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On Morrey-Besov inequalities

by
DAVID R. ADAMS and JOHN L. LEWIS (Lexington, Kentucky)

Abstract. The authors consider functions  which satisfy a local integrability
condition of Morrey-Besov type. They prove that « is locally in a certain Lorentz
space. Examples are given to show this result is best possible.

1. Introduction. Let # be a point in » dimensional Buclidean spaco
R", || the Fuclidean norm of «, dv Lebesgue measure on R", and |E| the
Lebesgue measure of a measurable set B < R*. If @, is a cube in R", let
L2(Qy); 1 < p< oo, denote the usual Lebesgue space of functions that
are pth power integrable on @,. Then in [8], Ross shows that any function
e LP(Q,) which satisfies

(1) [ lu(@ +4) —u(@)Pdo < AP 12 1QHm,
Q

whenever @ and Q41 = {r+1: x €@} are parallel subcubes of Q,, also
belongs to L"(Q,) for all r < p* = Ap/(A—ap). Here 1< p< Afa, 0<
<L,0< i<, and A4 is a positive constant independent of ¢ € R® and Q.
(1.1) can Dbe viewed as a mixture of the usual Nikol’skii condition ([6],
P-153) when 2 = 7, and a Morrey type condition involving the ath differen-
ce quotient. When A = n, it is known [4], that (1.1) implies u & weak-
I (@), whereas when o = 1, it is known [1] that condition (1.1) implies
% € L7 (Q,). Thus we are motivated to determine, in all cases, the “best
integrability class” for functions satisfying (1.1) as well ag for a related
Morrey-Besov condition, (1.2) below. To be more specific, let L(a, b),
I€a< 00,1l b o0, denoto the Lorentz space of measurable fune-
tions f on R™ with

Wi = ([ [5+l{e: 1£(@)] > )| e]s™ dspP < oo

Note that L{a,a) = L*R"), L{a, o) = weak-L*(R"), and IL(a,b,)
< L(a, by) when b, < b,. Given a function u, let 4,u () = u(z4-t) —u(w),
whenever o and -t arc in the domain of definition of w. Inductively,
define Afu for %> 2, u positive integer, by dfw = 4,(4¥ u). We then
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consider functions u e L” (R") which satisfy

(1.2) [ [ [ 14fupaaf™ p-treau]’ < 4-jgjo-+mi,
» @

for each cube @ in R*. Again 4 is independent of @. Note that if ¢ == oo,
then (1.2) is equivalent to (1.1).

In § 2, we prove:

TomoreM 1. Let p, q, k, 2, and a be fined numbers with 1 < p < Ala,
I<g< oo, 0<a<h,and 0< A< n. If p* == Ap/(A—ap) and u e L7 (R")
satisfies (1.2), then for each cube @,

(1.3) - xQllps, g << 6- A |Ql(1'lm)m"

where ¢ is 4 positive constant independent of A, u, and Q.

In Theorem 1, y, denotes the characteristic function of Q.In §3, we
prove a local version of Theorem 1 when & = 1:

THmOREM 2. Let p, ¢, A, and o be as in Theorem 1 and let @ be a fived
cube of R™. Suppose that u e L?(Q,) and that (L.2) holds for k = L and each
parallel subcube @ < Q, provided that the integral inwolving t is taken only
over those values of t for which @+t < Q,. Then

(1.4) (s — tgy) * oy I, gmmi < €+ A || 4™

Here ug denotes the average of u over the cube Q. Again, ¢ is a constant
independent of 4, u, and Q,.
' Observe that if ¢ = co in Theorem 2, then u € weak-L?*(,). This is un
improvement of the theorem of Rosgs in [8]. In § 4, we show that Theorem 1
is best possible. We prove:

THEOREM 3. There is & fumetion w which satisfies the conditions of
Theorem 1, which has compact support, but which does not belong to I ¥, )
Jor any r < gp*fp.

Finally in § 5, we make some remarks concerning possible extensions
of Theorems 1 and 2.

