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ProposTTION. Si B et F sont des espaces localement quasi-convexes
séparés, il eviste alovs sur EQF une topologie tensorielle localement quasi-
conveve séparée.
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Analytic functionals on fully nuclear spaces
by
SEAN DINEEN (Dublin)

Abstract. In this paper we study bounded linear functionals on (H (0), %)
(analytic functionals), where U is an open polydisc in a fully nuclear space with
a basis. Our main result is that (H (U), 7,) is a bornological space whenever U is an
open polydise in a certain class of Fréchet nuclear spaces with a basis. Apart from
+this result, we show that certain spaces of holomorphic functions and analytic funec-
tionals have a basis and are nuelear. An interesting feature of our results is the direct
correspondence which we find between known results not hitherto seen as being
connected.

We use the notation of [8] for the theory of holomorphic functions on
fully nuclear spaces. We refer to [14] and [16] for the general theory of
locally convex spaces, to [13] and [21] for the theory of nuclear spaces,
to [107], [11], [18] and [19] for the theory of holomorphic functions on
locally convex spaces. Further results on the theory of holomorphic
functions on nuclear spaces are to be found in [2], [3], [4], [5], [6] and [24].

We begin by recalling some definitions from [8].

A fully nuclear space is a locally convex space F such that F and
I (the strong dual of H) are both complete reflexive nuclear spaces.
This implies that the strong dual of a fully nuclear space is fully nuclear.
Fréchet nuclear spaces are fully puclear and the product of a countable
set of fully nuclear spaces is also fully nuclear. If B is fully nuclear and
has a Schauder basis, then it has an egquicontinuous and hence an ab-
golute basis. :

Tet P denote a collection of non-negative sequences such that fo
each r e N there exists (a,), e P where a, > 0.

The sequence space A (P) is the get of all sequences of complex numbers,
(2,), such that

D lala, < oo

We endow A(P) with the topology generated by the semi-norms pa,
a = (a,), € P, where

for all a = (a,)51 €P-

Pa ({zn}n) = 2')& ‘zn! Gy
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Rach element of P is called a weighi. We let [P] denote the set of all
gequences of non-negative real numbers (a,), such thab

{(zn)n cB; D" lela, < 1} iy an open subset of A(P).

It is clear that A(P) = A([P]).

The following is the basic result coneerning nuclear sequence spaces
(Grothendieck—Pietsch).

PrOPOSITION 1. The locally convex space A(P) i3 nuclear if and only
if for each (a,), € P there ewists (u), € Iy and (oy), € P such that a, < |t,|* a,
for all n.

Hence if A(P) is nuclear, then

A(P) = {(Zp)n=1; SUP[2s0,] < oo all (a,), € P}

and its topology is generated by
”(zn)nu(un)n = §up Izn a«n]7
n

where o = (a,), ranges over P.

Tf E is fully nuclear with a Schaunder basis (we shall say fully nuclear
with a basis from now on), then E and Ej may be identified with nuclear
sequence spaces A(P) and A(P).

‘We fix once and for all such an identification and denote the duality
between B and Fj as follows:

w(e) = <0, 8> = {(Walny Fu)aY = D Wans

where 2z € B and w e Bj.
Subsets of A(P) which have either of the following forms

A = {(2,), € A(P); sup 7,0, <1}

or
B = {(2.)n € A(P); sup |z, | <1},

where a, € [0, +oo] all n and a-(+oc) = +ooif ¢ > 0 and 0-(+oc0) =0
are called polydiscs. A is open if and only if (a,), € [P] and B is always
closed. The multiplicative polar of a subset U of a fully nuclear space
with a basgis, B ~ A(P), is defined as follows,

U = {(w,), € Bp; sup lw,z,| <1 all (2,), € U}.
n
If U is an open polydise in B, then UM is a compact polydise in E,',.

If ¥ is a nuclear space with an absolute basis, then F can be identified
with a subspace of A(P) and the equicontinuous basis is mapped onto

e ©
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the unit vector basis of 4(P). With this notation, we have the following
definition.

DrrFINITION 2. F is an A-nuclear space if there exists a sequence
of positive real numbers, (d,),, 6, >1 all » and >, (1/8,) < oo, such
that (a,6,), € [P] whenever (a,), € P.

PROPOSITION 3. (a) The strong dual of an A-nuclear space is an A-nuclear
space.

(b) A reflemive A-nuclear space is fully nuclear.

(c) A complete nuclear space with an equicontinuous basis, B ~ A(P),
is A-nuclear if and only if there ewists a linear automorphism of B, ¢, such
that @({#n}n) = {Oa2utn and 35,(1/0,) < oo

(4) The strong dual of a reflexive A-nuclear space is a reflexive A-nuclear
space.

Proof. If B is a subset of A(P), we leb

B = {(z)n e A(P); (%)), € B and |o,] < |2,] all n}

If B is a bounded subset of A(P), then B is also bounded.
(a) Suppose E is an A-nuclear space. Then By ~ A(P);. L T e A(PY,
then

T({zn}) = 2,,, 2,by,
and the sequence {b,}, uniquely determines T. Let T, ({#,.}) = #,. Then
T = 3,b,T, in the o(4A(P), A(P)) topology. It B is a bounded subset
of A(P), then
and
8B = {(8,%)n; (2n)n € B}
are also bounded subsets of A(P). Hence, for all =,

and thus

ITls < 3, al- 1Tolls < (3, (1/82)) 1Tl

Hence {T,}, is an absolute and equicontinuous basis for 4 (P),. Moreover,
since S (1T lsz N1 Twls2z) < S (1/8,) < oo for all B it follows that A(P);
is A-nuclear. This completes the proof of (a).

(b) If B is a reflexive A-nuclear space, then ¥ is quasi-complete,
and gince it has an absolute basis, it is complete. The strong dual of B
is nuclear by (a) and quasi-complete (since B is barrelled) and thus Eyis
a complete reflexive nuclear space. Thus F is fully nuclear.

