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for fe Q,7'(X; X). Then 7 is subadditive and 7(f) <2f). Now for fe

Q21X ;%) we choose, as in the proof of Theorem 8, a sequence {f} of sim-

Ple functions having support of finit emeasure, such that lim |||f— Fulll =0
k>0

pointwise and [||f—fll| < 21||f||| for all k> 1. From assumption (*+")
Corollary 2 and Theorem 5, it iy seen that 5(f;,) = 0 and 5(f) < n(f~7, )_|j
+7(fy) < 2(f—f,)s for all k > 1. Therefore the same argument ag thalic: in
the proof of Theorem 8 then gives 7(f) = 0 almost everywhere on X after
applying Theorem 7 with 0 > 1 and A > 0. Hence the theorem follows.

Remark. It is known [5] that Theorems 8,9 and 10 hold without
the assumption (*,*) in the case of n = 1, for (*,*) is in fact true for n = 1
Particularly, for the operators in the setiting of Corollaries 8 and 5, these
Theorems 8,9 and 10 remain also true for functions in the larger class
(X ; %). :
Finally, I'd like to raise a problem unanswered at this time. In the
sr;tting of Section 5, let # > 2 and let f* be the ergodic maximal function
given by (5.2). The following question is open as yeb.
Are there L,-bounded sublinear operators U,,

<oy U, of weak type
(1,1) such that the product operation U, . 08 4 i

.. U;f dominates the function f*1
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Geodesics on open surfaces containing horns

by
MACIEJ WOJTEOWSKI (Warszawa)

Abstract. Symbolic dynamies for the geodesic flow on an open surface containing
a hyperbolic horn is constructed in a neighbourhood of the geodesic which escapes
in the horn in the future and in the past. It provides a variety of geodesics with differ-
ent asymptotical behaviour. It is proved that a hyperbolic horn is sharp if and only
if the geodesic escaping in this horn form a one-parameter family. A description is
given of the set of escaping geodesies for a hyperbolic horn which is not sharp. Also
the existence of a continuum of oscillating geodesics is proved under the condition
that the topology of the surface is sufficiently rich.

Introduction. Let X be a locally compact, separable topological
space and let {@;};.z be & continuous flow on X.

DeriNIiTION 1. We call 2 eX

(a) bounded for t->-+ co (t——oo) iff there is a compact set K such
that gz e K for t > 0 (<< 0);

(b) escaping for 1—-+ oo (t——oco) itf for every compact set K there
isa TeRsuchthat gz ¢ K for t =T (1< T);

(¢) oscillating for t— -4 oo (1—>-—oo0) iff (a) and(b) are not satistied.

Obviously the properties (a), (b) and (c) are the properties of the
whole trajectories of the flow. In this paper we study the problem of the
existence of oscillating trajectories for geodesic flows on complete open
surfaces.

Let M be a 2-dimensional manifold (a surface) with a Riemannian
metric of clags €2 . We assume that M is complete in this metric, not
compact and finitely connected. In view of the last assumption there is
a homeomorphism h taking M onto X\ {&4, ..., #,} where X is a compact
surface and ;€ X, ¢ = 1, ..., n. The points {®,, ..., @,} are called poinis
at infinity.

DEFINITION 2. A tube iz an open subset  — M homeomorphic to
a puncbured disk such that h(7T) is a punctured neighbourhood of a point
at infinity and the closure of h(77) in X contains only one point at infinity.

Consider clogsed rectifiable Jordan curves in a tube J which cannot
be contracted to 4 point in 7. We denote by w(Z) the infimum of their
lengths.


GUEST


116 M. Wojtkowski

DuFINITION 3. A tube 7 in M is called a horn iff no sequence of curves
that realises the infimum w(J7) is contained in & compact subset of I,
A tube 7 is called a oup iff it is not a horn.

The concept of 2 tube and the division of tubes inte horns and cups
is due to Cohn-Vossen [4].

