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Singular integrals supported on submanifolds

by
ROBERT 8. STRICIIARTZ* (Ithaca, N.Y.)

Abstract. Three results related to Calderén-Zygmund singular integrals in gen-
eralizod contexts are established. In the first, Hilbert transforms supported on hyper-
surfaces of the form [7 la;7 = r where b; are non-zero real mumbers, are proved
bounded on L? for certain values of p (Nagel and Wainger proved I? boundedness).
In the second, LP boundedness is established for convolutions on R? with kernels of the
form g (| %)%} sgn«; by transference from known results about radial kernels. In the
third, the “method of rotations” is carried through for the Z? theory of Knapp-Stein
singular integrals on 2-stage nilpotent Lie groups.

§ 1. Introduction. The Calderén-Zygmund theory of singular integrals
has been extended in many directions in recent years. One major theme in
these extensions is the “method of rotations” introduced in [1]. This
leads to the study of various Hilbert transforms supported on curves or
more general submanifolds. The reader is urged to consult the excellent
exposition of these ideas in Stein and Wainger [10].

In this paper we present three contributions to this study. The first
concerns Hilbert transforms supported on hypersurfaces in R* defined by

the equation H [o; |% = where by, ..., D, are non-zero real numbers.

The I? boundedness of these operators was established by Nagel and
Wainger [7]. We give an independent proof that also establishes I°
boundedness for certain values of p. We do not know if these values of
p are best possible.

Our second contribution is a transference result relating convolutions
on R with functions of the form g (|a; ,|"*)sgn e, to convolutions with the
radial function g(Va?4-a2). We show that L*-boundedness is equivalent
for these two operators, and the applicability of the Marcinkiewicz multi-
plier theorem is also equivalent.

Qur third contribution is to the Knapp—Stein [5] theory of singular
integrals on nilpotent Lie groups. For 2-stage groups we carry outb the
method of rotations for L*-boundedness. We use the Buclidean Plancherel

* Research supported in part by NSF Grant MCS-8002771.

3 — Studia Math. 74.2


GUEST


138 R. 8. Strichartz

formula, and our proof is independent of the Cotlar lemma approach of [5].

These three contributions are presented in the next three sectiong,
which can be read independently of each other. None our results are defi.
njtive; we indicate a number of open problems at the end of each section.

§ 2. Hilbert transforms on hypersurfaces. Let b,,..., b, be non-zero
real numbers, r > 0, and let

3
M, ={xeR": m(w) =+} where z(z) = n[mj[bf.

J=1
Then M, is a hypersurface with 2" components (depending on the signs of
the 2;); we will call the principal component the onc for which all the o8 are

positive.

The Hilbert tramsform supported on I, is the operator of convolution.
with the tempered distribution H, supported on M, which is 0dd in cach

variable and equal to b3 J] %mi in local coordinates (this is independent
J#k Ly

of k). If all the b,’s have the same sign then H, is a locally finite measure,
but in general H, it defined by means of a principal value integral that
depends on the oddness of the kernel. It is easily verified that this Hilbert
transform commutes with the n—1-dimensional group D of diagonal
matrices with positive diagonal entries that preserve m(w), and this prop-
erty characterizes H, up to a constant multiple on each component of M, .
‘We also note the change of variable formula

(2) [#@aoy H ff—j N
0

B j=1
which is valid for test functions S supported away from the coordinate
n
walls [] @ =0.
=1

Next we introduce an analytic family of distributions 7, depending
on the complex parameter A via the identity

n
@) T = T2 [ )l —alol) o) | [ L
n =i Y
The integral is convergent if Rel > 0 and f is a test function supported
away from the coordinate walls. From (2.1) we see that

(2:3) Eif> =TA+1)7 [ (r—sY'<H,, f>ds

which gives the analytic continuation of Rel < 0. Note then that Fo, >
= (H,,f>. We will later show that (F,,f> can be defined without any
restriction on the support of Jfy 50 we can conclude F_, = H, as distributions.