(c) is obvious and (d) follows from (a).
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The product (finite) of A-nuclear spaces is A-nuclear. Most of the
fully nuclear spaces with a basis that we encounter are reflexive A-nuelear
spaces, ¢.g. S, H(0), Y'yC and it is probable that every Fréchet nuclear
space with a basis is a reflexive A-nuclear space.

H(U) will denote the holomorphic functions on the open subset U
of B, Hyp(U) will denote the hypoanalytic (i.e. Giteaux holomorphic
and continuous on compact sets) functions on U.

T, (resp. 7,,) will denote the compact open (resp. the ported Nachbin)
topology on Hyy(U) and H(U) (resp. H(T)). 7o (resp. 7,,;) will denote
the associated bormological topologies on H(U) and 7, will denote the
topology generated by the countable open covers of U (Le. p, & semi-
norm on H(T), is 7, continuous if and only if for each increasing countable
open cover of U, (V,)an,, there exists an integer N and O > 0 such that
2(f) < Ciifllp, for all f e H(U)). It U is balanced, then 7, is the barrelled
topology associated with =, ([20]).

Tt K is a compact subset of B, H(K) will denote the germs of holo-
morphic functions on K. H(K) is endowed with the inductive limit
topology

Hm (H(V), || o)

>
VoK
¥V open

and we also have ([87)
H(K) = hiq (H(V),rm).

VoK
Vopen

Hyy(K) is the space of hypoanalytic germs about K, i.c.
HHY(K) = U HHY(V)/"’y

VoK
¥V open

where f ~ g if f and g coincide in some neighbourhood of K. We endow
Hyp(K) with the inductive limit topology lim (Har(V), 7). Let
—_

VoK
¥ open

W = {(m)E.; m; e N, my= 0 and m; is eventually zero}.

It m e N and 2 = (2,), € A(P), we let 2™ = [[2, 2]", where ¢* =1 for
all z € 0. The mapping z € B—¢™ e O called a monomial for all m in N ™,

PROPOSITION 4. If U is an open polydisc in a fully nuclear space with
a basis B ~ A(P), then the monomials form an unconditional equicontinuous
basis in (H(U), 7), where © = To; Topr Tws Tup O T

Proof. When 7 = 7, or 7, this has already been shown in [8]. Let
fe H(U); then f(2) = Spya,2™ for all z in U (see [8]). Let Va
= {2 €U; | Dmes0nd"| < n for every finite subset J of N3 and let W,

icm®
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denote the interior of V,. If K is a compact subset of U, then (see [3])
we can find a neighbourhood V of 0 in ¥ such that

Dy 07 ey < o0

Henee (W,)%., is an inereasing countable open cover of U. Now if p is
a 7, continuous semi-norm on H(U), there exists ¢ > 0 and N such that
2(f) < Olfllr,, for all feH(T). Hence

sup p( D a,#") < co.
Je NN mer
Jiinite

Thus {3 a,#") ey is o z-bounded subset of H(U). Since the mon-
meJ J finite

omials form an absolute basis for (H(U),7,), Corollary 1.2 of [10]
implies that they form a Schauder basis in (H(U), 75). Since (H(U), )
iy barrelled ([10], [20]), it follows that the momnomials form an equi-
continuous basis for (H (U),r,,). Since 75> T, == Top, this also shows
thait the monomials form a Schauder basis in (H(T), 7,,;) and (H(T), To,p)-
If pis a 7, (vesp. 7,,) continuous semi-norm on H(U), then Theorems
11 and 15 of [8] jmply that p'(f) = DM P(a,2™) is also a 7, (resp.
7,) continuous semi-norm on H(U). Bence if (fo)uea is a 7, (resp. T,)
bounded subset of H(U) and f,(2) = Dy ay,2™ all a € 4, then

{ a;‘,,zm}n Y
n% TeNun

J tinite
is also a 7, (resp. 7,,) bounded subset of H(U). Hence if pisa 7, (vesp.
Top) cOntinuous semi-norm on H(U), then

’ '__ )
7= (2
J finite
is bounded on 7, (resp. 7,) bounded subsets of H(U) and thus is 7.,
(resp. T,;) continuous. This shows that the monomials form an equi-
continuous basis in (H(T), 7,,) and (H(U), 7). The basis is obvieusly
unconditional in all cases.
CoroLLARY 5. If U is an open polydise in a fully nuclear space with
a basis, then ©, is the barrelled topology associated with 7, on H(U).
Proof. Since 7, < 7; and 7, is barrelled, it follows that v, < < 17,
where 7 is the barrelled topology associated with =,. If p is a 7; continuous
gemi-norm on H(U), then

p(f) = sup p( ) a,"
JCN(N) (mAE‘-If " )
Jfinite
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is also 7, continuous and p’ > p. For each finite subset J of N® the semi-
norm. py(f) = P (Smes @ #™) 18 7, continuous and hence p’ is v conti-
nuous. Hence v=> 7, and © = 7;.

COROLLARY 6. If U is an open polydise in a fully nuclear space with
a basis B ~ A(P), then the following are equivalent for T = To; Ty Tabr Tob

(a) (H(T),7) is complete,
(b) (H(U), ) is quasi-complete,
(¢) (H(U),7) is sequentially complete,
(@) f {Amtmentny is @ set of complew numbers and {Z‘mEJa,mzm] TN
is @ t-Cauchy net, then 3,..nm a,2" € H(T). Jfinito
Moreover, for © =7, (resp. 7,) the above are all equivalent to

(8) if {@ptmentt) 48 @ ST Of complew numbers and Y, v P (@™ < oo
for every Ty (resp. T,) CONTENUOUS semi-norm P, then Xy, 2™ € H(T).

