Fuld) = D14k = 3 h1ge.
Josenl

1. 18 well defined a.e. [P]. Using Lemma 4 (d) and (¢) it can be checked
that (A%)*NX, ~ a subset of (A¥*NA, and (4%)*NA4, ~ a subset of
(A5* Xy, for k=1,2,...,%~1. From this it is straightforward to
establish

1) Jarm(4) =L < fo(A) +fn(4) < friml4) 20, [P],
and
(@) Ja(4+B) =1 < fo(4) £, (B) < fu (4 + B) a.c. [P],

for A, B e o/, m, n positive integers. From (1) it follows that the sequence
{fa(A) 1}, is subadditive a.e. [P], and so

L1
f(4) = Tim = f, (4)
N~»00 n
exists a.c. [P]. The function f(4) is P| awintegrable, and so we define
u(A) = [f(A)dP. From (2) it follows that w is finitely additive. I P(4)
=0, then f(4) =0 ae. [P], and 80 p(4) = 0. It P(4) > 0, then, by
Lomma 8, there exists B /™ with P(B)> 0 such that Fu(d)p =1 for
some n; hence, by (1), fi,(d)|p >k for k = 1,2, «rey i HO
1. .
) = - P(B) > 0.
4 ~ B implies f(4) = f(B) a.c. [P]; and 8o wis G-invariant, and the proof
is complete.
. From our proof it follows also that if (¥L) holds, then g is the unique,
finitely additive, G-invariant moeasure on cquivalent to P such that
u =P on &%,

icm°
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It is possible to obtain a proof of Theorem 1 by using Tarski’s theory
of measures on semigroups (see [5]), thereby showing Hopf’s theorem to be
a special case of Taxski’s general theory, but the present proof is short,
direct and shows the uniqueness of the invariant measure obtained.
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