Our goal is to compute the Fourier transform of F,, and to this
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end we will use the method of Mellin analysis used in [11]. From the
well-known Beta integral and the Mellin inversion formula we have

T(o+ig)

7}.+a+'1g o ie d@
I'(2+1+o-+ip) '

L
@O TG =t =5 i

for any o > 0 if Red > 0, and these conditions on ¢ and 4 'W.ﬂl make ffhe
integral absolutely convergent. We may substitute ¢ = =(x) in (2.4) with
¢ =1 and substitute the result into (2.2) to obtain

1 r —ie y ﬂof_ 1-+A+ie T'(1+140) a
28) Tl =5 fnf"ﬂw)n(w) H T e ag
But there is 2 well-known formula for the Fourier transform of a7 jz;| "%,
namely
T'((1—b,ip/2))
(2 + bjie)2)

(see [9]), so we may compute

. ) bsig ;
inT AR Ja; 7% sgna;

@6) T =%_ f ( [r@mer ﬂ (sena,)dal;

(A —bi0)[2)  TL+ie) i
o nj2+ 3Sbjie — do
T ! g T((2+bji0) [2) T(A+2+i0)

assuming the text function f is supported away from the coordinate walls

Now if Red > —n/2 then theright side of (2.6) is an absolutely con-
vergent integral (using Stirling’s formula to estimate the I' factors), so we
may write (F,,f> = Ignf(w)ml(w) dz where

ol A n [
@1 m@) = | [ 6ma) [ fat@yr)e
__T@+ig) ” r(a—bi2) ,
Fa+2+ie) LI T(@+002)

Since m, () is clearly a bounded function for Rel > —n/2 this enables us _to
simultaneously show that F, is a tempered distribution and Gompute'lts
Fourier transform. Actually we can do slightly better, it > b; # 0, a;ll(?wmg
Rel = —((%+1)/2), although the integral defining m,; no longer will be
absolutely convergent.

Levma 2.1, If 3'b; # 0 then the funciions m, may be analytically
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continued to Reld > —| ('n+1)/2) as L™ functions of x, with |m,|, <
AR gohore A (A) has at worst exponential growth in Tm (1),

Proof. Let m, y () be defined by the same formula as m,(x) except
that the integral is truncated to the domain |g| < N. For fixed # 5= 0 and N
this is clearly an entire function of i, and we seek to estimate it indepen-
dent of N.

Now Stirling’s formula with remainder can be written (see [4])

= V2mexp!((#++1/2)logz —2) (1 +w(2))

where [w(2)] < ¢/[¢] if Rez is bounded below and z does not lie on the negative
real axis (the principal branch of the logarithm cut along the negative
real axis is taken). From this we get the estimates

I'(a, —bi . LI w .
I’EZZ+b:Z; — (6|bl)u1—agezg(2b-‘.’blogb),6 7 (a1tagt1agnbe) lglal—“dg-‘ﬂblﬂ’ -+
+0(loln—n,
I(a;,+10) ™ 0y —ag)smme
== %20, uy~—ay ap—dy—ly
Tlarig = lol"1="2+ 0 gl

For Areal this allows us to estimate the integrand in (2.7) by [o|~*~*~"%, and
80 for > —((n+1)/2) we can ignore all the remainder terms since they are
at least of order || %2, Thus We need to establish the unl{orm boundednesy

(independent of N and ¢) of f et g==Be gy where B = 2 b; #0 and ¢
=A+1+n/2>1/2. i=1

We establish thig uniform boundedness by a Van der Corput Lemma
argument. We break up the interval of integration according as
[t—B —Blogg| is greater than or less than } B; this results in at most
three components, so it sufficies to bound each separately. If |t —B—
—Blogo| =% B on the interval [a, b] < [1, N] then

b b
[ e Pedg = [ (o)pie)de = pib)(b) - f wle

where p(g) = ¢~ P15 angd y(g) = —ig7°(t—B —Blog o). But ¢ and p
are bounded on the interval and
¥'(e) = —icg™"}(t —B—Blog )™ —iBg °~}(t —B — Blog o)~

is integrable since —¢—1 < —1.
If {—-B—Blogo| <% B on the interval [a,b] = [1, N] then also
[t—2B—Bloge| = % B on that interval. Making the change of variable
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logh
s = log o converts the integralto [ &9 ¢~9%ds where g(s) = (t—Bs)e®

loga

Note. that g''(s) = (#—2B—Bs)e® so |¢''(s)] > 4Be® on the interval
[loga,logh]. By Van der Corput’s Lemma ([14], vol. I, p. 197) the integral
of ¢ over any subinterval is < const.e™*”, hence by imtegration by
parts the integral is bounded provided ¢ > 1/2 because the interval [loga,
logd] is of uniformly bounded length and ¢**~°% is bounded on s > 0.