Proof. Since (H(U), ) has an equicontinuous basis, we may apply
+the theorem and corcllary of [15] to cbtain the equivalence of (a), (b), (¢)
and (d). (d) and (e) are equivalent since (H(T), r) has an abgolute basis
in each of these cases ([8])-

COROLLARY 7. (a) If 7, and Ts € {To; To,ps Tas Twps To} NG Ty Ty 0N
H(TU), then (H(U),w) is complete if (H (U), 7a) is complete.

(b) If (H(U),7) s complele, then o, = Ty

(¢) If (H(U),v,) is complete, then 7op = -

COROLLARY 8. If B = | v @h#™hiea 98 @ bounded subset of
(H(D), 7), 7 €{v0) Tu) Ts}, Them B = {ZmeJa:;'Lzm}JCN(N), 7 finite, 1ea 18 OISO
a bounded subset of (H(T), 7).

We now discuss nuclearity of (H(T), ). For this we must assume
U = E, where B is a reflexive A-nuclear space. The mapping 7 in Lemma 3
is an isomorphism, hence it preserves open sets, compact sets, countable
covers of B and neighbourhood systems of compact sets. Hence if T
H(E)~H(E) is the mapping which takes f to foT, we immediately obtain
the following result.

Lemma 9. If B is a complete A-nuclear space, then YT is a limear iso-
morphism from (H(B), t) onto (H(B), 7) for v € {To, Tus Tops Tu 7}

ProposTTION 10. If B is a reflewive A-nuclear space, then (H(E), )
is an A-nuclear space for v €{Tq, Tus To,py Tu,bs T}

Proof. (1) v = v,. (H(H), 7,) has an absolute basis ([8]) with system
of weights (J6™|g)mey K ranging over all compaet subsets of B It
(8,), is the sequence occurring in the definition of A-nuclearity, then

8K is also compact and ey (e lx/f"lax) = Zmenn(1/8") < oo
Hence (H(H), 7o) is .A-nuclear.

e ©
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(2) v =1,. (H(B), 7,) has an absolute basis ([8]) with systems of
weights {(p(¢™))men(m] Where p ranges over the 7, continuous semi-
norms on H(H). If p is a v-continuous semi-norm ported by K, then it
is easily seen that the weight {(6™p(¢™)),eyan} is ported by the compact
set OK. Hence (H(E),t,) is also A-nuclear.

(3) It 7 &{Typ, Typs 75}, then (H(H), ) is a bornological space and
has an equicontinuous basis. Let p denote a <-continuous semi-norm
on H(E) and let B = {3 ey 05,2™}, denote a z-bounded subset of
H(H). By Corollary 8 and Lemma 9

0B = {0" a5} seu
meN(Y)
and
8B = (" ap2™cu
meN(
are also v-bounded. Hence

S ey SURP (@) < I Ty (1/87) < 9,

where M = supp(f).
fedB
Since V4 (stN(N) amzm) < Zmel\’(N) p(a'mzm) = p' (ZmEN(N) a’mzm) and p'
is bounded on z-bounded sets, it follows that (H (E), 7) has an absolute
basis. Moreover

D SURD (™) K 07 D (187 < o0
where .
O =supp(f).

res?B
and

p” (ZmeN(N) a'mzm) = stN(N) am-p (a"’"'zm)

is a z-continuous semi-norm on H(E). Since

D P E D@ = 3 w (L[0™) < o0,

it follows that (H(H), ) is an A-nuclear space.

CororrAwry 11. If B is a reflevive A-nuclear space, then (H(H), )
is a reflewive A-nuclear space if and only if it 4s complete.

The above proposition gives certain information about (H(B), 7).
For example if F is a reflexive A-nuclear space, then (H(H), r); is nuclear
and has an absolute basis.

We now look at H(U), U an open polydise, where F ig not necessarily
A-nuclear.

2 — Studia Mathematica 73.1
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PROPOSITION 12. Let U denote am open polydise in a hereditary Lindeldf
fully nudlear space with o basis B ~ A(P). Then the monomials form an
absolute basis for (H(U), ;) of (H(T), 5) 18 complete.

Proof. It suffices, since (H(T), 7,) is barrelled, to show Duen P (@, ™)
< oo for every T, continuous semi-norm p and every 3 en) 8,2™ € H(U).
Tet ¥ = (V) denote the set of all open subsets of U such that
S ev@ 0, @Ml << 00, ¥ is closed under finite unions and forms an
open cover of U. Hence it containsg an inereaging countable subeover,
(V7L):L°=1’ of T.

If p is 7, continuous, then there exigts ¢ > 0 and N a positive in-
teger such that

p()<elflyy all feH(D).

Hence 3w D(2,2™) <67 ey flam2™lly,y < co. This completes the
proof. ‘

We now consider linear functionals on (H (U), 7). An element of
(H(U );z) is called an analytic functional. We shall always assume that
U is an open polydise in a fully nuclear space with a basis. In this case,
the monomials form an unconditional equicontinuous basis for (H(T),)
and an element T of (H(U), v); is uniquely determined by the secalars
{T(e™ Vmen®y. We let b, = T'(2™) and we have ’

T(ZmeN(N)a'mzm) = Zmambm'

‘We identify T' with a function, 7, defined on some subset of B’ by letting

w) = ZmeNW) byw™; wel.

Tt is eagily seen that T uniqllely determines T. For example (see {8])
e(H(U), 7,)’ if and only it T e H(U™) and T e(H(U),7,) if and only
it TeHyp(U™). Since the basis is unconditional, it follows that

stN(N) W'mbm] <

i 3 ey 0,2 e H(U) and {b,},eyv) is z-continnous on H(U).

The converse is true if v = v, since (H(U), 7,) is barrelled, ie. we
have the following result.

PROPOSITION 13. {b,}penv) € (H (U), 75)" if and only of 3men() @ ml
< oo for each 3, a,2" € H(U).