In [4], Herz proved that if u satisfios (1.2) with A = n and » e L?(R"™),
then u e L(p*, g), a space strictly smaller than L(p*, qp*[p). Because of
?}hiﬁ, it might seem surprising that Theorem 1 is sharp, a8 we have cluimed
in Theorem 3. We remark, however, that there aro other results in the
literature where a diseontinuity, such as this, occurs in pagging from o cube
to a noncube condition. For example, if p* = Jp /(A —p), u e L? (R™), and
the gradient of » (Vu) satisfies

(1.5) f|V1blpdlﬂ<Ap|Qll"’1/”,
Q
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1< p< i<, for all cubes @, then from [1] it follows that
(1.6) I 2glpn o < 0+ A |Q|0HmiE"

but u:xo € L(p*, p) when A = n (see [7]). Also, if p = 2, then (1.5) implies
exp(blul) € I*(Q) for A< n, and exp(b|u|*’) e L*(Q) for 2 = n (see [10] and
[11]). Here b is a constant depending on 4 in (1.5). Furthermore, (1.6) is
sharp as can be seen by a simple modification of the example in Theorem 3
(take ¢ =k =1 and p = ¢). The example «(z) = log|s|, v € R*, shows
that the results involving exp (b|u|) are sharp as well.

Finally, we make some comiments concerning the methods employed
in proving Theorems 1-3. The argument of Ross is based on the mecthods
of John—Nirenberg [5], i.e. cube decompositions. Our proof of Theorems 1
and 2, however, goes back to the familiar idea: the trace of a Sobolev
function on a lower dimensional hyperplane is characterized by a Besov—
Lipschitz class, i.e. by classes defined in terms of Z®-L¢ norms of difference
quotients (see [3] and [9]). In particular, we show that functions « e L? (R")
satisfying (1.2) can be realized pointwise almost everywhere as the restric-
tion of a Riesz potential on R* of a function f which in turn satisfies
a mixed LP-L? growth cordition. Using this representation of w, we get
Theorem 1. Theorem 2 is obtained in a similar manner nsing local arguments.
The example in Theorem 3 is constructed by defining u on widely spaced
cubes in such a way that « grows sufficiently fast and (1.2) is satisfied.
This construction is somewhat similar to the construction of sets of Cantor
type.

2. Proof of Theorem 1. Let p, g, k, 4, a, and % be as in Theorem 1.
In the sequel, ¢ will denote a positive constant, not necessarily the same
at each occurence, which may depend on #,p, ¢, 4, ¢, k&, but not on w,
Qor A.Putf(z,t) = [t|™” 4fu(x), for (z, ) e R* x R™ and let L(y) = lyP~*",
for y e R*™, y = a+n/q. Then by I,f(#, t) we mean the nsual convolution
of I, with f over R™. We claim that

(2.1) u(@) = ¢ If(z,0)

for almost every & e R™. (2.1) is casily proved using elementary properties
of the Fourier transform (see e.g. [4]), once we show that I, {f](x, 0) is
locally integrable. In fact we prove, for each eube @, that

(2.2) ”ZQ Iy‘fl () 0)“1)*,@*/17 <cd IQI(l—lm)m"

Clearly (2.1) and (2.2) imply Theorem 1.

To prove (2.2), we first observe from (1.2), the definition of f, and
Holder's inequality that
23)  Vu(fl,n = [ 1fy+w,s)ldyds < e dpnieonia

82+ 1y)*<r?
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for all » > 0 and 2z e R". Next observe that

(2.4) Lifl(#,0) = (2”1'—'}’)_[ V(11 )07~

as follows from an integration by parts. Let @ be a cube in R" of side
length ¢ and center #,. Set F(w,1) = [f(x, )|, when Iw——wolz—i—]uﬁg dng?,
and F(xz,t) =0, elsewhere in R™. Let G(z,1) = [f(z, 1) —F(2,1).
Then I, |fl = I,F+ 1,6 and for # €@,

(2.5) 1,6(w, 0) < (2n—y) [ 77"V (1f1, ) dr

0

<o-AlQrien,

ag follows from (2.3), (2.4) and the fact that y = a-+n/g. Again from (2.3)
and. (2.4), we see that

(2.6) IF(w,0) = (2n—y) [ 7"V (F, r)dr
0

=(2n-~y)[f... +fw]
0 o
< c[f -}—Aa""'“"vl.
y .

