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On Urbanik’s characterization of Gaussian measures
on locally compact abelian gronps

by
¢. M. FELDMAN (Kharkov)

Abstract. It is shown that the following twe conditions are equivalent for
a locally compact abelian group X:

(i) any probability measure y on X such that, for each character y € X*, y(y)
is a Gaussian measure on the Unit Cirele Group 7T is a Gausgian measure on X itself,

(ii) each non-trivial quotient group of the dual group X* has an infinitely divis-
ible element, except the case where the group of integers is a quotient of X* by the
subgroup of all compact elements in X*.

Let X be a metric, separable, locally compact abelian group and
let ¥ = X* be its dual group. («, y) will denote the value of a character
y € Y at an clement 2 € X, and ¢, the probability measure (distribution)
on X which is concentrated at element . The convolution of two measures u
and v on X, the characteristic function of x and the adjoint measure &
are defined as usual:

prv(d) = [p(Ad—a)dr(@), 4ly)=[(o,y)dul®), EA)=p(—4).
X X

If 4 = py*ps, then p, and u, are said to be factors of u. A distri-
bution of ux is called infinitely divisible if for each positive integer n there
exist a distribution » and an element ¢ X such that u = +"x5,. If F
i a finite measure on X, then ¢(F) will denote:

o(F) = exp{—F(X)}d+F+F2+ ...).

R, Z denote as usual the groups of real, and integer numbers, respectively
and the Unit Circle Group 7 is the factor group R/Z.

DrerinNITION 1 (Parthasarathy, Rao, Varadhan [3]). A distribution y
on X is called Gaussian if it fulfily the following two conditions:

(a) y is infinitely divisible,

(b) if y = e(F)*a for some infinitely divisible a, then F = §,.

It was proved in [3] that a distribution y is Gaussian if and only
if its characteristic function is of the form

y(y) = (=, y)eXP(-?P(y)),
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where » is & fixed element and y fulfils:

(1) YY1+ Y)W —Ya) = 2[y(y1) + 9 (¥2)]

for each y,, ¥, in Y.

The clags of Gaussian distributions defined above coincides with the
usual one in the case of groups K" and 7™ (recall that Gaussian distri-
butions on 7™ are defined as images of Gaussian distributions on R* by
the canonical homomorphism R" onto T™).

Before the appearence of paper [3] Urbanik gave another definition
of Gaussian distributions and investigated their propertics.

DErFNITION 2 (Urbanik [4]). A distribution y on X is said to be Gau-
sstan it the following two conditions are satisfied:

(e) y is infinitely divisible, ‘

(d) for each y e ¥ the image y(y) is a Gaussian distribution on 7.

Using the form of the ¢haracteristic function of Gaussian distributions,
obtained in [3], it is easy to check that Definitions 1 and 2 are equivalent.
In the same paper [4], Urbanik gave an example of a distribution on 7
which fulfils condition (d) and which is not Gaussian. It is the aim of
this paper to give a deseription of those groups on which such an example
is impossible, i.e. on which each distribution fulfilling condition (d) is
Gaussian. ) .

For a precise statement of the results we have to recall some defi-
nitions.

Let @ be an abelian topological group. An element g € @ is called
divisible by amn integer n if there exists an element # € @ such that g = na.
We will denote such an element z by g/n.

An element g €@ different from 0 is called infinitely divisible if it
i divisible by infinitely many integers.

An element ¢ e @ is said to be compact if the sequence ng is relatively
compact in G.

TeBoREM. The following two conditions are equivalent:

(i) any probability measure y on X such that for each character yeY
the distribution y(y) is Gaussian on T is a Gaussian distribution on X itself,

(i) each non-trivial quotient growp of Y has an infinitely divisible
element, ewcept the case where the group of integers is the quotient of ¥ by
the subgroup of all compact elements in Y.

Proof. (ii)=(i). Let y be a distribution on X with the property
that, for each y e ¥, y(y) is a Gaussian distribution on 7. Replacing ¢
by y*4, with a suitable « £ X, we can agsume that 0 ig in the support of y.
Then, for each character y € ¥ of finite order, the support of y(y) congists
only of 0. Thus the support of y is contained in y~!(0) for cach character y
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of finite order. Hence the support y is contained in ¢ —the component of 0
in @ (cf. [2], Chapter 6). .

The dual group of € is isomorphic to the quotient group of ¥ by
the subgroup of all compact elements in ¥ (ef. [2]). If this quotient group
is isomorphic to Z, then € is isomorphic to T and thus for obvious reasons y
is a Gaussian distribution on X.