Tig. 1

DEFINITION 4. A horn 7 is called sharp iff w(7) =

In Chapter X we prove (Theorem 1) that if a surface M containg
& horn with some additional property (for instance, the horn is sharp)
agd M is not homeomorphic to a plane, & cylinder or & projective plmie
without a point, then for every point m e M there is & continuwm of
oscillating geodesics starting at m. The simplest surfaces to which. this
tlslhtlaorem can be applied are a torus with a hole and a sphere with three

oles.

Except for the cases excluded above a fundamental group of an
open surface iy a free group with more than one generator. Tn the proof
of Theorem 1 we use the correspondence between infinite words of the
generators and geodesic rays. The idea goes back to Hadamard [6] and
Morse [8].

) DEFINITION 5. A horn 7 ig called hyperbolic iff the Gaussian curvature
In J is non-positive.

In O?:La,pter IT we study the geometry of hyperbolic horns. We intro-
duce semigeodesical coordinates of clags C* in a horn under the aggumption
thatz there are no focal points in the horn. Such eoordinatos were construc-
ted in hype?‘bolie horns by Verner [107]. He considered metrics with hounded
curvaturq in the sense of A. D. Alekgandrov (not necessarily smooth)
and h“" did not study the smoothness of the coordinatey obta.ine(l. Such
coordm@tes appear also in the work of Eberlein [6] in another context.
] Using thege coordinates, we prove that a hyperbholic horn is gharp
if apd only if the geodesie escaping in this horn form a one pa,mmetof
fan‘{lly (Theorem 3), In Theorem 4 we describe the set of oscaping geo-
desies for a hyperbolie horn which is not sharp. ' .

iom®
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- Assume that there is a hyperbolic horn on M and a geodesic ¥ which
escapes in this horn both in the future and in the past (in the case of
a horn which is not sharp we need more: the geodesic is in the boundary
of the set of all escaping geodesics and it goes round the horn in the same
direction in the future and in the past). In Chapter III (Theorem 2),
for some transversal section of the geodesic flow in a small neighbourhood
of y, we construct (under some non-degeneracy conditions) symbolic
dynamics with entrances and exits (for a definition see [2]). This the-
orem gives a variety of geodesies with different geometrical properties.
In particular, we obtain & continuum of oscillating geodesics. Also all
kinds of agymptotical behaviour in the future and in the past can be freely
combined. In the case of & sharp horn we obtain that a geodesic can change
an infinite number of times the direction in which it goes round the horn.
We have algo an infinite family of closed geodesics (all of them hyperbolie).

Theorem 2 can be applied to the geodesic flow on a modular region,
a problem studied by Artin [3]. For a large family of geodesics Artin
obtained a omne-to-one correspondence between geodesics and sequences
of positive integers. Theorem 2 gives the same coding but only sequences
with elements bigger than a certain N are considered.

The proof of Theorem 2 is obtained by general methods developed
by Alekseev [1]. In Chapter III, §1 we formulate the particular theorem
we need, and it is & slight generalization of a theorem given by Moser [9].

The symbolic dynamies deseribed in Theorem 2 is analogous to the
one constructed by Alekseev in the special case of the three body pro-.
blem ([1], [9]). We obtain a similar behaviour of trajectories also for some
dispersing billiards —a limit case of a horn which is not sharp [11].

In Chapter IIT, §3 we discuss the situations where Theorem 2 can
be applied. In particular, there are no oscillating geodesics on a surface
of rotation containing a hyperbolic horn, but after a 0* small change of
metrie (in an arbitratily small domain) Theorem 2 can be applied and we
obtain the same picture as for the surface with a large fundamental group.

Part of the results were announced in [12] and the sketches of proofs
given there can be helpful to the reader. :

I am indebted to Professor V. M. Alekseev, who inspired me to do
thig work. Also thanks go to Dr. F. Przytycki, who read the manuseript
and contributed valuable remarks. S

I. Topological theorem

DEFINITION 1. A horn 7 is called regular iff every tube 7, such that 7
and 7, are neighbourhoods of the same point at infinity is also -a horn.

It is easy to see that if, for a tube 7 on M = R? w(Z) = 0 then 7
is a regular horn. . L


GUEST


118 M. Wojtkowski

TueorEM 1. If M contains a regular horn and M is not homeomorphic
to a plane, a cylinder or a projective plane without & point, then for every
point m e M there is a continuum of oscillating geodesics beginning at m.