Now let B, = {w: L,¥(x,0)> s} and put o = (e,54")"?"*. Then (2.6)
gives

s|B,| < fIyF(m, 0)Ydr < ¢ f( f) - ep0-8 1l
By

Hy o

Thus for ¢, sufficicntly small,
s|B,| s;cfr"”‘”“‘l( fo(lt‘,r)dw) dr
0 N

( [F(@-y, t)dm) d;//(lt] dr

L4
<e f ,.r—«zn—ll
0 <l Hy

< o|B,[e fa e[ B, 0 )™ at] dr.
0

lt<r

©

On Morrey—Besov inequalities 173

Hence it g(t) = ([ F(a, ©)"dz)'?, then

(2.7) SIB <o f prn- ( f g(t)dt) ar
¢

| <r
. -
<e¢ fg(i) f?*”‘“"“l-r'gol'r) @
lti<o W
<o [ gW—dt-gmrrianie
t<o
provided &> 0 is chosen so that n—njg—a<e<m-~nlg. Tt is casily
checked that ¢7%s = (6, A7)®"-s?"P and - that dojo = —p*/i-ds/s.
Multiplying (2.7) by (Acr!)*'*-¢7%, raising the resulting inequality to
the gth power and integrating with respect to ds/s, we get (for g < oo)

©0,

sl d ) hd
[ B = < caman | (a’“ﬂ—"“ [ otmrea)

0 ¢ <o

do
o

< cAwa f g dt < cACT R a-iinaip
= g APUP 1Q I(l—lln)q/p, .
by Hardy’s inequality and (1.2). Thus
(2.8) I, F (s OVl qpeip < €A Q)0 4m)F"
(2.8) also holds for ¢ = oo as follows from (2.7). Henee from (2.8) and (2.5),

we deduce (2.2) and the proof of Theorem. 1 is complete.

3. Proof of Theorem 2. In what follows, we will denote the distanco
between two sets B and F by dist(#, F) and the boundary of B by 2F.
Let Qo, %, P, ¢, 4, and a be as in Theorem 2. Given & cube @ < Q,, let
8(@) be the side length of @ and, as before, 4y = |Q|™* [ wdw, the average

of % on . We first show that if @ < @y, $(@,) = 2"**- ¢, and

(3.1) 0/t <8(Q)< e,
then
(3.2) g — g, | < ¢]Qq| M2 .

To prove (3.2), choose @* 50 that $(Q*) = ¢ and dist(Q*, 8Q,) > 27+ - .
Let @ be a cube satistying (3.1) and put @ = {¢: Q@+t < Q,}. Observe
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that @* < &+ for each € Q. Hence,
(33)  lug—ug < ol@ol™ Qf [Q[ (@) —u(y)| dy| do
<0[90!"2J[JW(m)~%(m-l-t)ldt] o
< 01Qo| 1@yl ™) [ [tl“‘“‘*”"”( | IA,u[dw) dat
¢ Q

< olQol 1,
as follows from (1.2) and Hélder’s inequality. To complete the proof of
(3.2), divide @, into 2"+%) congruent subcubes {@;} of side length ¢ by the

anin-+3) .
bisection method. Since 1y, = 2 nln+9) {Z‘ g, 1t follows from (3.3) that
£

(g — g, | < lthg, —Uge] -+ lthge — t1g| < g=n(n+3) Z (g, —ge] + [tge — g
<e¢ ]Qol—-l/(np')y

whenever @ satisfies (3.1).
Now fix ¢, 1 < i< 2"+, and let @; be as above. We agsume, ag we

may, that
Qi =y =W, ¥): 0SY; < 0, 1<<i <0} = Qo)

and Q(Bo) & @, since otherwise we change coordinate systems. Given
zeQ(e), let :
Q'(8,2) ={o+y: 32<y; <3, 1<j< n}.

Then by Lebesgue’s theorem, we have, for almost every z € @ (o),

o ds ds ds
f [%q1(s,2) — %er(asa) ) 5= f Uy (s,m) W j Wiy (i) v
a a of2

which tends to

4 .
. ds
(uta) 1082 — [ [gtum =] =

e/2
a8 0—0. Thus using (3.2), it follows that

o/2 .
ds .
B4 lule) —vg,| <o [ Iowa—vamal o + Q).
o

icm°
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Next observe that for 0<s< g2,
lu()’(a,a:) '"uQ’(Zs,m)' < 0™
Q(8,0)  Q'(28,0)

s [ flu(w-f-y)——u(m-{-y—!—t)ldt) dy
Q'(8,0) Q(28)