Thus we can assume that cach non-trivial quotient group of ¥ has
infinitely divisible elements. This assumption implies in particular that Z
is not a quotient group of Y or, by duality, that T is not isomorphic to
a closed subgroup of X. The last property, as was shown in [1], shows
that a factor of a Gaussian distribution is Gaussian itself. Thus y is a Gau-
ssian distribution if » = y %7 is such. Clearly, » shares with y the property
that the image by each character is a Gaussian distribution on 7. There-
fore we have

v(y) = exp(—yp(y)) for each ye¥,
where y is a non-negative funetion fulfilling the condition:
(2) p(ky) = k2p(y) for each y €Y and keZ.

Let D be the set of all elements @ € ¥ for which there exists a se-
quence a, of clements in ¥ such that a, is divisible by » and p(a—a,) - 0,

LemmA. D is a subgroup of Y and the quotient group Y|D has no in-
fimitely divisible elements. ) ‘

Proof of the Lemma. Let a,beD and let @,,b, be sequences
of elements as in the definition of the set D. By the inequality for charac-
teristic functions . :

B) P@)— @) <V21—Re(»(g1—y))[* for yy,y.e¥

we obtain
Ia‘(a’—‘b—a’n'l"bn)'—ll < |§(a—-b— n+bn)_;'(b—bn)l+];(b—bn)_ll
< [9(b—by) —1[+V2[1—5(a—a,)[~.

Since for each sequence ¥, € ¥, u(y,)—0 if and only if #(y,)—1, we con-
clude that y(a—b—a,+b,)>0. Clearly, a,—b, is divisible by =. So
a—b €D, and this proves that D is an algebraic subgroup of Y.

D is a closed subgroup. This follows from the uniform continuity
of p and from the fact that if ¢ € D, then for each £ > 0 and a positive
integer n there exists an element b which is divisible by # and such that
p(a—b) < e :

I Y/D has an infinitely divisible element, then there exists an el-
ement ¢ ¢ D and an unbounded sequence p, of integers together with
a sequence 2, of elements in Y such that a—9,, € D for positive n € Z.
Without loss of generality we can agsume that p,>n? and therefore
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there exists a sequence ¢, of integers such that ng,/p,—1. It follows from
the definition of the set D that there exists an element y, € ¥ which is
divisible by p, and such that y(a—9p,%, —¥,) is arbitrarily close to 0.
As a result, there exists a sequence ¢, € ¥ such that ¢, is divisible by p,
and y(a—e¢,)—0. Let us put a, = ng,¢,/p, forn =1, 2, ... We have

L= (6—a,)| < [L—%(a—0,)|+ |5 (a—a,) —5 (a—0,)]
< =3 (a—0,)[+V2[1—5 (a, —e,)["2.

Since y(a— an)b—> 0, we obtain v(a—¢,)—1 and hence by inequality (3)
we have ¥ (6,)—¥ (@) or, what is the same, p(¢,)—w(a). On the other hand
by property (2) of ¢ we have

‘P( ¢ n) = V’((”(In .Ipn)on/pﬂ) = nq'n./pn—l) 1/)(0 )

Thus #(s,—¢,)—~1 and therefore, by the preceding inequalities, we get
v(a—a,)—>1. This shows that y(a—a,)—0. Since a, is divisible by u,
this leads to a contradiction with the fact that a ¢ D.

Thus the Lemma is proved, and let us return to the proof of the
implication (ii) = (i). By the Lemma and by the already made assumption
on Y we deduce that ¥ = D. Let a, b € ¥. Thus we can find sequences
a,, b, such that a, and b, are divisible by » and y(a—a,)—>0, v (b —b,)—>0.
As we have seen in the proof of the Lemma, these imply that y(a,)—v(a),
Pba) >y (b), v(a,+b,)—>p(a+b), p(a,—b,)—>p{a—b). Since exp(—v(y))
is a positively defined function on ¥, we have

I

Zexp(—w

1,5=1

(’.’/s—?/j)) 620

for 41, ., 9, € Y and &, ..., & —complex numbers. Substituting in the
above k =4, y,=-y, = n/’"': Yo=—Ys =byfn, & =5=~&=—¢
=mn, we conclude that k

(4/n2)p (,)) +2exD( — (4/n2) (b)) — 4exp( — (1 /n%)p (4, —b,)) —
—4exp | ~ (L/n?) (@, +b,)} +4]n2 > 0.
Taking the limit when n-—>oo, we get from the above inequality
—4y(a+b)—4y(a—Dd)+8y(a)+8¢(b) > 0,
or equivalently

[2exp (—

2[y(a)+ ()] = p(a+b)+y(a—D).