PrOPOSITION 14. Let U denote an open polydisec in o fully nuclear
space with a basis B ~ A(P). Then the monomials form an absolute basis
Jor (H(U), v); in the following cases:

L) v =7 o T,

(2) v =7, or 7, if B is A-nuclear.

Amalytic functionals on fully nuclear spaces 19

Proof. For each 7 we consider there exists 7 such that the mon-
omialy form an absolute basis for the nuclear space (H(U), 7) and = and
% have the same bounded sets. Hence if B = | Y, en) 65, }1eq 18 2 7-
bounded subset of H(U) and p is a ¥ continuous semi-norm,

D menton SUDP (05,87) < 0.
Thus
g ‘ Dt 07,m AT, m m
B "‘{ZJ Om ™% }JoJm 7m

is also 7-bounded, where J ranges over the finite subsets of N, 6;,,
ranges over [0,2=] and Asm Tanges over A. T {b,},.xm is bounded
on the r-bounded subsets of H(U), then

“{bm}mEN(N)‘ Z.mgN(N) S'llp lam ] < 00

Thus, for any finite subset J of N, -

H{bm}N(N)\_,llB = sup 12m€N(M\J a0, <Z'm5N(N)\_;r sup]a b, =0
as J—>oo

Hence the monomials form an absolute basis in (H(T),v);. This eom-
pletes. the proof.

COROLLARY 15. Let U denote an open polydisc in a fully nuclear space
with & basis (resp. a reflexive A-nudlear space). Then the follow'mg are
equivalent: :

(&) 1o and 7,y (resp. T, and T,;) are compatible topologies;

(b) (H(U), o)s = H(T™) (resp. (H(T); 7op)’ = Hpp(T™M);

(e) (H(U), 7o)y (resp. (H (U), 7o)p) is complete or quasi-complete or
sequentially complete.

Proof. The three conditions in (c) are equivalent by Proposition 14
and the result of [15]. By Theorems 18 and 20 of [8] (a) and (b) are
equivalent. Since the strong dual of & bornological space is complete
(Proposition 6, p. 223 of [14]), (b) and (e) are equivalent by Proposition 14:
This completes the proof.

We now look at various properties of the “function” spaces on subsets
of B, defined by (H(T), 7).

* DEFINITION 16 (see [2], [3], [17] and [23]). B is a regular inductive
Timit of (B)eeq if B = lim B, and each bounded subset of H is contained
e
and bounded in some H,.
The following result has been found independently by P.J. Boland.
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PrOPOSITION 17. Let U denote an open polydise in a fully nuclear
space with a basis
(a) (H(T), =) is infrabarrelled if and only if H( UMy = hm (H>(V),
I lly) is a 'regular inductive limit. youM
(b) (H(U), 7o) is reflemive if and only if it is complete and H (U™
= lim (H=(V), | ly) is & regular inductive limil.
=
SUM
’ (g) If the ©,-bounded subsets of H(U) are equibounded, then the following
are equivalent
1) 7, =15 on H(U),
(2) 7, 18 infrabarrelled,
(3) Hygy(UY) = lm (Hyp(V), 7)) is o regular inductive limit.
voUM
Proof. (a) By Theorem 20 of [8]

(H(D), wfs = H(T™) = Ym (H*(V), | ly)-
V:UM

(B (T), 7,) is infrabarrelled if and only if the bounded subsets of (H(U), 7o)’
are contained in the polars of neighbourhoods of zero in (H(TU), 7,). Since
the sets of the form {f e H(V); |Iflly < C} form a fundamental system
of equicontinuons subsets of (H(U), ), (see the proof of Theorem 20
of [8]) as V ranges over the neighbourhoods of U and ¢ ranges over
the positive numbers, we have completed the proof.

(b) follows immediately from (a) and the fact that (H(U), 7} is
semi-reflexive if and only if it is complete.

(¢} If the bounded subsets of (H(U), 7,) are equibounded, then by
Theorem 23 of [8]

(H(U), 7o)y = Hap(UY) = Lim (Har (V) 7).
vauM

Moreover, (H(U), 1,) is complete. By the results of [20] 7, is the in-
frabarrelled topology associated with v, and hence 7, = 7, if and only
it (H(U),z,) is infrabarrelled.

Since the equicontinuous subsets of (H (T, rm);, are oxactly the
gubsets of Hyy(U) which are defined and z,-bounded on some neigh-
bourhood of U, this completes the proof.

CoROLLARY 18. Let B denote a fully nuclear space with a basis. Then
(H(U), v). is infrabarrelled for every opcn polydisc U in B if and only
if (H (), 7:0) 18 infrabarrelled.

Proof. The proof is immediate since U is a convex balanced com-
pact subset of H; and we may apply Proposition 17 (a).

Analytic functionals on fully nuclear spaces 21

Remarks. Proposition 17 allows us to relate certain known results
hitherto not seen as being related. We confine ourselves to a few examples.

(a) If E is a Fréchet space and K is a compact subset of ¥, then
lim (H*(¥), || lly) is & regular inductive limit (see [17] for further details).
V:K
Hence by Proposition 17 (b), since metrizable spaces are k-spaces,
(H(D), 75) is barrelled if U is an open polydise in a ZF .4 (strong dual
of a Fréchet nuclear space) with a basis. Hence 7, = 7; on H(U). This
result is known and in fact has been extended by other methods to 2%
spaces (strong duals of Fréchet Schwartz spaces) ([1]) and to 2F4
spaces (strong duals of Fréchet Montel spaces) ([12]).

(b) By [10], p. 45, if E is a Fréchet space which does not admit a con-
tinnous norm, then 7, # z; on H(E). In particular, (H (121 0), 'z,,)
%(H(H;’,LIG), -ra).AresultofR.Aron([23],p.45-—46) statesthat im (H*(V),

—>
V,:;?an
Il lly) is not a regular inductive limit when B = 3>, C.