Thus we have established the uniform boundedness of m, (@) for 1
real and A >—((n+1)/2). But if 1 is complex, say 1 = 4,41, this just
introduces a factor

I'(a--14g)
Tla+i(e+s)

where a = 1,42 which, using Stirling’s formula, only increases the bound
by a factor which grows exponentially in s. The same argument which
establishes the uniform boundedness of m; y also shows the limit exists as
N-—oco, and the remainder of the proof is routine. m

Thus we have the Hilbert transform H,.xfembedded in an analytic
family of operators Iyxf = § 1 (m,, _f) at A= —1, and Fysf is bounded on
I? for Red > —((n+1)/2) it }b; # 0 or ReA> —n/2 if }'b; = 0. To
obtain L? boundedness we will use interpolation.

THREOREM 2.2. [H xfll, < 4, |fll, provided

<p<

3n—1 n+1
if 3b; 0 or
4n 4n
m—2 P12

if 21b; = 0, where A,, is independent of r.

Proof. By Stein’s interpolation theorem for analytic families of
operators, it suffices to show that convolution with F, is a bounded oper-
ator on all I? with 1< p < o provided Reid > (n—1)/2 if }'b, 0 or
Rel>n/2 if }'b; =0, where the operator norm is also bounded by
A(A)r+Ret We will do this by appealing to the Marcinkiewicz multiplier
theorem, since the multipliers m; are given explicitly by (2.7). The hypoth-
eses of the Marcinkiewez multiplier theorem will be satisfied if we ean show

a a
that 2° (-a-) my (@) is bounded for all multi-indices e with each ¢; = 0 or 1.
iz .

a a
But applying a® (%) to m, (#) merely introduces a factor of o into (2.7),

so the proof of the lemma applies if we increase 2 by # to handle the ad-
ditional factors. m
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If all the by’s are 1 then the Hilbert transform satzsﬂes some additional
estimates.

THEOREM 2.3. If by =...=0b, =1 then |Hxfl, < ArC=m%m 5
for p = (n41)/n and ¢ =n-+1.

Proof. From (2.2) we see that F, is a bounded function when Rel
=0, 50 ||[F3%fle < A (A)fl,. The result follows again by interpolation of
this with Lemma 2.1. m

Remark. The results of this section remain valid if in place of H,,
which is odd in all variables, we take the distribution which is odd in all
but one variable and even in the remaining variable. For this change
means that one of the factors

I'((1—bjie)j2)

T'((2+bsio) [2)
in (2.7) is replaced by

T'(— (b0) f2)

I'((2+bs50)/2)

This change does not affect the estimates for large ¢, but does introduce
a singularity at o = 0 due to I'(— byig/2). But this means the integrand in
(2.7) is of the form 6" o~ g () near g = 0 where ¢ is analytic, and this has
abounded integral by the Z* houndedness of the classical Hilbert transform.

It is not possible to allow evenness with respect to more than onc
variable, however, for then the singularity near ¢ = ¢ in (2.7) would be
too severe.

We do not know if the restrictions on p in the theorems are necessary,
or if they are merely the result of the inadequacy of the method.

It seems likely that the method can be extended to deal with the
Hilbert transforms supported on lower dimensional submanifolds discusged
in Nagel and Wainger [7]. This would require a multi-dimensional gener-
alization of the Van der Corput Lemma.

§ 3. Singular integrals in R®. In this section we specialize to the case
=2, b; = by = 1. Wewill study the convolution operators that commute
with the unimodular dilation group of matrices

a 0
[0 a,“l]’ a>0.

If g is any function of a single real variable let us writo
G (1, wa) = g(lmﬂzlm)Sgnmu
G (@1, @) = g(|wy2a"*)5gn s,
Go(@yy @) = g(Vai+-at).
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Clearly convolution with G; or &, will commute with unimodular dilations,
while convolution with &, commutes with rotations. The Fourier transform
of G, is given by the well-known formula

(3.1) Gol&y &) =27 [ Jy(2ms|E)g(s)sds.