Before proceeding with the proof let us recall the notion of a geodesic
domain [4].

DEFINITION 2. A. connected subset ¢ of a surface M is called a geo-
desic domain iff for every point x € G there is a ball K (#) such that the
intersection K,(x) = K (#)nG is of one of the following types:

(1) Eg(w) = K(w),

(2) Kg(w) = half of the ball K (),

(3) Kg(x) = sector of the ball K (z).

Geodesic domain is called convew if all interior angles on its boundary
are less than =.

We introduce a metric gy on G by the infimum of the lengths of all
rectifiable curves in ¢ connecting the respective points. It is proved
in [4] that if @ is cémplete in the metric gg then in an arbitrary homotopy
class of curves connecting two fixed points there is always a curve with
minimal length. If, in addition, & is convex then the curve is a smooth
geodesic. Note that if & is a closed subset of a complete surface then @ ig
complete in the metric gg.

The proof of Theorem 1 will be obtained in two steps. We will firgt
prove, for a special geodesic domain, the existence of a continnum of
oscillating geodesics beginning at an arbitrarily chosen point. Afterwards
we will prove that such a domain can be found on some covering space of
the surface I.

Step 1. Let us consider a subset @ of the plane €
G ={recCl0<p|<1, p—1/2) > 1/4}.

We assume that G is a complete geodesic domain for some Riemannian
metric defined on a neighbourhood of @ in €~{0}. In particular, {|¢| = 1}
and {[z—1/2| = 1/4} are smooth closed geodesics and G is convex.

By a smooth change of variables we can achieve that the curve
{l?] =1/2}n @& will become a geodesic, the shortest one in its homotopy
class (homotopy with endpoints on the eircle {le—1/2| = 1/4}). Indecd,
let ¢: Go—>G be a 2-sheeted covering of @, where

G ={2eCl 0< o<1, [2—1/2 > 1/4, [e+1/2] > 1/4}.

@, becomes a complete convex geodesic domain by lifting the metric
from G to @,. We consider the shortest geodesic interval connecting the
circles {|v—1/2| = 1/4} and {|¢+1/2]| = 1/4} in @, and rotate it by tho
angle =. We obtain two geodesic intervals connecting the circles, which,

icm
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being minimal, do not intersect in &,. Hence they project on a geodesic
interval without selfintersections in G. The geodesic interval in G connects
different points of the circle {jz—1/2| = 1/4} (in view of its minimality
it is perpendicular to the circle at both endpoints). Clearly it can be taken
onto the arc of the circle {|z] = 1/2} by a diffeomorphism of G.

We assume algo that the tube I = Gn{[s] < 1/2} is a horn. Consider

G={eCl Imz> —1,|g—n|>1/4 for neZ}.

Tdentifying points 2+n, n € Z of &, we get a domain diffeomorphic to &
and a covering (G, p),p: GG We can assume that an interval I,
={zeC| 1/4<Re 2< 3[4, Im z =0} projects onto the arc of the circle
{J2| =1/2}. G inherits the Riemannian metric from G.

Take ¢ € @. We will prove that there is a continnum of oscillating
geodesics in @ beginning at ». For simplicity of exposition, we assume that
p~(2) contains the point z = 4.

Consider curves z,(t) = }ie*™", 0 <t <1 and 2 (f) = }i+t, 0Kt
in @. They project onto closed curves in G with endpoints at z. Denote
their homotopy classes in =, (&, «) by @ and b, respectively (z, is a funda-
mental group). Let #,,%,, ... be a sequence of integers #, > 2,k =1, 2,...
Comnsider the sequence ¢,, ¢,, ... of elements of =, (G, #):

¢, = ab™a
¢y = ab™ab™a
¢, = ab™ab™a ... ab"a

‘We choose y, to be the shortest geodesic interval in @ with « as the be-
ginning and the end, such that its homotopy class is equal to ¢;. L;e‘t |73

be the lift of y, on G with a beginning at 2 = }4. 7, goes from {7 to 44 —{—jzi’ Ny,

intersecting the intervals Iy—1, Iy, To-+ny —1, Iy, Lo+n,+na—1, ...
k 13

vy Lyt 3 m—1, I, +21' n;, each of them once and no other ones among
i=1 i=

the intervals I,+n,n € Z (Fig. 2). Indeed, this follows from the fact

Fig. 2. my =2, ny =3
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that Iy-+n,n e€Z are the shortest geodesic intervals in the respective
homotopy classes.