3; csv~2n+1g (8),

(@ +9) —u(@+1)|dt ) dy

ke

ZA)

where

9(8) = 87N [ [ (@ +y) —u(o+y+1)dedy.
Q(26) Ql2s)

Using the above inequality and integrating by parts, we get

o/2 s [ 4
(3.5) f 1o, "'NQ’(‘.za,m)I_s" <e f gv—in—l (f g(r)dr) ds.
[} 0 0
Moreover,

8

36) [gmar< [ f[ f|u(w+y)—u(m+y+t)1r<l+wdt] dydr
0 0 Q@) Q)

<o [ [ W4ul(@+y)dtay,
Q(28) Q(28)

as follows from interchanging the order of integration. Now let f(x, t)
= [t|7" dyu(x), when (x,1)c@(30)xQ(20), and f(z,f) =0 otherwise,
and set

Vollfls) = [ [ 1@+, vldya.
Q(26) Q(26)

Then from (3.6), (3.5), and (3.4), we deduce that

() =1ty =57 ¢ [ f =LY (1 f],8) ds |Q0;~1/(np')],
0

Tor ulmost overy o € @,. Using (1.2) it is casily checked that (2.3) holds for
2z € @,. From (2.3), tho above inequality, and an argument as in the proof
of Theorem 1, we obtain (1.4) with y,, replaced by Xg; Since @; is an
arbitrary cube of the subdivision, it follows that Theorem 2 is valid.

4. Proof of Theorem 3. For fixed p, ¢,%, 4, a, ag in Theorem 1, we
construct () satistying the conditions of Theorem 3 with » ¢ L(p*, #) for
< p*q/p. To do this, let { @) denote the greatest integer less than or
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equal to a. Let
m; =max {2, (j(logj) > "%, j=1,2,...
Put s, = 1 and for j = 1, putb
85 = (8;_1)(my) ™Rt = (5 —8y) [(my —1).
If J = [a,b] is an interval with b—a = 8,_,, let @(J,m,;) be the my
oqually spaced closed intervals of length s; contained in J° defined by
DT, my) = {[a-+(i—1)Y, a+ (F~1) -] Lol my).
Define G, inductively as follows:
G ={[0,1T}, & ={B(J,m): Je@. )}, j=1.
From the definition of #; and s;, it is easily seen that
(4.1) Co8; Kty —8;
for some constant ¢, independent of j. (4.1) implies that if J e G4_;, then the
distance between successive intervals in @(J, my) is at least ¢y times the
length of any one interval.
Let H;,j = 0,1,2, ..., be the family of cubes defined by
H ={@ =d,% ... XxJ: J;e@, L<i<n}.
It @ e Hy_;, I 2 1, we note that

(4.2) E lTll—l/n — IQII—-A/n - 8;':1]"
' T'eH;
reQ

when j>1—1. We now define u as follows: if T e H;_,, j> 1, chooso
a cube I, with sides parallel to the coordinate axes, and satistying

rer-ye,
Qelij
“.3) ] = (o5,

dist (1", ) @) = vnosy
Qﬁllj
for some positive constant ¢; < 1. That this choice is possible in elewr from
(4.1). Let 4y e OR(T"), with,
(4.4) D™ (- 1)l < 62|00
for m = 0,1,2,...,%k+1, and

(4.5) u(@) = |T'|7H, e

On Morrey-Besov inequalities 1T

whero T™ is & subcube of 77 with |7 = 2-"|7"|, In (4.4), D™ represents an
arbitrary mth derivative. We do this for each T e H, 4-1y§2 1, and set
u = 0 elsewhere. For a set B, card # will denote the number of elements of 7.
Note from (4.2), ifj > 1> 1and @ e H;_,, then

(4.6) X TP e eend{T e H,,: T < G}
Detly..y
reQ

o8} My card{T e Hy: T < @}
. am]—n |Qll—-ﬁ./n.

We first show that w ¢ L(p*,7) for r< p*q/p. Let 4 = s for
Jz 1. Then from (4.3), (4.5), and (4.6) for I == 1, it follows that

Zf‘l{m: w(w) > Zj}] o Gé‘fl E | = ¢ Z !Tlil-ﬂ/?’b = omj"n_
ety y Tety.y
Thus for » << qp*[p, '

\ LS —
D Al w(@) > A e Nmrvit = 4 oo

This implies » ¢ L(p*, r) since Ay, /A 2 o> 1forall j > 1.