The Fourier transform of &, and @, is given by o closely related formula.
This can be deduced by the methods of the previous section (as in [11]), or
more directly as follows:

(3.2) G, &) = f f (12, 25/) sgna, 71+ d i,

-0 —e0

= 812ffg(s)sin(2m;1§1)cos(2n82Esz‘)sdsw;’dml
[ ]

= dmisgné, [ Jy(dms|£ &g (s)sds
0

where we have used the well-known identity

o

Jo(®) = 2n! f sin (@ coshi)di
0

(sce [13]) to obtain the last line. Obviously the formula for éz is the same
except that sgn &, must be replaced by sgn &,. By comparing (3.2) and (3.1)
we deduce immediately

TuaeorEM 3.1. Convolution with G, (or G,) is bounded on I*(R?) if
and only if convolution with G, is bounded on L*(R*) with operator norm
exactly twice as large.

To obtain transference results from @, to @, (or @,) for L? boundedness
we first recall the statement of the Marcinkiewicz multiplier theorem in R?:

If T is a distribution on R? and m = T then the Marcinkiewicz con-
dittons are satisfied if m is C* away from the coordinate walls and there
exists & constant B such that for all integers j, &,

(3.3) Im (&1, £2)| < B,
igh-}-l
(3.4) sgﬁp P BE, (51, £ |BE;, <
HoR+L 5
m
3.5 d
(3.5) 81;111) i‘!; o (&1, 52)| € <

okt goi+l
2m

S g5 (0 &

a& dé, <

4ok 1)
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The Marcinkiewicz multiplier theorem ([9], p. 109) says that if these
conditions are satisfied then convolution with 7' is bounded on L? for
1< p < oo with bound depending only on p and B.

THEOREM 3.2. G, (or @) satisfies the Marcinkiewicz condition (3.3-3.6)
if and only if G, does.

Proof. If we write

h(t) =2m [ Jo(2mst)g(s)sds
0

then we have

Gy (£1s &) = D(1E))
and R
Gi(é, &) = 2isgn &, 1(2 1§, §2i”2).

To establish the theorem we will show that the Mareinkiewicz condition
for either @, or @, is equivalent to the conditions

(3.7 Bt < 4,
gle+1
(3.8) [ waa<a
&
nkz-H
(3.9) [ ' @a<27*4
ok

for all integers %.

Let us first consider the case of @,. Clearly (3.3) and (3.7) are equiv-
alent. We claim (3.4) and (3.5) together are equivalent to (3.8). To sce this
we compute

aa,
_— &
0&, \5 | W (1#

80
ok+1

o
Jk 3?“ eum‘da—f&h )] dt

where o = (24 E)V? and b = (222 4 g2, Taking £, near zero we obtain
(3.8) from (3.4) (with A = B), while (3.4) follows from (3.8) (with B = 24)
since the interval [a, b] can always be contained in the union of two
consecutive intervals of the form [2/, 27*']. The argument for (3.5) is
almost identical. Finally to handle (3.6) and (3.9) we compute

d, & L &£,
3.10 0 5162 4m &b
(310) sg,05, — pep D=

R (1€)
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so if j <k
Lo+l gok+l N saf+l p
aﬂG E 17
P56, (Euf).dfld& f == | @) deag,+
wol 4k ! a
xof+l E
[ [ @,
+2) a

and we can dominate the first term by (3.9) and the second by (3.8),
establishing (3.6). Conversely, if we have (3.6) and also (3.8) we can establish
(3.9) by taking § = & in (3.6) and using (3.8) to handle the term

_ k&
Ly
T (18D

(3.10).
Turning to &, we again have the obvious equivalence of (3.3) and
(3.7), while since

0 G =21 22 imh'(zlélfnl“z)Sgn&
o0&, & | 2
we have
xok+1 a
if] g5 (&, 89|26, —~—-2cj K (1))t

for ¢ = KRR (£ 12 and @ = 9%+¥2 £, 112 which shows the equivalence of
(3.4) and (3.5) with (3.8). Finally ‘we compute

76,

©11) g = 20 RIG AP A HIG G G A ek
1 9
]
SUARE G, st g
5 (61 &) 46 A&, < Sl aac,+
20 ok 85 8'5 v ' _J 5{
poi+l g
+f flle”llh’(t)ldtds.z
+2f ¢

und the first term ean be dominated by (3.9) while the second can be domi-
nated by (3.8), establishing (3.6). For the converse we take j =1 in (3.6)
and use (3.8) to handle the

§EEITER (216 L) sgn &
term in (3.11). =
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Remarks. There are many known examples of radial distributions
satisfying the Marcinkiewicz conditions. For example, (1 |o[)~1* for
t # 0 has a Fourier transform which behaves like |£|~%* near & = 0 and
decays exponentially at infinity. Thus convolution with (1 |w,a,|)=1+#
sgna, is bounded on L?, 1< p << oo, for ¢ 5 0.

