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On singular integrals and Orlicz spaces™
by
CRISTIAN E. GUTIERREZ (Buenos Aires)**

Abstract. This paper deals with the boundedness in L2 (R") of singular integral
operators with variable kernel when such kernel belongs to an Orlicz space Lg. We
give necessary and sufficient conditions on & related with the continuity. On the
other hand, we show a counterexample concerning with the result given in [2].

1. Introduction. In this paper we deal with singular integral operators
of the form

(11) Ef(@) =p.v. [ ke, y)fle—y)dy,
Rﬂ‘

where f is a measurable function and %k(w,y) is defined for =,y e R",
Yy = 0 and satisfies the conditions:

(1.2) For t >0, k(z,ty) = t"k(z, ¥);

(1.3) f k(z,y')do(y’) =0 for each zeR™

“n—1

Calderén and Zygmund studied the continuity in L?(R™ of such
operators and obtained that if the kernel k(z,y) belongs to IL#(Z,.;)
in the variable y and it has bounded norm as function of @, then K is
bounded. in L*(R") if and only if ¢ > 2(n—1)/n (see [1] and [2]).

‘We present here an improvement to this theorem in the case which
the kernel belongs to an Orlicz space Ly(Z,_;). This will be done devel-
oping the kernel in spherical harmonies as in [2] and then using an in-
terpolation theorem given by M. Jodeit and A. Torchinsky [3].

On the other hand, we give a counterexample related with L”-case,
that is in [2] it has been shown that if 1 < p << 2, then K is bounded
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in I? if and only if ¢ > (n—1)p/n(p—1). We show that if p > 1 and
q < (n—1)p/n(p—1), then fe L? doesn’t imply Kf € I® even locally.

2. Preliminaries and statement of results. In this section are given
some definitions and properties concerning to the Orlicz spaces which
‘we are going to use (see [3] and [4]).

A generalized Young function (GYF)D is a function defined in [0, + o)
such tha.t-

i) @(t) =0, &(0) =
(if) !15 is lefb contmuous,
(iii) P(2)/z is non-decreasing.
A convex GYF will be a Young funciion. Given a GYF®, its regu-
larization D, is defined as

(1) oa) = [ D0t

@, is a Young function and it satisfies
(2.2) Do(0) < D (@) < Po(20).

Let (X, u) be a measure space and let @ be a GYF. The Orlice space
Lg(X, p) consists of all the y-measurable functions f (modulo the equiv-
alence relation a.e.) such that

[ ®(elf@))au(@) < oo
X

for some ¢ > 0 (depending on f). The norm
If o= int{2 > 0: [ &1 (@)1/2)du(2) < 1}
X

turns L, into a Banach space.
) The Young’s complement of a GYF®D, denoted @, is given by &(x)
= sup(my —d(y) ) @ is a Young function and holds the inequality:

(2.3) f If (@) g(@)] du(@) < 21flls lgll -

The inverse of a GYF® is defined by 9~(y)
(inf @ = +oc0) and it satisfies
(2.4) P~ (@) < & < DY B (w)),
Also holds the following inequality (& Young funetion):
(2.5) # < &~ @)(B) M) < 2.

We shall now state our results:

= inf{x: b(x) > y}

2>0.
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THEOREM 1. Let k(x,y) be a Lernel which satisfies (1.2) and (1.3)
and D a Young function such that O(x)[x? is non-increasing and D(2x)
< NO(z) for some N =1 and for each x> 0. Then if

(2.6) sup k(@ Mros,_p < M,

there ewists a constant C depending on n and D only such that for each f € CF (R™)
we have

IMESflls < OB Y,
provided that

(2.7) f O (=Dl qy < oo,
1

THEOREM 2. Let @ be a Young function such that for some M > 0

(2.8) [ @@ry Mg = oo,
M
Then there emist k(w,y) satisfying (1.2) and (1.3), and feCP(R™) such
that sup |k(2, Mgz, _p < oo but Kf ¢ L*(B").

zeR™

TeworeM 3. If n=2, p>1 and 1< g < (n—1)p/n(p—1), there
ewist k(w,y) satisfying (1.2), (1.3) and sup /% (2, Mzyz, < and

xeR

feLP(R"), such that Kf ¢ LP(R™) locally.

3. Proof of Theorem 1. This will be done in three steps.
3.1. For each m>1, by ¥Y,;,1<j<d,, we denote a complete
orthonormal set of spherical harmonics of degree m in L*(X,_)).
Let us suppose that k(x,y) has the form:
d,

20 D) (@) Yoy 9 917",

m=1j=1
where the sum is finite. As in [2], it may be seen that the integral in
(1.1) exists for f e O (R"). We write

(3.1.1) k(w,y) = ¥ =yl

2) = 5. [ Tpyly) lyl""f (@ —y)dy
RV

A
(Ea ) ) bmj(m) = ﬂli(m)/a‘m(m> 80 that]_g; b?ni(w) =1.