Consider 7 —one of the limit geodesic rays for the sequence j,,
k=1,2,... Obviously 7 intersects all those intervals I,+u, n € Z that
are intersected by some §, and no others. Hence the intervals intersectod
by # are determined only by the sequence n,, Mg, ... Consequently, for
different sequences ny, %, ... We get different geodesics rays .

To end step 1 we will show that if the sequence n,, n,, ... is unboun-
ded then the corresponding geodesic ray § is oscillating. Indeed, § conta-
ing the shortest geodesic intervals connecting I,-+n and Iy-+n - m with m
arbitirarily large (the shortest in the respective homotopy class with fixed
endpoints). But for every compact subset K < & there is an m (&) such
that if m > m(K) then the projection of the geodesic interval above on @
ig not contained in K. To prove this recall that 7 = Gn{je] < 1/2} is
a horn and so for every compact subset X = & we have Wiey Wre> W(T ) -+
for & certain & > 0, such that any closed rectifiable Jordan curve in K nT
that cannot be contracted to a point hag length not less than Wx . Hence
it is not difficult to see that any curve in ¢ conmecting I,--# and
I,4+n+m and projecting onto K N7 has length not less than (M —1)wg.
On the other hand, if we do not restrict ourselves to K we can find a curve
connecting Iy~-n and Io--n -+ m with length not bigger than m (w(7) + e) +
-+ 0 where the constant ¢ does not depend on m. Now we take m(K) so
large that

_ m(K)(w(ﬂ‘)+s)+0<(m(K)——l)wK,

ie.

m(E) >0
W —w(T)—¢

The corresponding geodesic interval cannot project onto K in view of

its minimality.

Step 2. It is not difficult to find a geodesic domain of the type con-
sidered in step 1 for a special M. For instance, let M ~ X\{z,} where X
is a torus. Consider I—one of the generators of the fundamental group
of X. ! can be treated as an element of the fundamental group of M.
Take the smooth closed geodesic in M which hag the homotopy class !
(free homotopy) and is the shortest possible. Cut M along this geodesie.
We obtain the geodesic domain we need.

.The difficulty of our problem lies in the fact that we want a general
consfruction that would apply to all possible M. Tet m e M and = M
be‘a. rgg‘l’l_la_lj__}%om.‘ We will show that if M is not of a topological typo
excluded in the theorem then there is o geodesic domain liko @ from step 1
on some covering space of M and it containg a point projecting on m.

icm°®
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Obviously oscillating geodesics in this domain project onto oscillating
geodesics on M.

Taking a 2-sheeted covering space, we can restrict ourselves to the
case of orientable M. We have M = X\{z,, ..., ©,} where X is a compact
surface and J is & punctured neighbourhood of 2y in X. If X is not homeo-
morphic to a sphere S* then we consider the universal covering of X,
(R, p), p: R*—X. i, on the contrary, X = S° then # > 3 and let (R p)
denote the universal covering of the cylinder X\{s,_,, @,}.

The set p™'({&1, ..o, #,}) (7 ({4, ov.y 2,,}) in the case X = $%)
is denumerable and discrete. Denote its elements by Y15 Y2, ... Where
2(9:) = 2,. The pair (¥, p|Y), where ¥ = R*\{y,, 5, ...}, is a covering
of M. Y inherits the Riemannian metric from M. Let y, & P~ (m). We will
prove the following alternative:

(1) there is a smooth closed geodesic without selfintersections in ¥
with points y,, ¥4, ¥z, ¥s in its interior;

(2) there is » closed geodesic without selfintersections in ¥ with
endpoints in y,, with points y,, 9., ¥, in its interior and with the interior
angle in y, not bigger than =.

