

On Urbanik's characterization of Gaussian measures on locally compact abelian groups

bτ

G. M. FELDMAN (Kharkov)

Abstract. It is shown that the following two conditions are equivalent for a locally compact abelian group X:

- (i) any probability measure γ on X such that, for each character $y \in X^*$, $y(\gamma)$ is a Gaussian measure on the Unit Circle Group T is a Gaussian measure on X itself,
- (ii) each non-trivial quotient group of the dual group X^* has an infinitely divisible element, except the case where the group of integers is a quotient of X^* by the subgroup of all compact elements in X^* .

Let X be a metric, separable, locally compact abelian group and let $Y=X^*$ be its dual group. (x,y) will denote the value of a character $y\in Y$ at an element $x\in X$, and δ_x the probability measure (distribution) on X which is concentrated at element x. The convolution of two measures μ and ν on X, the characteristic function of μ and the adjoint measure $\bar{\mu}$ are defined as usual:

$$\mu * \nu(A) = \int\limits_X \mu(A-x) d\nu(x), \qquad \hat{\mu}(y) = \int\limits_X (x,y) d\mu(x), \qquad \overline{\mu}(A) = \mu(-A).$$

If $\mu = \mu_1 * \mu_2$, then μ_1 and μ_2 are said to be factors of μ . A distribution of μ is called *infinitely divisible* if for each positive integer n there exist a distribution ν and an element $x \in X$ such that $\mu = \nu^{*n} * \delta_x$. If F is a finite measure on X, then e(F) will denote:

$$e(F) = \exp\{-F(X)\}(\delta_0 + F + F^{*2}/2 + \ldots).$$

R, Z denote as usual the groups of real, and integer numbers, respectively and the Unit Circle Group T is the factor group R/Z.

DEFINITION 1 (Parthasarathy, Rao, Varadhan [3]). A distribution γ on X is called Gaussian if it fulfils the following two conditions:

- (a) γ is infinitely divisible,
- (b) if $\gamma = e(F) * \alpha$ for some infinitely divisible α , then $F = \delta_0$.

It was proved in [3] that a distribution γ is Gaussian if and only if its characteristic function is of the form

$$\hat{\gamma}(y) = (x, y) \exp(-\psi(y)),$$

where x is a fixed element and ψ fulfils:

(1)
$$\psi(y_1 + y_2) + \psi(y_1 - y_2) = 2 [\psi(y_1) + \psi(y_2)]$$

for each y_1, y_2 in Y.

The class of Gaussian distributions defined above coincides with the usual one in the case of groups \mathbb{R}^n and \mathbb{T}^n (recall that Gaussian distributions on \mathbb{T}^n are defined as images of Gaussian distributions on \mathbb{R}^n by the canonical homomorphism \mathbb{R}^n onto \mathbb{T}^n).

Before the appearence of paper [3] Urbanik gave another definition of Gaussian distributions and investigated their properties.

DEFINITION 2 (Urbanik [4]). A distribution γ on X is said to be *Gaussian* if the following two conditions are satisfied:

- (c) γ is infinitely divisible,
- (d) for each $y \in Y$ the image y(y) is a Gaussian distribution on T.

Using the form of the characteristic function of Gaussian distributions, obtained in [3], it is easy to check that Definitions 1 and 2 are equivalent. In the same paper [4], Urbanik gave an example of a distribution on T^2 which fulfils condition (d) and which is not Gaussian. It is the aim of this paper to give a description of those groups on which such an example is impossible, i.e. on which each distribution fulfilling condition (d) is Gaussian.

For a precise statement of the results we have to recall some definitions.

Let G be an abelian topological group. An element $g \in G$ is called divisible by an integer n if there exists an element $x \in G$ such that g = nx. We will denote such an element x by g/n.

An element $g \in G$ different from 0 is called *infinitely divisible* if it is divisible by infinitely many integers.

An element $g \in G$ is said to be *compact* if the sequence ng is relatively compact in G.

THEOREM. The following two conditions are equivalent:

- (i) any probability measure γ on X such that for each character $y \in Y$ the distribution $y(\gamma)$ is Gaussian on T is a Gaussian distribution on X itself,
- (ii) each non-trivial quotient group of Y has an infinitely divisible element, except the case where the group of integers is the quotient of Y by the subgroup of all compact elements in Y.