Now, takmg a sequenee ¥ Of positive numbers, we have

dm ~
[2 a’"‘(m) 2 bmj(w)f;nj(-’”)]z
m = .
<[ @ @rm][ X v 2 Fos(@)]-

m

and seb a, (@

(3.1.2) [Ef(@)] =
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If we can gelect this sequence such thatb
(3.1.3) PRACTR
m

where ¢ is a constant depending on n and @, then integrating (3.1.2)
we obtain .
NEFIE < O Dyt D 1ol
m j=1

Trom Plancherel’s theorem. and. the following facts:

(@) Foj(@) =0, Yp;(0)f(2), where 0, <0,m " (" denotes tho
Fourier transform),

(i) 3 ¥2,; = hyopty, where hy, < C,m"? (see [5]),

7

we get
VRSl < O ( 3] vt m=*) * f .

In consequence we are going to show that there exists a sequence
¥, which satisfies (3.1.3) and ) : '

(8.1.4) D vnimTt < oo,
<!

3.2. Let us consider for each m > 1 a normalized spherical harmonic
Y,.. If geL*(%,_,), we put

9(@) ~ Y anTp(@), with a, = [ g(@)¥,(@)do(e).
m>1 i Zpy .
It is well known that the following inequalities are valid (see [B]):
o ¥ “21)112 < lleae, —ps
mz1 .
(i) lan < Om& 2 |lgl1s y, m>1, C a constant depending on .
- We need to interpolate the two last inequalities, for which we uge the
following result of M. Jodeit and A. Torchinsky (see [3], p. 255):

(3.2.1) TemOoREM. Leét (X, pu) and (X, ») be two measure spaces. Let T
be a linear operator defined for all p-measurable functions om X, which
satisfies

ITf lz2 ey < Mallf ey and 1Tf liposcry < alf e, -

Then if @ is a GYT such that O(x)[x? is non-increasing, we have 1Zf Iz

. (X )
<ONflpgzy> where B* s the GYT defined by ’

=" - Jor2=0,
sup@(y~ "' for @ %40
U<z

and O is a constant which depends on M, M, and @ only.
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Now, we pub

b(w,.) ~ Zamj(a;) Vg = ) (@) X

A,
with ¥,, = 3 b,,;(#) ¥,,;, Where a,,(2) and b,,(z) are defined as in (3.1).
. j=1

3
Let us fix # € R", we define T,g = (b, (@)m~""2) . where g e I'(Z,,)
and b, (#) are the coefficients of g in the system ¥, defined before.
Taking on the set N of natural numbers the measure g(m) = m"*
and observing now that 7T, satisfies the hypothesis of (3.2.1) and T, k% (w,.)
= (@, (@)m~ "2, for each =, we have
(3.2.2) [ {am (@)= s | v, < CU(@, gtz

where O depends on # and @ only.
Let A be a GYF. From (2.3) we obtain

(3.2.3) D (@) ym = ) (tn (@) m Oy 2

< 2”(%(”) mm("_z)ﬂ)fanL o VmlL v -
Since B(x) = 24 (2?) is a GYF, we have as a consequence from the
definition of the norm in L, that
324)  |{an@m @) |z = (| (@@= ) T v -
Now we choose A (z) = } &*(2'?) (see lemma below), then using (3.2.2)
and (3.2.4) in (3.2.3) we obtain

D) 0 (@) ym < ClR(@, gz, Wmlzzornm -

Hence is enough to show that there exists y,, such that |y, lz v,y < oo and
(3.1.4) is valid. In order to do this we need two lemmas.

(3.2.5) LmMMA. Let @ be a Young function such that O(w)[x* is non-
inereasing, then

(i) A(w) = % B*(@'®) is & GYF;
(i) oM@ 2 (A) o) S 207107 (2 )R

Proof. (i) @ is o Young function; then 4(») = $ B (a1 if & 0.
Hence it is sufficient to see that g(x) = «B(z~*?) is non-increasing. If
2>0, >0, for cach y >0 we take y' = ((@+s)/0)*y, then

y>y and BF)yr< DY)yt
Hence (z-&)P(y) = D (y'); then
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(@+e)y — (@)D (y) < Py —2PY') < 9(0)-
Now taking sup over ¥ We obtain g¢(x+2) < g(@)- o
(i) Since @ and @ are strictly increasing, A~ (@) = (B)71 (27 e
Hence the estimates follow using (2.8) with A and .
(3.2.6) Lmmma. Let P be as in (3.2.5). @ satisfies (2.7) if and only if there
emists a sequence &, > 0 such that