Replacing in this inequality @ by a-+b and b by a—b and ta.kmg into
account property (2) of y, we get

p(a+d)+y(a—0b) < 2[y(a)+y(d)].

icm°®
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Thus we have the equality
p(a+b)+p(a—b) = 2[p(a)+p(®)]. ‘
Hence y fulfils condition (1) and this proves that » is a Gaussian distri-

pution on X.

(i) = (ii). Assume that condition (ii) is not satisfied. Then there exists
anon-trivial quotient group A = Y /U without infinitely divisible elements.
Let us consider the ease where 4 is not isomorphic to Z. For each element
a € 4, a # 0, there exist, unique up to a change of sign, an integer # and
element 7 € A which is not divisible by any integer m > 1 and is such
that ¢ = n@. Let us define y(a) = f(@)n? for & = 0 and v(0) = 0. The
numbers (@) are positive and such that

(4) 1> Z exp (—B(@)n?).

a0, aed
Such a choise of the numbers #(@) is possible because A is a diserete and
countable group, as follows from the general facts about locally compact,
metric, separable, abelian groups. Now let y be the measure on A* given
by the following density f with respeet to the Haar measure on A*

Z exp(—

agd

a) ma)

It follows, by inequality (4), that y is a probability measure on A*. The
characteristic function of y is given by

7(a) = exp(—y(a)).

It is easy to see that y fulfils condition (2). Thus, for each a € A the distri-
bution a(y) is Gaussian on 7T'. Moreover, sinece A is not isomorphic to Z,
it is possible to find the numbers B(@) such that, additionally, the fune-
tion v does not satisfy condition (1). So, the distribution y is not Gaussian.
Since the dual 4* may be identified with a subgroup of X, we see that
condition (i) is not fulfilled for X.

Thus it remains to consider the case where A is igsomorphic to Z.
In this case U is complemented in Y, i.e. we can write ¥ = U @Z. Since
we have assumed that eondition (ii) is not satisfied, U contains mnon-
compact elements in Y. Hence, by duality, we infer that X contains a sub-
group isomorphic to V@T, where V is a connected, non-trivial group.
Let u,» be two different Gaussian measures on V such that 2» —u is
a positive measure on V and let ¢ be a Gaussian measure on T such that
2p—Ais a positive measure, where 1 is the Haar measure on 7.

Let us define a measure y on V@®T by

Yy =vQ0+pu@L—rQA.
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Since y = v @ (o —A/2)+(u—»/2) ®4, we see that y is a probability
measure. It is a matter of simple calculations on characteristic functions
to check that the characteristic function of y is of the form y(a) =
exp(—y(a))- (b, a) and that y fulfils condition (2) and does not fulfil
condition (1). Thus, for each character a € (V @T)* the image measure a(y)
is Gaussian on 7' and y is not a Gaussian distribution on. V@®T. Since the
last group is isomorphic to a subgroup of X, it follows that X does not
fulfil condition (i). This ends the proof of the implication (i)=- (ii).

Remark. A locally compact abelian group X fulfils condition (i) if its
dual group has a maximal, independent gystem of infinitely divisible
elements, or the component of 0 in X is isomorphic to 7'
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Fractional integration on Hardy spaces
by
STEVEN G. KRANTZ* (University Park, Penn.)

Abstract. The clagsical fractional integration theorems for Riesz potentials on
bra spaces are extended to the real variable Hardy classes, 0< p < 1. It is further
shown that the Riesz potentials can be replaced by a large class of convolution oper-
ators. Finally, one obtains results for certain operators which are not of convolution
type by using a theory of local Hardy spaces.

§ 0. Introduction. Let K,: R*\{0}+~R be given by

K. () = vo,l0*™"

where y,, = (="?2°I'(«/2))/I'((n—a)/2). Tt is an old theorem of Hardy

and Littlewood (for » = 1) and of Sobolov (for n» > 1) that the operator
L(f) = f+« K,

is a bounded linear map from L?(R") to Z4(R™), L <p < nfa, L/g =1[p—
—aln (see [10]).

For 0 < a +p <mn, one can compute (see [11]) that I,. ;= I,0I,
= IzoI,. This motivates the definition

I<a<n,

I, = Iyelye .. oIy (k times)

when a < kn, and one checks that the definition is unambiguous.

Now let H?(R™ denote the generalized Hardy classes defined and
developed in [11], [10], [3]. These will be considered in detail below.
In [11] the following resulf is proved:

(0.1) I,: H?(R™—H(R")

boundedly, provided (n—1)/n < p < nf(n+a),a>0,and 1/¢ = 1/p—a/n.
Also

(0.2) I.: H?(R™)->L%(R"

boundedly, provided n/(n-+a) <p <nja, a>0, and 1/g =1/p—a/n.
It is known that in case p = n/a, the appropriate target space is BMO
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