Proof. (ii) \Rightarrow (i). Let γ be a distribution on X with the property that, for each $y \in Y$, $y(\gamma)$ is a Gaussian distribution on T. Replacing γ by $\gamma * \delta_x$ with a suitable $x \in X$, we can assume that 0 is in the support of γ . Then, for each character $y \in Y$ of finite order, the support of $y(\gamma)$ consists only of 0. Thus the support of γ is contained in $y^{-1}(0)$ for each character y

of finite order. Hence the support γ is contained in C—the component of 0 in G (cf. [2], Chapter 6).

The dual group of C is isomorphic to the quotient group of X by the subgroup of all compact elements in Y (cf. [2]). If this quotient group is isomorphic to Z, then C is isomorphic to T and thus for obvious reasons γ is a Gaussian distribution on X.

Thus we can assume that each non-trivial quotient group of Y has infinitely divisible elements. This assumption implies in particular that Z is not a quotient group of Y or, by duality, that T is not isomorphic to a closed subgroup of X. The last property, as was shown in [1], shows that a factor of a Gaussian distribution is Gaussian itself. Thus γ is a Gaussian distribution if $\nu = \gamma * \bar{\gamma}$ is such. Clearly, ν shares with γ the property that the image by each character is a Gaussian distribution on T. Therefore we have

$$\hat{\nu}(y) = \exp(-\psi(y))$$
 for each $y \in Y$,

where ψ is a non-negative function fulfilling the condition:

(2)
$$\psi(ky) = k^2 \psi(y)$$
 for each $y \in Y$ and $k \in Z$.

Let *D* be the set of all elements $a \in Y$ for which there exists a sequence a_n of elements in *Y* such that a_n is divisible by n and $\psi(a - a_n) \to 0$.

LEMMA. D is a subgroup of Y and the quotient group Y/D has no infinitely divisible elements.

Proof of the Lemma. Let $a,b\in D$ and let a_n,b_n be sequences of elements as in the definition of the set D. By the inequality for characteristic functions

$$(3) \qquad |\hat{r}\left(y_{1}\right)-\hat{r}\left(y_{2}\right)|\leqslant \sqrt{2}\left|1-\operatorname{Re}\left(\hat{r}\left(y_{1}-y_{2}\right)\right)\right|^{1/2} \quad \text{ for } \quad y_{1},\,y_{2}\in Y$$
 we obtain

$$\begin{split} |\hat{v}(a-b-a_n+b_n)-1| & \leqslant |\hat{v}(a-b-a_n+b_n)-\hat{v}(b-b_n)| + |\hat{v}(b-b_n)-1| \\ & \leqslant |\hat{v}(b-b_n)-1| + |\sqrt{2}|1-\hat{v}(a-a_n)|^{1/2}. \end{split}$$

Since for each sequence $y_n \in Y$, $\psi(y_n) \to 0$ if and only if $\hat{v}(y_n) \to 1$, we conclude that $\psi(a-b-a_n+b_n) \to 0$. Clearly, a_n-b_n is divisible by n. So $a-b \in D$, and this proves that D is an algebraic subgroup of Y.

D is a closed subgroup. This follows from the uniform continuity of ψ and from the fact that if $a \in D$, then for each $\varepsilon > 0$ and a positive integer n there exists an element b which is divisible by n and such that $\psi(a-b) < \varepsilon$.

If Y/D has an infinitely divisible element, then there exists an element $a \notin D$ and an unbounded sequence p_n of integers together with a sequence x_n of elements in Y such that $a-p_nx_n \in D$ for positive $n \in Z$. Without loss of generality we can assume that $p_n \geqslant n^2$ and therefore

there exists a sequence q_n of integers such that $nq_n/p_n \to 1$. It follows from the definition of the set D that there exists an element $y_n \in Y$ which is divisible by p_n and such that $\psi(a-p_nx_n-y_n)$ is arbitrarily close to 0. As a result, there exists a sequence $c_n \in Y$ such that c_n is divisible by p_n and $\psi(a-c_n)\to 0$. Let us put $a_n=nq_nc_n/p_n$ for $n=1,2,\ldots$ We have

$$\begin{aligned} |1 - \hat{v}(a - a_n)| &\leq |1 - \hat{v}(a - c_n)| + |\hat{v}(a - a_n) - \hat{v}(a - c_n)| \\ &\leq |1 - \hat{v}(a - c_n)| + \sqrt{2} |1 - \hat{v}(a_n - c_n)|^{1/2}. \end{aligned}$$

Since $\psi(a-c_n)\to 0$, we obtain $\hat{\nu}(a-c_n)\to 1$ and hence by inequality (3) we have $\hat{\nu}(c_n)\to\hat{\nu}(a)$ or, what is the same, $\psi(c_n)\to\psi(a)$. On the other hand by property (2) of ψ we have

$$\psi(a_n - c_n) = \psi((nq_n - p_n)c_n/p_n) = (nq_n/p_n - 1)^2 \psi(c_n) \to 0.$$

Thus $\hat{r}(a_n-c_n)\to 1$ and therefore, by the preceding inequalities, we get $\hat{r}(a-a_n)\to 1$. This shows that $\psi(a-a_n)\to 0$. Since a_n is divisible by n, this leads to a contradiction with the fact that $a\notin D$.