8 = Zdi(em)“lfm“‘” < oo and
(3 2 7) mz=1
- By = D Plon) epm™" < o0
mz1l

Proof. Condition (2.7) is equivalent to

00
(3.2.8) f #2 (e~  d< co.
1

Hence if (2.7) holds, we put s, = e,
Let &, satisfy (3.2.7); we define

B(e,,) m"™"

In = @)
Then ¢, <1 if &, <m™* and g, < e,m~ ™ if g, > m™?; in consequence

% me,,
) e G
mib(2,)

2 m2P (™) ( Z +

m=1 (s e <%}

< PSS,

i opgm ™2y

Hence (3.2.8) holds.
Now we define p,, = (47 D(e,) ") With &, as n (3.2.7). From
(2.4) we get

2 A(yp)m" < Z D (g,)"Im T = 8y < 00
il n

and then |yullzZone < oo And also from (3.2.5) we have

m iyt < 4—2 D (g, etm™ = §y < o0,
m ne
This completes the proof of the theorem when k(w, y) has the form (3.1.1).

3.3. We now prove the theorem in the general cage. Yot us firgt
suppose that %(a, y') is bounded in » and y'. I we take

T (@, 9') = ) Og(@) Yy (9),

maN
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where a,;(®) are the coefficients of k(x,y’) in {¥,,}, we have

(3.3.1) Ve (2, ) —To(a, -)“LZ(L‘,,_I)"O’ N—>oco, zeR"

Sinee @(w)/z* is non-increasing, there exist €, and €, such that

11z gz = Oallfle2ee, _y  amd Wflzys, ) < Cellflzges, o

in consequence

(8.3.2) Mo (@, ) —=Bo(@, Npges,_y=0 i N->co.

Lot s be a positive integer, ¢ > 0; by Hgorof’s theorem there exists
2 measurable set B < {|o] < 8} such that |{|m] < 8} —Bi\ < ¢ and (3.3.2)
holds uniformly on B2. Hence if ¢f is the characteristic function of Bf,
we have
(3.3.3) ligs (@) by (@ Mz gz, -y~ ok (@) B (s iz gz,

uniformly, N-»oco. We put
Kf(®@) = p.v. Rf hy(@,9) flo—y)dy, feCFE®R.
Suppose that f(y) = 0; it ly| > ¢; then
| K yf () —Ef ()] < O sup I @) (2] + o) My (2, ) — (@5 )pgis,_p-

Now combining this with (3.3.2), we obtain Kyf—>Kf p.p.
Sinee the theorem holds for the kernel ¢f(x)ky (@, y'), then if N—oo,
by Fatow’s lemma and (3.3.3) we have

s Eflle < € sup (@ Mgz, _pllfla-

Hence if 0 and s—oco, we obtain the desired result.
IE h(m, y') is not bounded, we put ¥ (z, y') = k(w,y') if k(z,y")|
< N and &N (x, ') = 0 otherwise and define

1
Ty (8, ) o= B (@, ) y) ™=y s

Pnet g7y

KN, y') do(y).
Sinee 5™ (v, 4')) < |k(e, y')|, from Lebesgue’s theorem we have
(8.3.4) Tog(®, 4")—>H(w, y') PP

Furthermore, [ky (2, ¥')| < k@, Yy +FO0Mwl, = g(x,y').

We will prove that ky(z,y")—k(@,y) n Le(Z,—,). In fact, using
now that there exists ¢ > 1 such that @(22) < 0P(x), if 0 <e< 2, we
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can take r>1 integer such that 2/e < 2" and we obtain

‘kN(may’)_k(f’}:y’”) ,
a
f 1 o[ B RIS

2lg(@ . ( rwii(ﬁtﬂ) .
< (slu @ 1L,,)d"(”’ En[fp g, Moy 127

. _w_(__)i_) o
<0 gnfld)(llg(w,,)“% do(y') < 0"

Then from (3.3.4) we have

N

“kN(m’ D= k(@ NrgE,—n S elg(@, MNrpe,_y
for large N. Now if we argue ag in the case where % is bounded, wo obtain,
the desired result.
4. Proof of Theorem 2. Let f be in OF(R") such that f(#) =1 if
ol <1, fl@) =0 if jo|>2 and 0 < f(x) <1 We define
oMY i o=y < el
B e W S A A S e

for |#| sufficiently large and k(z,y’) = 0 otherwise.
Then for large |#| and <1 we have
Ef@) = [, pfe-nay = [ T yfe—ydy
: " o =il =1
> C07 (ol ) ol™ [ dy
=iz~

lz—y]<1
= 0,07 (l=*™") lw™"

kw,y) =

Furthermore from (2.4) we have
f Do([ke(w, ")) do(y") < 0
n—1

Hence for M, >0 sufficiently large we obtain

for each x e L™

[ Ef@)rdo>C [ 007 @ at s 1
My

130y
Now it we set ¢ = (o(w)]*~Y, from (2.2) and (2.4), we gob
120 [ udw)®,(u) @00 gy
2y