Since (H([]7.,C), 7o) is complete, Proposition 17 (b) shows that
these two results are equivalent. Proposition 17 implies that if ¥ is a fully
nuclear space with a basis and F; does not admit a continuous norm,
then the germs at 0 in EF do not form a regular inductive limit.

(¢) Results similar to Proposition 17 can also be proved for entire
functions on a fully nuclear space (not necessarily having a basis) by
using the results of the final section of [8].

In [8] we identified (H(U), )" and (H(U),t,) with germs about
U™. We now give a characterization of (H(E), z;)’ in terms of germs.

PROPObI’lION 19. Let E denote a reflexive A-nuclear space and suppose
(H(B), v,) is complete. Then {by},env) defines an element of (H(E), v)
if and only if for each infinite subset J of N there exists an infinite subset
J’ of J such that ZmeJ b, o™ defmes a holomorphic function in some neigh-
bourhood of zero in Ej.

Proof. First suppose that T = {b,}uy I8 7; continuous. Let
J = N® be infinite. If b, = 0 for all m belonging to an infinite subset
of J, then our condition is trivially satisfied. Hence we may suppose
b,, # 0 for all med.

We claim that there exists a neighbourhood of zero in E;,, V, such
that :

Dy (Lbg ™l = o0

Otherwise let f, () = 2™/b,, all medJ and let f = 3, c7fn. Then if K is
a compact subset of H, we have

X Wl = Xy bl = 3 (L)1 0™ lar) < 00
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and
Dimesfm € H(B).

This contradicts the fact that T'(f,) =1 all m.
Let V denote a neighbourhood of zero such that

Y L™y = oo

Let (8,), denote a sequence of positive real numbers guch that >, (1/8,)< o
and V' = (1/61)V = {(0,/8%), € By; (@,), € ¥} i8 a neighbourhood of
zero in Ej. Since Spr(1/0™) < oo, it follows that 1/||b,e™|y > 1/6™ for
an infinite number of m in J say J’. ¥’ is a neighbourhood of zero and

N o aelp < 3 (8 [(8H) = D)o (LI8™) < 0.

This completes the proof in one direction. Now suppose T' = {b,,}pent) 18
not z, continuous. Then there exists f= Y .yiv a,2™ € H(H) such
that 3..nn |6yb,| = oo.

Since F is A-nuclear, there exists a sequence of real numbers (d,),,
8,>1 and Y,(1/8,) < oo, such that 6V is a neighbourhood of zero if
and only if ¥V is a neighbourhood of zero.

Since 3, (1/8™) < oo, it follows that |a,,b,| > 1/6™ for all m belonging
t0 some infinite subset J of N¥), Hence, for any compact subset K of B
and V = E¥ we have

3 WBoey) < 3 (8™ B ™)
< 3 aallle™ly) = D), lon™le < oo

Hence {b,,};es i D0t 7, continuous for any infinite subset J’ of J and
S'merbp@™ does not define a holomorphic funetion in any neighbourhood
of zero in Ej for any infinite subset J' of J. This completes the proof.

Remark. Proposition 19 is equivalent to the following: {By,}uen(®
is 7, continuous if and only if each infinite subset J of N ™) contains an
infinite subset J’ such that {b,},,.;- is 7,-continuous.

COROLLARY 20. Let Il denote a reflewive A-nuclear space and suppose
(B (B), 7o) is complete. Then {b}nenxny defines an element of (H (), 1)’ if
and only if for each infinite subset J of NU there exists an infinite subset
I’ of J such that {by}mer defines an element of (H(E), t,)'.

We ghall nse Corollary 20 to give an example of a Fréchet nuclear
space B which admits a continuous norm but (H (), 7,) is not bornolo-
gical. Before proceeding we introduce some notation. Let B ~ A(P)
denote a TFréchet nuclear space with a basis, where P = (™), and
o™ = (o), for all m and n. Let V,, = {(2,), € E; sup e, 0| < 1} and
let || ||, denote the corresponding morm. "

e ©
lm Analytic functionals on fully nuclear spaces 23

Now suppose (m;)7>, is & strictly increasing sequence of integers
with #, = 1. Let

U(nl) = {(2,), € B; suD 2, w}L[ <1}

Utnyyomy = a6 B o] <1 f0r 0, S0 <My, m=1,..,k—1

and |o, k| <1 for n > n}

), = {(zn)n€E§ 2 op] <1 for 0y, <0<y, m=1,2, }

It is immediate that Un)"" is a compact subset of K and if V¥ is a neigh-
ihi=1

bourhood of U(n‘)“’ , then there exists a positive integer % such that
i1

V 2 Upyoongg- Moreover, if K is a compact subset of E, then K is con-
tained in a compact polydise

K = {(z), ¢ B; supleye,l <1} and o,>0 al n.

The sequence a = (1/a,), € B. Let & = |all;. Choose ny>1 such that
|0} a,| < & all #2>n, and by induction choose 7,y > n,, such that

ol e, <& all %> Ny,

Xet ny=1. I 2 =(2,),cK and %, <N <My,, m» =12,..., then
18, 0™ < |0®|/|a,] < 6 and hence K < §U o and we have constructed

(m)=1
a fundamental system of compact sets in E.

ExAMPLE 21 (see [21], p- 99). If (a,)2, is an increasing sequence of
positive real mumbers such that Y,q” < oo for all ¢, 0 <g< 1, then
the sequence space A(P), P = (0p)ocpey, 304 Py < +00, @, = (p™), is
a Fréchet nuclear space with a basis and is called a power series space of
finite type. A simple example is H (D) — the space of holomorphic functions
on the open unit disc in ¢. We note that az—oco as B—oco. We now show
that (H (A(P)), ro) is not bornological.

‘Without loss of generality we may suppose p, = 1 and since we may
choose subsequences whenever necessary in our congtruction, we may
also assume a, > a,_;+n for all # > 2.