Next we show that v e L (R™) and satisties (1.2). In proving (1.2), we
assume, as wo may, that all cubes have sides parallel to the coordinate
axes. We begin by showing

(4.7 fu“’dm Lok QeH,,, 1x1,
©
(4.8) f w? dw < @'Y @ = cube.
¢

Indeed, if @ € H;_,, 1= 1, then from (4.4), we have

oo

Dl o pgt=inlnt g . §Y ( v ' Mpl(w'))
fudmn.w, io:)_l 2 1T ,
Q Jull el oq

154
and the expression ingide the paventheses above does not exceed
Y \! - . - -
(',8}1(1 MN);}/ [Tlll A < csj(l y/p*),mj le|! Zln’

by (4.6). But upon using thoe inequalibics: 8, /8; < ¢, myfmy < e, j2 0
€< 1, and the definition of 8;, we easily get (4.7). Note that (4.7), with
1=, implies » e ¥ (R").

Let ¢, = (4nk)" min{e,, ¢}, where ¢, and ¢, are as in (4.1) and (4.3),
respectively. Tf §(@) = ¢,, then (4.8) follows from (4.7) with ¢ =1. If
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0,8, < 8(Q) < 6,8, 1 = 1, then @ meets at most one cube of H,_; and gt
most one of the cubes 7' used to define v, where s(T') > ¢,8,_;. But we
have (4.7) on cubes of H;_,, and (4.4) implies that v < ¢|@|~*"" on guch
a 1. Hence, we conclude that (4.8) is valid.

Fix a cube Q. Note that to prove (1.2) it suffices to show

(4.9) [ [ ([1dburas)™ j-orenas] < jgiu~smie,

tl<m(Q) @
where m(@) = ¢, min(s(@), 1), since otherwise (i.e. if || > m(g)) (4.8)
gives the rosult. To prove (4.9) we first show that for ¢ < oo

(4.10) ( f sup[ f]Afu]"dm]m’ 4 "”"mu)m\{ cs{hyie
{tl<co8y—q af)

where the supremum is over @ € H,_,, and a@ ig the cube with the samo
center as @ and a-times the side length. Here wo take a = 1 -4 2ke,. Set b;
equal to the integral in (4.10) over the set where 028 < B < 63854, 5 2 1.
From (4.7), (4.1), and (4.3), it follows that

flAfu]”dm <e¢ flul" dw < espioi
aQ Q

when @ e H;_;, ¢,8, < |}| < ¢,8,._,. Hence
(25 ) 1
(4.11) by < osfr PP alng ot o pgfn =Rty

Now if. ¢8| < 6381, f = 1+1, and TeH,, I-1<r<j—2, then
(4.3), (4.4), and Taylor’s theorem imply

{4.12) | A¥w ()|P < ¢ | 17|~ Ver*+2pl 00" o,

whenever z € 27, Let

-3

g
L= ) (U ar)
el Tell,,
750
and

Telfy_y
r2Q

for Qe Hy_,. For oys;< [l < cys;_,, Wo mote that Afu (@) guonn (@) 18
supported by M. Thus

[14urdo = [ |Arupdot- [ 4fu)P do.
aQ L M '
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And from (4.12) and (4.6), we get

j=2
(4.13) f (AP d < o 2 ( 2 [T'\l—(’ﬂp‘ﬂ)p/(wm‘)) [t
L r=l—-1 TeH,

-2
7 (a~R)p,. — -
<o ) sliemyn] 1Qi-Hn e
Pl

< omiy TP Qe g,

where again we have used the inequality s,.,/s,< ¢<1, 1>0. And
from (4.1), (4.3), (4.6), and (4.7), we get

(4.14) [ 14w de < D ldbupde
M TeHy .y j
rsq o

< 02 fu”dms o8P my ™ QM
K

From (4.13) and (4.14), we then have for j > 1+1,
b<e [m;nalzv -+ mf_f‘f‘“”] snrhale
Hence (4.10) follows upon summing the b;,j > 1. If ¢ = oo, (4.10) also
holds, as eagily follows from. (4.11)~(4.14).
Finally, we prove (4.9). If 8(@)> ¢,, (4.9) follows from (4.10) with