0
)—n/(n--l)d,w >0 f @(,MIIZ)nI(n—I) dy = - oo,
My

=0 fw Dy (%

M,
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5. Proof of Theorem 3. Let p(f) = t7* with a > 0, ¢ > 0. We define
flz) = o(lol) if || <1 and f =0 otherwise, and

Wl —y i o=y < ol ol <1,
<

Blo,y) =1 —lo[Pla'+y' 17" i ey <ol ol <1,
0 it jol>1
where v, f >0 such that y--p = (n—1)/q. Since
(5.1) [ Wy Pdely) =P, s<n-l,
‘ o'~ ]

we have

[ (@, y)itdo(y) = 261" [ o=y doly) <O

P |2~ i< [
I wo get X¥ = {y' e X, 4: k(w,y’) >0}, then
Efo) = [ b, yf@—y)dy = fk(w,y [ fla—wy)pasdy’.
wi=e z; |f1=e

Now denoting by (#,9y’) the angle between #' and 4’ and pufting
da = |@(sin(z, y'), p = ]axlcos(m,J) we have for |#|<1 that f(x—1iy")
= ga(p—1) g5(—1), Where y(t) = <p((t2+d2)”2) and %, denote the charac-
toristic function of the interval I = [—(1—d)™, (L—ad'"]. T we
donote by H and H, the Hilbert transform and the truncated Hilbert
transtorm, respectively, we can write

Efw) == [k, y)H(pa) (@) do@)

2;' )
and we have H,(paxa) () H(paya)(2); 2> 0, if s—>0, and then we obtain
(5.2) Ef@@) == [ k@, ) H(pata()do(y).

z-l-

Iy e ZF, w| <1, we have cos(w
it follows
8.3) H(paxa) (@) = H(pa)(w)

Furthermore, Hpg(w) = d~*He, (@~ @); then from (6.2) and (5.3) we gotb
(5.4) Kf(w) > = fk(ﬂh ¥ A~ Hoy(n/d)do(y’).

g

Let us sappose for a moment that thero exists 0, > 0 such. that

", y") >0 and u e Iy, then ag g, i even,

©3) Hp(@)> 0 i atoo;
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then from (5.4) we obtain for small |z|

Ef(w) >0, [Tlo,y)d " p  doly’)

>~ [ o' =y "oy,
l' —v'l<]a)

If a+y <, from (B.1) the last term of the inequality above exceeds
0 ||~ Brr+2a-m — ¢ || ~(n-Dler2e=n) Now as o consequence of the hypo-
thesis made on g the interval I = [n/p-+n—(n—1)/¢, 2np) is non-empty,
hence taking « >0 such that 2a¢el, we obtain |Kf(e)l =0 o}~ for
small |z|.

Finally, we will show (5.5). As ¢, is continuous, bounded. and. ¢, e I”(R)
for some p > 1 we have

“+eo
I, (x) = f 7 (0)Q(e, v —1) @ —Hepy () for each we R,
—00 80
‘where
1 t
Qe, 1) = —71:— PO .

Changing variables we obtain

oo +oo

L@) =] Qe,®) [ —1(8)Kiamtiwsy () A8

oo

o0
=[ Q1) [ —01(8) Ltototts (8) = Hiamtainy (—$)]ds8aL,
0 0

where g, sy denote the characteristic function of the interval [z—
—t, ®+1t]. I in the integral above we integrate on 0 <?< x and >4,
geparately, then we can change the order of integration and we get

0o

L) = —A©) [ Qe ) Lmirn (6 dtds +
[

+oo o0
+ [ =) [ Qes ) Lico—trn (8) dbds
0 x

x

@ 2w @z
= —gl(®) [Qe,atds+ [ —gi(s) [Q(e,r)dtds+

x+a -8

2z +oo
+ [ —¢i(s) [ Qe,ydtas+ [ —gi(s) [ Qe t)dtds
0 x 2 x—s
1t &2+ (@ -8)?
LT pioon (S

icm®
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Now if -0, wing Fatou’s lemma we obtain

r+s

1F 0,
qul(’”)?";f — g1 (s)log
0

E
r—s

but if 0 < s < 2, we have

then

1 ¥ , 1 .
qu;.(w)>—;50f —G(8ds 3 0,2 i aroo.
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