Thus the Lemma is proved, and let us return to the proof of the implication (ii) \Rightarrow (i). By the Lemma and by the already made assumption on Y we deduce that Y = D. Let $a, b \in Y$. Thus we can find sequences a_n, b_n such that a_n and b_n are divisible by n and $\psi(a-a_n) \rightarrow 0$, $\psi(b-b_n) \rightarrow 0$. As we have seen in the proof of the Lemma, these imply that $\psi(a_n) \rightarrow \psi(a)$, $\psi(b_n) \rightarrow \psi(b)$, $\psi(a_n+b_n) \rightarrow \psi(a+b)$, $\psi(a_n-b_n) \rightarrow \psi(a-b)$. Since $\exp\left(-\psi(y)\right)$ is a positively defined function on Y, we have

$$\sum_{i,j=1}^{k} \exp\left(-\psi(y_i - y_j)\right) \xi_i \xi_j \geqslant 0$$

for $y_1,\ldots,y_k\in Y$ and ξ_1,\ldots,ξ_k —complex numbers. Substituting in the above $k=4,\ y_1=-y_2=a_n/n,\ y_3=-y_4=b_n/n,\ \xi_1=\xi_2=-\xi_3=-\xi_4=n,$ we conclude that

$$\begin{split} \left[2\exp\left(-(4/n^2)\psi(a_n)\right) + 2\exp\left(-(4/n^2)\psi(b_n)\right) - 4\exp\left(-(1/n^2)\psi(a_n - b_n)\right) - \\ - 4\exp\left(-(1/n^2)(a_n + b_n)\right) + 4\right]n^2 \geqslant 0 \,. \end{split}$$

Taking the limit when $n \to \infty$, we get from the above inequality

$$-4\psi(a+b)-4\psi(a-b)+8\psi(a)+8\psi(b) \ge 0,$$

or equivalently

$$2[\psi(a)+\psi(b)] \geqslant \psi(a+b)+\psi(a-b)$$
.

Replacing in this inequality a by a+b and b by a-b and taking into account property (2) of ψ , we get

$$\psi(a+b)+\psi(a-b)\leqslant 2[\psi(a)+\psi(b)].$$

$$\psi(a+b)+\psi(a-b)=2\lceil\psi(a)+\psi(b)\rceil.$$

Hence ψ fulfils condition (1) and this proves that ν is a Gaussian distribution on X.

(i) \Rightarrow (ii). Assume that condition (ii) is not satisfied. Then there exists a non-trivial quotient group A = Y/U without infinitely divisible elements. Let us consider the case where A is not isomorphic to Z. For each element $a \in A$, $a \neq 0$, there exist, unique up to a change of sign, an integer n and element $\overline{a} \in A$ which is not divisible by any integer m > 1 and is such that $a = n\overline{a}$. Let us define $\psi(a) = \beta(\overline{a})n^2$ for $a \neq 0$ and $\psi(0) = 0$. The numbers $\beta(\overline{a})$ are positive and such that

$$1 \geqslant \sum_{a \neq 0, a \in A} \exp\left(-\beta(\overline{a})n^2\right).$$

Such a choise of the numbers $\beta(\overline{a})$ is possible because A is a discrete and countable group, as follows from the general facts about locally compact, metric, separable, abelian groups. Now let γ be the measure on A^* given by the following density f with respect to the Haar measure on A^*

$$f(x) = \sum_{a \in A} \exp(-\psi(a))(x, a).$$

It follows, by inequality (4), that γ is a probability measure on A^* . The characteristic function of γ is given by

$$\hat{\gamma}(a) = \exp(-\psi(a)).$$

It is easy to see that ψ fulfils condition (2). Thus, for each $a \in A$ the distribution $a(\gamma)$ is Gaussian on T. Moreover, since A is not isomorphic to Z, it is possible to find the numbers $\beta(\overline{a})$ such that, additionally, the function ψ does not satisfy condition (1). So, the distribution γ is not Gaussian. Since the dual A^* may be identified with a subgroup of X, we see that condition (i) is not fulfilled for X.