Consider the family & of all closed rectifiable curves without self-
intersections in Y with endpoints in y, and with points Y1y Ya, Y5 (and
possibly some other deleted points) in their interiors. By o > of We denote
the family of closed rectifiable curves in ¥ with endpointg in y, homotopie
to curves form & (homotopy in ¥ with a fixed point in y;). Let inf.sf
be the infimnm of the lengths of curves from <. Obviously there is a closed
geodesic y, in o with length equal to inf #. One can check that in view
of its minimality y, belongs to < (i.e. y, has no selfintersections). Denote
the interior of y, in ¥ by W,. If the interior angle in y, is not bigger than ,
then (2) is satisfied. If the angle is bigger than =, then ¥\ W, is a complete
convex geodesic domain. In Y\W, we can find a smooth closed geodesic Vo
without selfintersections such that its interior in ¥, W, contains y,.
Hence (1) is satistied. The construction of §, is analogous to that of Yo
and is here omitted.

We proceed differently in cases (1) and (2). Suppose (2) holds. Then
WoLy, is a complete convex geodesic domain. There is a smooth closed
geodesic y, in WUy, without selfinterseetions the interior of which con-
taing all those deleted points y;, ¢ = 1, 2, ..., which were ingide vo except
for y, (i.e. at least points ¥,,ys). To obtain y, we take a geodesic ray y
beginning on y, and escaping in y,. We cut W,uU y, aleng y and obtain
@ convex complete geodesic domain with & boundary composed of Yo
and y taken twice. Now y, is a smooth closed geodesic without selfinter-
sections in W,\y such that its inferior contains all the deleted points
‘which are in W,\y. Denote the interior of y, in ¥ by Wy. (W, \Wy) Uy,
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is a complete convex geodesic domain with all the properties of G from
step 1 except for the fact that y, is not generally smooth. But returning
to the proof of step 1 we sce that this does not really matter.

If (1) holds, we congider the convex geodestc domain WoU#,. There
is a closed geodesic without selfintersections 7, $, = W, with endpoints
in y, such that its interior contains all the deleted points that are inside 7,
except y,. Denote the interior of yl in ¥ by W,. If the interior angle
in ¥, is not less than =, then (Wo\Wl)u 7, is the geodesic domain we need.
Tf the angle is less than =, then W,U#, is a convex geodesic dommn
‘We consider a smooth closed geodesic without selfintersections 3, in W:
such that its interior contains all the deleted points that are inside y,.

Let W1 be the interior of %, in ¥. Then (W~ Wl) U7, is a complete convex
geodesic domain containing 4, with all the properties of G from step 1.
To end the proof we have to show that the tube in the domain we have
construeted is a regular horn.

Let 4 be a tube on ¥ with a point at infinity y, and such that it projects
one-to-one onto the regular horn  on M. Obviously Z° is a horn. We claim
it is a regular horn. Suppose, on the contrary, that there is a eup 7 = ¥,
which is a punctured neighbourhood of %,. Then (see [4]) there is a smooth
closed geodesic y in ¥ such that its interior 4, is a punctured neighbour-
hood of ¥, and the length of y is equal to w(J,). Iy is also a cup and it
projects one-to-one on M, which contradicts the regularity of the horn 7.
Indeed, =, (X, m) acts on Y as a group of isometries and if there are points
y,% €J, such that p(y) = p(¥), then there is an & e =, (X, m) such that
ay =7. Hence ayny # @ and R*\(ayUy) has more than two connected
components. Take the components that contain y, and ay,, respectively.
They are different components because otherwise we would have ay; =¥,
and =, (X, m) acts freely on R*. One of these components has 2 boundary
with length not greater than the length of y. But since the boundary
is not smooth, it contradicts the minimality of y. Theorem 1 is proved. m

Consider surfaces of rotation: M, with one horn, homeomorphic to
a plane and M, with two horms, homeomorphic to a cylinder (Fig. 3).
These examples show that Theorem 1 is not true for the excluded cases
where the fundamental group is trivial or commutative.