It is vexing that the methods of this section are limited to » = 2 and
even there we must take distributions that are even with respect to one
of the variables. The problem with extending the results to the more
general situation iy that we no longer have an exact formula like (3.2).
We can obtain a Fourier transform formmula using the methods of the
previous section which will have a Bessel function integral plus an error
term ; the question is then what to do with the crror term.

§ 4. Nilpotent Lie groups. We consider a 2-stage nilpotent Lie group @,
connected and simply connected. Such a group congists of a Euclidean
space G = R™™ endowed with an associative product

(@, 9 )0(9"”7 'y,> = (m‘l“w’: ."/‘!'fl/”l"B(mv w'))
where # varies in R", y varies in R™, and

n n

B(g, &), = ZZbﬁhmjw}c for 4 =1,...m,
k=1j=1
with B skew-symmetric in # and #". An example is the Heigenberg group

where » is even, m =1, and B is a non-degenerate skew-yymmetric
bilinear form.

There is a natural group of automorphisms for such a group, namely
() (@, y) = (tz, *y), and classes of convolution operators that commute
'with these dilations have been studied by Knapp and Stein [5] and others.
The basic building blocks of these operators are the Hilbert trransforms

Heuf(@,9) = B. [ f((2, 9)0(s(a', y)) L.

Our first goal is to prove the boundedness of Hiy,y on L7, independent of
(@', 9"). We will use a method introduced by the author in [12], which
involves wusing the Euclidean Fourier transform and the fnet that the
group multiplication is affine in the (@, y) variables.

TEBOREM 4.1. There exists & wuniversal constant A such that
”‘H(m’,y‘)ﬂlz < A ”f”:
Sor all (&', 9').
Proof. By the Euclidean Plancherel formula it suffices to estimato

Singular integrals supported on submanifolds 147

(H r,45) “Hl, where ~ denotes the Euclidean Fourier transform. Now

o f (6,1) =B, [ [ entetiorsstrssvatsasiif, y)amay &

— RpAtm

o NN
=P.V. ff(5+B(w, n), ) i S48 T
where
o~ ’ Lud
B,y =)
<

i

N

’
by
k L3

]
1

For each fixed 7 we write w = B(2', n)e =y -5 and g(&) =F(&, 5), and it
clearly suffices to prove the I?(R™) boundedness of the operator

i st e rotty B
Tg(&) =P.V. fg(§+tu)e2m(tz.5+cg)7

independent of u, ¢ and .
Now by rotating & and dilating ¢ we can arrange to take u =
(1,0,...,0). Also we can write

. 3 . 9 2 2 s
2reilz § —nid iz mi(fy 4y —witx
6 r=g¢ g e 1,

The first factor has absolute value one, the second factor can be absorbed
_ wizged

into g by setting ¢,(£) = e , and the last factor can be absorbed into
the term ¢*** by changing ¢. Thus

2mit(@gEat. 42 En) garict? dt

—ﬂl'zw' ~
Te(&) = ¢ "Dy, fgl(fl—{—t, £, £)0 -

—o0

‘We now fix the variables &,, ..., &,. To prove the I? boundedness of T
it suffices to show that

r ; 5 At
So(&) =P.V. f‘f’(51+7’)6’(‘"+°”7

-0

is bounded on L*(R') independent of a and c.

Now S is a one-dimensional convolution operator so it sufﬁco;s to
prove the boundedness of the Fourier transform of the kernel gXat+etg—1,
But thig is o special case of Theorem 3A in Stein and Wainger [10] (it is
also possible to prove t];)liﬁ special case by appealing to the fact that the
Fourier transform of ¢ is known). m

The proof of course also shows that if we set (suppressing the depen-
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“dence on (@, "))
o e
Hf,n) = [ 1@ e, )<
e<lt|<n
then H, y is uniformly bounded and H, yf-Hf in I? as e—0 and N— oo,
It does not, however, give any estimate for the maximal operator

sup ., wfla, )l

Now let us turn to the general singular integrals. For simplicity of
exposition we deal with scalar-valued singular integrals, but there is no
difficulty in extending these results to Hilbert-space valued functions.
Let K{(z, y) be a measurable complex-valued function which satisfics the
homogeneity condition

(1) K (s(t)(@,y)) ="Kz, y)
and the integrability condition
(4.2} K|\ X eI'MZX)

where X' denotes the unit sphere in R™™ (this is much weaker than the
Dini condition required in previous work). Let us first suppose that & is odd
in the z-variables,

(4.3) K(—x,y) = —K(z,y).