Thus it remains to consider the case where A is isomorphic to Z. In this case U is complemented in Y, i.e. we can write $Y = U \oplus Z$. Since we have assumed that condition (ii) is not satisfied, U contains non-compact elements in Y. Hence, by duality, we infer that X contains a subgroup isomorphic to $V \oplus T$, where V is a connected, non-trivial group. Let μ , ν be two different Gaussian measures on V such that $2\nu - \mu$ is a positive measure on V and let ϱ be a Gaussian measure on T such that $2\varrho - \lambda$ is a positive measure, where λ is the Haar measure on T.

Let us define a measure γ on $V \oplus T$ by

$$\gamma = \nu \otimes \varrho + \mu \otimes \lambda - \nu \otimes \lambda.$$

STUDIA MATHEMATICA, T. LXXIII. (1982)

Since $\gamma = v \otimes (\varrho - \lambda/2) + (\mu - v/2) \otimes \lambda$, we see that γ is a probability measure. It is a matter of simple calculations on characteristic functions to check that the characteristic function of γ is of the form $\hat{\gamma}(a) = \exp(-\psi(a)) \cdot (b, a)$ and that ψ fulfils condition (2) and does not fulfil condition (1). Thus, for each character $a \in (V \oplus T)^*$ the image measure $a(\gamma)$ is Gaussian on T and γ is not a Gaussian distribution on $V \oplus T$. Since the last group is isomorphic to a subgroup of X, it follows that X does not fulfil condition (i). This ends the proof of the implication (i) \Rightarrow (ii).

Remark. A locally compact abelian group X fulfils condition (ii) if its dual group has a maximal, independent system of infinitely divisible elements, or the component of 0 in X is isomorphic to T.

Acknowledgment. The author wishes to express his deep gratitude to the translator of this article, his work greatly exceeded the usual job of a translator.

References

- G. M. Feldman, On decompositions of Gaussian distributions on groups, Theor. Probability Appl. 22 (1977), 136-143 [Russian].
- [2] E. Hewitt, K. Ross, Abstract Harmonic Analysis, vol. 1, Springer-Verlag, 1963.
- [3] K. R. Parthasarathy, R. R. Rao, S. R. S. Varadhan, Probability distributions on locally compact abelian groups, Illinois J. Math. 7 (1963), 337-369.
- [4] K. Urbanik, Gaussian measures on locally compact abelian groups, Studia Math. 19 (1960), 77-88.

Fractional integration on Hardy spaces

bν

STEVEN G. KRANTZ* (University Park, Penn.)

Abstract. The classical fractional integration theorems for Riesz potentials on L^p spaces are extended to the real variable Hardy classes, 0 . It is further shown that the Riesz potentials can be replaced by a large class of convolution operators. Finally, one obtains results for certain operators which are not of convolution type by using a theory of local Hardy spaces.

§ 0. Introduction. Let $K_a: \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}$ be given by

$$K_{\alpha}(x) = \gamma_{\alpha,n} |x|^{\alpha-n}, \quad 0 < \alpha < n,$$

where $\gamma_{a,n} \equiv (\pi^{n/2} 2^a \Gamma(a/2)) / \Gamma((n-a)/2)$. It is an old theorem of Hardy and Littlewood (for n=1) and of Sobolov (for n>1) that the operator

$$I_a(f) = f * K_a$$

is a bounded linear map from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, 1 , <math>1/q = 1/p - a/n (see [10]).

For $0<\alpha+\beta< n$, one can compute (see [11]) that $I_{\alpha+\beta}=I_{\alpha}\circ I_{\beta}=I_{\beta}\circ I_{\alpha}$. This motivates the definition

$$I_a = I_{a/k} \circ I_{a/k} \bullet \dots \circ I_{a/k} \quad (k \text{ times})$$

when a < kn, and one checks that the definition is unambiguous.

Now let $H^p(\mathbb{R}^n)$ denote the generalized Hardy classes defined and developed in [11], [10], [3]. These will be considered in detail below. In [11] the following result is proved:

$$I_a: H^p(\mathbf{R}^n) \to H^q(\mathbf{R}^n)$$

boundedly, provided (n-1)/n 0, and $1/q = 1/p - \alpha/n$. Also

$$I_a: H^p(\mathbf{R}^n) \to L^q(\mathbf{R}^n)$$

boundedly, provided n/(n+a) , <math>a > 0, and 1/q = 1/p - a/n. It is known that in case p = n/a, the appropriate target space is BMO

^{*} Research supported in part by NSF Grant #MCS 77-02213.