=1, Buppose that 6,8, < 8(Q) < ¢y8,_;,1>1. We consider two cases:
I QnT = {@} for all T € H,_,, then from (4.4)

| J 145 uipdn < olQP-tesamlesjgp,

o

for [t] < 0,8(Q). Using this estimate, one easily gets (4.9). If @ T = {@} for
some I € H, ,, then for ¢, < [t| < ¢,8(Q), it follows from (4.1), (4.3), and
(4.7) that

(4.15) f |dEuPdn < ¢ fu"dm < egfminlt
Q T
I || < 0q8;, then dfu-y, bhas its support contained in 2T"U({J aP),

Pe¥
where W = {P e H;: aPNQ s @} .From (4.10) withl — 1replaced by ! and
(4.18), it follows that
@) | [ ([14bupda)™ = trreagy'/?

tépa(@) @ ’
o] [ [14Fupdo)ig-ored gilie
|ilecegsy 22V :
+ c(cardW)”"[ f sup( f |Aj‘u[”dm)w [t|"("+"q)dt]l’“
" ill<eo8y aP
< e P 4 o[ (card W) - s~ ]He,
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So to complete the proof of (4.9), it remaing to show
(4.17) (card W) sp~* < ¢ (@,

To do this note from the definition of H; that if $(Q) = yh-}-8;, 0 << y T my,
then cardW < (y-+3)". Now

[S(Q)]l-ﬂm = [((ml—l — )8+ J’Sl)/(mz*l)]l—“n
= [(m, N ——wy) 8%-1/71 e y-"‘;:f'/"] /(’”01 ___1)
= (y+1)s3m,

Here we have used the concavity of tho function @->2'~*" the tact that
§iZ" = mys}~*", and the definition of t. Thus (4.17) is true. Using (4.17)
in (4.16), we get (4.9). The proof of Theorem 3 isx now complete.

5. Remarks. Theorem 2 can be extended to include valacs of « > 1,
o # integer as follows. Suppose () is as in Theorem 2 with now % > 1,
then it can be shown that  has derivatives of order < (e} which belong
to L?(Q,) - Let P be the unique polynomial of order {a) which satisfics

[ (D% —D'Pyiw =0

Q
0<j<<ay, where D7 represents amy jth derivative. Then Theorein 2
holds with ug, replaced by P.

Next we indicate some extensions of Theorem 1. As we saw there, any
function in L?(R®) which satisfies (1.2) ean bo written ws the trace of
@ Riesz potential over R*. This motivates us to consider simply Riesz
potentials of functions that satisty mixed L?-L? Morrey typo conditions
and the corresponding integrability classes. To be more specific (and in
turn considering the ease n = 1 for simplicity) consider the genernl mixed
Morrey condition for non-negative meagurable fla, t) on R?

(5.1) sup[f“““l il f f(m,t)”dm}m’ dt]lm( 00,

la—t|<r -] <r ’

where the supremum is over all » > 0 and all ¥, 8 € R, Tere 0 < p, A=,
1< p, ¢< oo. Functions f satisfying (5.1) will helong to the gpace 10 Xv?
and have norm I% X#(f) given by (5.1). (Using thiy notation, the fone-
tion f(x, ) in (2.1) belongs to T4 XP* fop g 1) We seek estimates of the
form

(8.2) ' T“'”‘.X”'“(Iaf) < c-T“‘”;Y”“(f)

for some constant ¢ independent of J. To accomodate the use of Lorents
spaces a8 in Theorem 1, we write (5.2) more generally ag

(5.3) s X(w‘,z?):l( Lf) < oo XW( 1.
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The left side of (5.3) is now
s [ [ (o e

la—~tl<r 0

?

ﬂi}”"’; a]"™
[}
where B, (r) = {#: |y —a| < r&I, J{@, 1) > o}. In this notation, inequality
(2.2) ean be stated as
P XL T, of ) < 0% X0 (f).
Now in general from (5.2), we expect the parameters to be related by:
@ = A(L/p~1/p*)+p(l/g—1/g¥)

with 1< ¢ ¢"< 00,1 < p < p* < 0. This follows by replacing f(#, t) by
J(dz, 8t), 6 > 0, in (5.2). Using this relationship between the parameters
and the techniques of [1] and [2], we ean also get the following estimates
in the spirit of (5.2):

(5.4) T TVLE) < oo T X7 (f),
whenever p [p* < q/¢g*, u < 1,
(5.5) TS < o- TP XPA(f),

whenever p p* > ¢/g*, A< 1, and ¢ < p. Furthermore, when p/p* = ¢/g*,

both 1 and u< 1 are permitted in (6.4) and (5.5). We won’ present the

details of these estimates here since they are not in the mainstream of this
paper and, because of the restriction ¢<p in (5.5), they are incomplete.
We mention here only that the key idea is to estimate the potential I, Vi
in each cage by iterated maximal functions of fin the two directions.