To define principal value convolution operators with kernel K we
define annular regions

Aoy ={(@,eR*™: 5(1)(x,y) e £ for some ¢ in ¢ <t < N}
and then set
K, n+f(z,y) = y {v (@, y)ote’,y) ) E (o, y)da' dy'
and
PV.Exf = lim K, yuf

2-()
N—+00

if the limit exists. Howaver, in view of the polur coordinates formula

[ Fla,p)andy = I [ (t)0)p(e)tmtm=1 o
RnAm [}
where y is a smooth function bounded away from 0 and oo, we have
Eosf =% [H, y.fE(0)p(0)do
b5

50 we obtain immediately
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CoROLLARY 4.2. Under conditions (4.1-4.3) the operators K, yxf are
uniformly bounded on I? and the limit P.V. Kxf exists in L* norm for each
f € I?. The operator norm depends only on the L' norm of K on .

Finally we consider kernels that are even in the z-variables,
(4.4) K(—x,y) = K(=,39)
and satisfy the mean-value zero condition

(4.3) fK(a)wp(a)do‘ =0.
P

In place of the integrability condition (4.2) we require a slightly stronger
condition

(4.6) [1E(0)|(1+1og™ |K (c)))do < oo.

THEOREM 4.3. Let K satisfy (4.1), (4.4), (4.5) and (4.6). Then the
operators K, y+f are uniformly bounded in I* and the limit P.V. EKxf exists
in L* norm for each fe I*. The operator norm depends only on the value of
the integral in (4.6).

Proof. The proof is a modification of the original argument of
Calderén and Zygmund [1], pp. 298-304. First we require the analogue of
the Riesz transforms. Let G, be the smallest closed subgroup generated
by the elements (z, 0). If G, is not all of @ then we can find a complemen-
tary subspace @&, so that & = G,@ G, as Lie groups and &, is abelian. We
can essentially ignore the @, component in what follows, so we shall assume
G = @, to keep the notation simple.

Let

2 S 2
Dy =— E b8 ——
k &Z‘k + - ik % aﬁ'/i
be the left-invariant vector fields associated with the x-variables, and let

n
4 = — 3 D} be the sub-Laplacian. The hypothesis G = @, is equivalent

k=1 .
to the fact that the D, and their first brackets generate all vector fields
on @, so by a theorem of Hormander 4 is hypoelliptie. Folland [3] has
shown how to construct complex powers of 4, so that A~*2 D, and D, 4~
are operators of the form P.V.R,*f and P.V.S8,*f where R, and 8, are
homogeneous of degree —n —2m and ¢ away from the origin, and

il

(S

(47 D) (D, A7) = 1.

ke

[}

Since the D, arc odd in the w-variables the same is true for B, and 8.
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Furthermore, because these kernels are smooth we have ’Flle full.OaJlderén—
Zygmund theory available (see Koranyi and Vagi [6]), in particalar that
convolution with them is a bounded operator from Llog* L to L*.

Now given K as in the statement of the theorem, we write

n
K, y+f = ERk* S K, 5 f.

Te=1

Clearly it suffices to show that the operators 8,# I, y*f are uniformly
bounded in I® and converge in L* norm a§ £—0, N — oo for each feI”
But 8y*K, y is odd in the a-variables, so that we can hope to apply
Corollary 4.2 to the kernel

8px K = lim 8K,
) :

if this limit exists. Now a straight-forward modification of the argument in
[1], pp. 298-304 shows that S,*K exists and satisfies the hypotheses of
Corollary 4.2, and the difference 8K, y—(8;*K), 5 is uniformly boun-
ded on I?. We omit the details. m

It would be interesting to know whether the theorems remain true
for I”-boundedness; obviously different methods would be needed. It
seems plausible that the method can be extended to all groups which have
an affine multiplication as in [12]. It also seems likely that the Llog™L
condition in Theorem 4.3 can be replaced by an H* condition, as is the case
in the classical theory ([2] and [8]).
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