In the rest of the paper wo will show that if the horns on M, and M,
are hyperbolic then by an arbitrarily small change of the metrie (in an
arbitrarily small neighbourhood of an arbitrary point) we obtain a con-
tinoum of oscillating geodesics for the mew metric.

It is worth mentioning that one can prove the existence of a con-
tinuum of oscillating geodesics on a smface with a regular horn homeo-
morphic to a cylinder (a plane) if there iy a smooth closed geodesic contract-
ible to a point on that surface (two such geodesics, outside each other
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in the case of a plane). The proof is the same: we remove the interiors
of the geodesics and obtain a complete convex geodesic domain containing
a regular horn with the fundamental group sufficiently large.

N

Fig. 3

IL. Hyperbolic homs

§1. Lemmas about principal solutions and construction of horospheres
on a plane without focal points. Let us consider a second order differential
equation

@) v Ry =

where k(#) is o continuous function defined on an interval I = [a, b).

DerinrrIoN 1. Equation (1) is said to have mo focal points in I iff
for every solution y(t) of (1) such that y(t,) = 0 andy'(4,) =0, t,,t, €1,
we have y(t) =0, tel.

DrriniTioN 2. Equation (1) is said to have no conjugated points in I
if for every solution y(?) of (1) such that y(f,) = 0 and y(,) = 0, %,, ¢, €I,
we have y(t) =0, tel.

If (1) has no focal points then obviously it has no conjugated points.
Also if k(t) < 0, t € I then (1) has no focal points.

DEFINITION 3. A solution y (¢) of (1) is called prineipal iff thereisa T e I
b
such that y(t) # 0 for t & [T, b) and f( 5 (1)) dt =

It is proved in [7] that every equatlon (1) with no conjugated points
(and even under weaker assumptions) has a principal solution and it
is determined uniquely up to a multiplicative constant.

We shall assume that if b < 4+ oo then %(t) is a continuous function
on the closed interval [a, b].
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LeMMA 1. If a solution y(t) of (1) has the property y(t) > 9, Y (1)< 0
for tel in case b = +oco (y(t) >0, y' (1)< 0 for tel and limy(t) = 0

t—ly
an case b << + oo) then y(t) is a principal solution of (1) and (1) has no con-
Jugated points. m .
LEMMA 2. If (1) has no focal points in I then it has a pwmoipal solution
Yo(t) with the property yo(t) >0, yy(t) < 0 for tel in case I = [a, -+ oo)
(Ho(8) > 0, yo(8) < O for t € I and limyy(t) = 0 in case b < --oco).

1-b

Proof. Consider the family of solutions of (1) y(¢;7), r € (a, b) such
that y (a;7) = Land y(r; r) = 0. Then for every » e (a, b) thereis a ¢ € (a, 7)
such that y'(¢; #) < 0 and hence y'(t; ) < 0 for every ¢ e [a, r] because (1)
has no focal points. We claim that y'(a; r) is strietly increasing as a fune-
tion of r. Indeed, let us suppose, on tho contrary, that y'(a; r,) < ¢’ (a; 74)
for some », > 7y; then y(f) = y(¢;7,) —y(t; ) is a solution of (1) such
that y(a) =0, y'(a) <0 and y(r,) > 0. It follows that y(?) = 0 and so
y(t57ry) =y (¢; r,) which is contradictory.

Consider & solution g,(¢) such that y,(a) = 1 and y’'(a) = limy’ (a; 7).

r~>b
In view of continuous dependence on initial conditions we have y,(¢) = 0
and y,(t)<0 for tel and in case b< Joo also lim #,(f) = 0. Now
b

from Lemma 1 it follows that y, (¢) is a principal solution. m
 LmmrA 3. If (1) has no focal points in I = [a, -+ co) and y (1) is & noncon-
stant solution of (1) such that y(a)> 0, y'(a) =0, then y(t) > 0 for t>a
and imy(t) = +oco. Moreover, if y(a) =0 and y'(a) >0 then y(i) is
f—o0
TIOreasing. v
Proof. SBuppose () = 0 for a certain > a; then 4’ > 0 because (1)
has no focal points. This proves that y (1) > 0 for ¢ > ¢ and that the second
part of the lemma holds. ‘ o
In view of Lemma 2, y(¢) is not a principal solution and so £ (L1y2(s))ds
< co. I y(a) = 0 then it follows that lim y(f) = co. It y(a) > 0 then