Let [«] denote the integer part of #+1. For any integers m, n > 2,
let

(myn) = ([Mapngy]; 0, ..y [mo] .00
[may]position

Let W, = {(i,4)'; j = n} and W= J,W,. Since a, > a,,-+%, we have
{m,n) = (my,ny) if and only if m =m; and n =n,. I j e N, we let
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.- amnd i § = (m, n),
0 otherwise.
We show that {b;};.x) is 7, continuous but not 7, continuous on H (A(P)).
By Propositions 13 and 19 and Corollary 20 it suffices to show that
for every infinite subset J of NV there exists an infinite subset J’ of J
such that e byl < oo for every 3.y a,s™ € H(H). Obviously
we need only consider J for which J "W is infinite. There are two possi-
bilities and we congider each one in turn.
(1) JNW,, is infinite for some integer n. Since (C,1,...,1,1,...)
e A(P) for every positive number €, it follows that if 3,.nv) a,2™ € H(H),
then

[ma 1
Dy Wm0 < oo,

1 .
Hence |y, qy| ltmama,ll_, o a5 m->co. Thus given ¢, 0 < &< 1, we can choose
My such thab |Gy, ] < (e, )™ el for all m > m,. Hence

00 ma,
Zm>mo la(m,n)’b(mm)'l = Zm>mo |a’('m.,n)‘ Ay [ma"]I

< Xy () ™)

[mayq, 11 m
<2m>moa " <2m>m05 < eo.

(2) I JNW,, is finite for all n, then there exists an increasing sequence
of integers (n;)3,, and another sequence of integers (m,)2, sueh that
(my, my) e JNW. Let (B8,), denote the sequence, where

fr=1,
ﬁ[""ian-] — a:f:miani]/ani
v
and
p, =0 for all other n.

(Bn)n € A(P) since
(a:,?nia”i"a”i)ua[miu"i] = a,ll’i“ni—>1 a8 1;—>00
and hence
) 21, o min o M) < 0o for 0< o<1,
Hence if .y ay,2" € H(A(P)), then

Z i la’(mmu)’(a;gm‘[uni”un‘)[miu"‘]i < o

and
—_ R CICTRT T
Z i |a(mi,ni)’ b(m,-,ni)'l = 5 i ]a'(m,-ni)’ Ay [mlnn"vll

a I’ y
< 2«' Ia’(mi,ni)’(animianﬂ/an")[m“u”"]l < oo.
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Now sappose {b;}jeviv) is 7, continuous. Then we can find ¢ >0, 0 < § < oo
and (n;)2,, an increasing sequence of positive integers with %, =1 such
that

bl < O™ srr, o for all m e N,
M)y
In particular, for each integer » we would have

m 1
B R SV

for all m sufficiently large (since ((1+ (1 /a,,))“‘m);‘;;l forms a fundamental
system of weights as # ranges over the positive integers). Since for each
fixed n

ma [may) /[’m’a[muﬂl]ﬁl a8 Mm—>00,

e

“and

[ma,]/[mappe,y >0 a8 m—>oo0

and we have (1+1/a,)» < 3 for all > 3, this would imply a, < 63 for
all #> 3 and hence 8 = oco. This shows that {b;};.x is not 7, continuous
on H{A(P)) and completes the proof.

We now show that v, = 7; on H(U) when U is an open polydise
in a certain class of Fréchet nuclear spaces with a basis.

DEFINITION 22. E is a B-nuclear space if B is a Fréchet nuclear space
with o basis and E is isomorphic to A(P), where P has the following
properties:

(1) P = (0™, 0™ = ()i, and of >0 for all m and n (hence
E admits a continuous norm),

(2) if B% = o™/, then (w™(BM)?)3., € [P] for every integer p. (We
may, and shall assume gy >1 for all m and n.)

Exavere 23. (a) If o = (o,)" for all m and », where o, >1 and
> (1)w,) < oo, then A(P) is a nuclear Fréchet space with a basis.

ot ol = B = ()" (0" = o,
and so
W (BMP = (@n)™ ()" = (0)""7
and thus
(@™ (B))n € P

Hence A(P) is a B-nuclear space.

(b) If we let o, = (n--1)* all %, then o]} = (n-+1)"" and we obtain
8, the space of rapidly decreasing sequences, which is isomorphic to &,
the space of rapidly decreasing functions.
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(¢) If (a,), is an inereasing sequence of positive real numbers such
that 3,¢“ < oo for some ¢; 0 < ¢ <1, we let w, = 2% for all n.

We have oft = (2™)%, 7 = ol ol = 2% and ol {f})? = (2™F2)%
= o7, Hence, the nuclear power series spaces of infinite type are B-nue-
lear. Tn particular, H(C) is B-nuclear (see [21], p. 99 for further details).

(d) Other B-nuclear spaces with weights of even more rapid growth
than those of the power series spaces can easily be constructed, e.g. let
" = 2"™ for all m and n. Then g = 2" 9™ — 2™ (n—1) and

w?’r(ﬂz‘b)p — 2n7n(2nm.(n —l)p) < 0‘2"‘m+2

for a given fixed p and some € >0 and all n sufficiently large. Hence
A(P) is a B-nuclear space and it iy easily seen that it is not a power geries
sequence space.

(e) H(D), D is the open unit dise, is a reflexive A-nuclear space
but it is not a B-nuclear space. The usual sequence space representation
of H(D) does not satisfy property (2) of Definition 22. The fact that it
is not B-nuclear follows from Example 21 and the next proposition.

ProrosrrioN 24, If U is an open polydisc in a B-nuclear space, then
(H(T), 7,) 98 @ bornological (and hence a reflemive muclear) space.

Proof. By Corollary 18, it suffices to consider U = F and since
1, =7, on H(H), ([8], Proposition 22), we need only show that any
Banach valued linear functional T on H(H) which is bounded on the
7-bounded subsets of H(¥) is ported by a compact subset of H.