References

[1] D. R. Adams, 4 note on Riese potentials, Duke Math. J. 42 (1975), 765-7178.

[2] C. TMeftorman, 1. M. Stein, Some mawimal inequalities, Amer. J. Math., 93
(1071), 107-115.

[3] B, Gaglisrdo, Caralicriesagions delle trace sulla Srontiera relative ad alcune
dlassi di fungiond in n variabili, Rond. Sem. Mat. Univ. Padova 27 (1957), 284~305.

(4] C. Merz, Lipsohite spaces and Bernstein’s theorem on absolutely convergent Fourier
transforms, J. Math., Moech. 18 (1968), 283-323.

[5] P. John, L. Nirenborg, On Junctions of bounded mean oscillation, Comm. Pure
Appl. Maith, 14 (1961), 415-426,

[6] 8. M. Nikol'skii, Approzimation of functions of soveral variables and imbedding
theorems, Springer-Verlag band 205, 1975.

[7] R. O’Noil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963),
129-142.

(8] J. Ross, 4 Morrey-Nikolskii inequality, to appear Proc. Amer. Math. Soc.


GUEST


182 D. R. Adams and J. L. Lewis

[9] E. M. Stein, The characterszation of functions arising as potentials LT, Bull. Amer.
Math. Soc. 68 (1962), 577-582.

[10] R. Strichartz, 4 note on Trudinger's
Univ. Math. J. 21 (1972), 841-842. o

[11] N. Trudinger, On imbeddings into Orlicz spaces and some application, J. Math.
Mech. 17 (1967), 473-484.

tension of Sobolev’s inequalities, Indiana

Received March 25, 1981 (1681

icm°

STUDIA MATHEMATICA, T. LXXIV. (1982)

Hopf’s theorem on invariant measures for
a group of transformations

by
D. RAMACHAND RAN (Caleutta) and M. MISIUREWICZ (Warszawa)

Abstract, Lot @ bo a group of measurable and nonsingular transformations on
(X, o, F). Bomo results on the equivalence (by countable decomposition) of measur-
able gets are proved, using which Hopf’s theorem on invariant measures for a group
of transformations is derived.

L. Introduction. Lot (X, o, P) be a probability space, and let G be
a group of measurable and nonsingular transformations defined on
(X, =, P). Hopt [4] gave a necessary and sufficient condition for the
exigterico of a finite invariant measure u on & equivalent to P for the
case where G is a eyclic group. In this paper we prove that condition (F),
the analogue of Hopf’s condition, when & is a general group of transtor-
mations, is necossary and sufficient for the existence of a finite equivalent
measure invariant under every g in @. The only known alternative proof
(see Hajian and Ito [3]) of Hopf’s theorem for a group of transformations
i through the equivalence of condition (H) and the condition of nonexisten-
ce of weakly wandering sets of positive measure introduced by Hajian
and Kakutani. While Hajian and Tto use functional analytic methods
in their proot, we use a direct argument motivated by an idea of Tarski
(see [6], Definition 1.25) regarding measures on semigroups. Our proof
construety the invariant measure and shows that it is the unique, finitely
additive, G-invariant measure equivalent to P which equals P on almost
invariant sets.

2. Definitions and notation. Let (X, o, P) be a probability space.
A finitely additive measure 4 on » is said to be equivalent to P it u and P
have the same sets of measure zero, that is, w(4) = 0 iff P(4) = 0 for
every 4 e, A moagurable map g of X into itsclf is called ozonsi/n,gula( if,
for evary 4 e o, P(4)> 0 implies P(g7'4) > 0. For 4, Bess, A L£p
iff P(4 A B) =0, where A is the symmetric difference.

Suppose that G is a group of measurable and nonsingular transfor-
mations defined on (X, s, P), that is, each g € G is a 1-1 bimeasurable and
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