Now suppose for some non-negative integer & there exists 6> 0,
(Mg, ..., m;) an increasing sequence of integers, m, =1, and C(k) >0
such that

IT @™ < O(8) l™sg,,,,y  Tor allm e NOO.

Then we claim if ' > 6, there exists a positive integer j and O (k+1) >0
{O(k+1) will depend on j and ¢') such that

1T (&™) < Ok +1) Hzm“:S'U(n1 for all m e N,

..... e J-F1g)
Tf not, then we can choose for each positive integer j, m; € NV guch that

(")l = § ”'”’mj“"'U(m..‘..mm-nm'

‘We first show that |my|—oco as j—oo. If not, there exists a subsequence,
(Ju)n, Such that |my | = a for all n. Since Up, ppgingy @ Vi for all
g, it follows that

’ITI/J‘ mj
{7l n"”’U(%p--‘»"kxf+n1c)};'i'1

ig uniformly bounded on a fixed neighbourhood of zero and hence ig 7,
bounded (note that we use the existence of a continuous morm here).
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Since " . ]
VT @I v, ity =

+this contradicts the fact that 7' is bounded on the 7, bounded subsets
of H(E). Thus we will assume that |m;—>oco as j—oo. For each j we let
m; = (B;, §;), where E; are the first j+n,—1 coordinates and §; are
the remaining coordinates. We have 2% = 2%2%.

‘We now consider two possibilities:

(%) lim (g% =1,
J—oo
(%) limsup (%™ = o > 1.

j—>co

(B%yS is the value of the monomial % at the point (Y),.. Sinee pE>1

all # and %, it follows that () and (++) cover all possibilities.

We first suppose that (#) is satisfied. Then
HT(ij)”/“zmj“t](nl....,ﬂk) = .7 (5')(771]‘] (”zmj”U(nl,...,nk,5+nk)/[]zmjllu(n1....,nk))

= G0V (1% gy g+ [y )
=j(5')'mf'(llzsjllvkﬂlllzsjllv,,)
= §(&" )™ (L)) (@)% = (&)™ (B)%.

Hence
limmf(”T(zmj)”/”zmjﬂu(nl,...,nk))lllmjl >lir.ninfj1”’”i‘ . 5'/?]11 I(ﬁﬁ)sftm'"f' >4
j—rco j->00 —>00
Since

I &™) 1™ oy ..oy < O () 8™ for all m e NW,

we must have
Bmsup (17 () .. ™ < 6
J-r00
This is a contradiction and so (x) cannot hold.
We now suppose (%) holds. In fact, we may suppose without loss
of generality that lim LBy ™ = o > 1. Let

Fr00
F@) = Do @1 vty mgoengy) -
Since each monomial is continuous and ¥ is a Fréchet space, f will be
an entire funchion if it converges at all points of F. Let a = (a,), € B.
We have (0,0, ..., @y, 0, ...) € Vi, for all » sufficiently large, say, n > 1.
For each j let m}, m, ..., m} be the first I coordinates of m; € N®, and
et O; =0, ...y @) 0y - )lipgy for ¢ =1, ..., l. We now have

mi m? ml
| 8™ g, eomgpiemg | < O IC,7 ... O F (a, my),
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where F(a, my) = |a%| N ... w4 (the terms between ! and j--m
are all less than one, in fact all the terms greater than 7 are less than one
but we need a sharper estimate).

Now given any positive integer p

(@ (B5Y*)n € [P]-

Hence

" la,of(fPI< oo amd ja0f(B)Fi<1 foralln=t>1.
Henee if n,-+j > 1, (in particular for all j sufficiently large), we have

B (a, my)| < (1]ok (BRYP)F (Y
= (LJ(BRYPY)S = (L)(8R)%)"

Hence
lim sup (|a™]/ 2" o e nk,j—l-'n.k))lllmjl <O ... O (}im LB,
jr00 00

where ¥; =lir?sllp(|m}:l/lm,-l) #¢>1landl<i<land y,=0if 0; <1,

1< i< 1. Since mi< |my| for all ¢ and j; we have 0< y; <1 for all i.
Hence N ,
i sup (|0 /8™ g™ < O3 o O

J—roo
Since w > 1, this limit is zero and hence f e H (). Hence

~ 00

F= 2 (L1087 (2™ [l g ..y gy € HL ()
and
N Ny v, ..o mgd 1=
is a 7,-bounded subset of H (H). This contradicts the fact that

VT @ et s

>j
and hence we have proved our claim.
Sinee T is 7, continuous and (nU(,), is an open cover of H, there

exists O(1) > 0 and &, a positive integer guch that
T < OO f oy, for all feH(B).
In particular,
IT (&™) < O(1) 1"y, for all m e N,

Let (8,)2.; denote a sequence of positive numbers, 6, > 1, such that
[T518, = 0 < oo By the above, we can choose an increasing sequence
of positive integers, (7). and (0(70))k=1 a sequence of positive numbers
guch that

T (™) < O ) 1™ lay...0000..ompy

for all m e N® and all k.
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Let K = wa . K is a compact subset of ¥ and if V is any

=1
neighbourhood of 6K, there exists a positive integer % such that

BU(nl,...,nk) V.
Hence for all m e N

I &) < O O™ y..400 .o
< C(k) ||Zm“ov(n1,_"mh)
< O(k) 2" lp-
]?lence for any mneighbourhood V of 0 in E there exists (V) >0 such
that
IT (™) < C(V) [#™ogeyr  for all m e NV,

Leb & = (s,)2., denote a sequence of positive numbers such that 3, (1/s,)
< oo and ¢K is a relatively compact subset of E. If V is any neighbourhood
of zero in ¥, we can find a neighbourhood of zero V' and (z), & sequence
of po§iﬁve real numbers such that &'V’ < V and 3, (1/e,) < oo (see [8]).
Yet & =inf(e,, &,); then if f(2) = D.n a,2™ € H(H), we have

TS D) e 1T (@n2™]| (Proposition 4)
<OV D) v 10m#™ oz
SOV D) iy (LIE V) If levorcs o
SOV 3 ey (1) Uf N+

Since e_eK is compact, this shows that 7' is ported by a compact set and
hence is 7, and 7, continuous, ([8], Proposition 22). This completes the
proof.

] COROLLARY 25. If A(P) is a nuclear power series space, then the follow-
mg are equivalent:

(a) A(P) is of infinite type,

(b) A(P) i a B-nuclear space,

(¢) (H (A(P)), To) is a bornological space.

Proof. {a)=(b) by Example 23 (c); (b)=(c) by Proposition 24;
{¢)=(a) by Example 21.

COROLLARY 26. If B is the strong dual of a B-nuclear space, then the
germs at 0 in B form a regular inductive limit (i.e. lim (H®(V), || ly) s
a regular inductive limit). e

CoROLLARY 27. If B is an A-nuclear space and a B-nuclear space,
then (H(E), 7o) is o reflevive A-nucleai space.
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ProrosrrIoN 28. If B and F are both A and B nuclear spaces, then
H' (B xF) = H (B)QH' ()

where H(H), H(F) ond H(E XF) are given the compact open topology,
H'(E), H (F) and H (EXF) are given the strong dual topology and QS
denotes the completed inductive tensor product.

Proof. By Corollary 2.8 of [22]

H (B xF) BQH(F).

By the Corollary p. 91 of [13]; since H’(E xF) is complete, we have
H (B xF) = (HE)QH(F)) = H'(B)QH'(F). This .completes the proof.

Remark. In attempting to prove Proposition 24 for the special ca»sé
FE = & we come across the following fact which may be of some interest
to someone —at any rate it shows a rather curious relationship between
H(C) and &, Let § denote the space of rapidly decreasing sequences:
&~ 8y

(a) the weights on §’ are given by (1/g(n)),, where g(2) = 3, a,%"
e H(0) and a, >0 for all n,

(B) (#,), € 8 if and only if there exists g eH(G g(2) = Jha,2" e H(C)
and a,> 0 all » such that

@,/g(n)—~0 a8 mn->oo.

Open problems.

(a) If F is a fully nuclear space with a Dbasis is E an A-nuclear space?
This is similar to the following problem: It E is a reflexive nuclear
space with a Schauder basis, then is B} nuclear if and only if B is 4-nuclear?

(b) I E is a Fréchet nuclear space with a basis and (H(H), 7o) is
infrabarrelled (or equivalently reflexive) is ¥ a B-nuclear space?

Added in proof (14/10/80). Since this paper was written, the
following results have been obtained. We refer to S. Dineen, Oomplex
Analysis on Locally Convexr Spaces (book to appear in the North Holland
Mathematical Studies Series) for further details.

(a) Bvery Fréchet nueclear space with a basis is an A-nuclear gpace.

(b) A Fréchet nuclear space with a basis is a B nuelear space if and
only if it'is a DN space (see D. Vogt, Subspaces and quotients of (s), Proc.
Tirst Paderborn Conf. on Functional Analysis, Bd. K.-D. Biergtedt and
K. Fuchssteiner, North Holland, Math. Studies, 27 (1977), 167-188) and
hence if and only if it is a closed subspace of 8.

(¢) The converfe to Proposition 24 holds. This answers positively
the open problem (b) posed at the end of the paper. Hence we huve the
following result: .
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If E is a Fréchet nuclear space with a basis, then (H (E), ro) is reflexive
if and only if F is a B nuclear space.
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A generalization of the Banach~—Stone theorem

by
ERZYSZTOF JAROSZ (Warszawa)

Abstract. We investigate the geometric properties of a Banach space X* which
give the following implication: There is an isomorphism between (9, X) and 0(8’, X)
with a small bound iff § and S8’ are homeomorphiec.

Let X be a Banach space and let €(8, X) (C(8)) denote the space
of X-valued (scalar-valued) continuous funetions on a compact Hausdorif
space § provided with supremum norm. The classical Banach-Stone
theorem states that the existence of an isometric isomorphism from C(8)
onto ¢(8") implies that § and S’ are homeomorphic. Cambern [3] proved
that this property is stable: If ¥ is an isomorphism of C(8) onto €(8")
such that |7} P~ < 2 then § and 8’ are homeomorphic.

Several authors have congidered a vector-valued generalization of
the Banach—Stone theorem. Behrends [2] proved that if the centralizers
of X and Y are one-dimensional then the existence of an isometric iso-
morphism between 0(8, X) and ¢(§’, X¥) implies that § and 8’ are ho-
reomorphic. (For the definition and properties of the centralizer see [1],
[2]). Cambern [4] proved that if X is a finite-dimensional Hilbert space
and if ¥ is an isomorphism of ¢(§, X) onto €(8’, X) such that [¥] [|&
< V2 then S and 8 are homeomorphic. In this paper we investigate the
relation between geometric properties of X* and the stability of X-valued
Banach-Stone theorem.

THEEOREM 1. Let 8 and 8 be compact Hausdorff spaces and let X be
a complex (real) Banach space. If there is an isomorphism ¥ of a complew
(real) Bamach space C{S, X) onto O(8', X) with || 1P <k and if

sup (ot —all (@} +a5)21 =1, 1811 <K, lmyl <} =a <43,
then 8 and 8’ are homeomorphic.

We divide the proof of the theorem into & number of lemmas. Let
K* denote the set {#* € X*: |lw*|| = 1} provided with the weak * topology.
A Banach space 0(S, X) can be identified in a natural way with a subspace
of (8 xE*): ®(f)(s, #*): = a*(f(s)). Hence any Fe(0(8,X))" gives
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