2-r00

is a solution of (1). Take ¢ < 0 such that ¥1(a) = 0; then

, , ) o0 d l 1 .
vile) =y (“H"'y"(“)f yﬂ(ss) @ T "y

@

and so y,(ty is increasing and lim Y1) = co. Bub ,(f) < y({) for all . m
00 . !
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Levma 4 (Continuity of - prineipal solutions). Let k,(2), ky(t), ...
be continuous functions defined on [@, b;] and such that the equations

() Y +E@y =0
have no fooal points in I, = [a, b)) for i =1,2,... and b;—>co, Ky (t)—>Fk., ()
as i~ oo, uniformly on closed intervals.

Denote by v, the prineipal solution of (2;) such that y,(a) =1. Then

the limits lim y,(f) = y.,(f) and lim Yoi (8) = yoo(2) exist, convergence is
1—>00 t->00
uniform on closed intervals and y,, (t) is a principal solution of (2,,).

Proof. In view of Lemma 1 and Lemma 2 the proof of conclusion 6.6,
Chapter XTI, [7] can be repeated. m

Lemma 4 will be crucial in the proof of the following theorem, which
can be viewed 28 a theorem on the existence and smoothness of horo-
spheres on & plane without focal points.

Consider a 2-manifold homeomorphic to R® with a Riemannian
metric of class C* without focal points (i.e. the Jacobi equation along
any geodesic has no focal points). Suppose M is complete in this metric.
Let yo(r), 7 = 0 be a geodesic rayy in M (p,: [0, o)) and 8(s), 18| < ¢
a geodesic interval such that y,(0) = 6(0) and 8 is transversal to y, in 4(0).
For every » > 0 we connect y,(r) with points of the geodesic interval &
by geodesic intervals. We denote by B,.(s) the angle between the vel-
ocity veetor of § and these geodesic intervals (Fig. 4).

%

Brls)

2l0) d(s)

TFig. 4

TapormM 1. (a) The functions B,(s) converge uniformly together with
their first derivatives 1o a function B(s) of class C* as r—oo. Moreover,

d . :
(3) B~ —ui(0;9)smp(e)
3
where u(t; s) is a principal solution of the equation u,' = —k(t; s)u such

that u(0;s) =1 and u;(t;5) <0 for all 0. k(t; 8) denotes the Gaussian
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curvature along the geodesic y, starting from &(s) at the angle B(8) with the
velocity vector of 6.

(b) If we apply the construction above to v, and 0 (instead of y, and 9),
we obtwin by (2) another function ﬁ (8); then B(s) = B(s) for every [s| < c.

Proof. (a) We shall consider graphs of the funections f.(s) in the
plane (s, f). By 74,: [0, b(s,?)]>M we denote the geodesic interval
connecting 8(s) and yp,(r).

Taking into account the geometrical sense of the Jacobi equation,
we see that §,(s) is a C* function such that

a8,

= —u;(0; s, 7)sinf, (s)
ds

where u(0; s, r) = 1 and «(t; s, 7) is @ principal solution of the equation
w' = —k(t;s,Mu, 0<t<b(s,r); k(t;s,r) is the Gaussian eurvature
along 7 ,,. It is not difficult to see that

0= (058, 7)>const  for r=r,>0 and |§| < e,

Hence all B,,r>r, are Lipschitz funections with Lipschitz constants

bounded uniformly in ». We have

Bls) < B(s) for s 0, mr
and

By (8) < Br(s) for 820, rz=r.

Hence f,(s) have a pointwise limit §(s) as r—>oco. We conclude that f,
converge uniformly to # as r—oo.

In view of the continuity of principal solutions the functions dg,/ds
have a pointwise limit (3). Moreover by the Lipschitz condition for 8,
and the continuity of principal solutions the functions df,/ds are conti-
nuous uniformly in 7. (To prove this one should check that, for every
8, 8] < ¢, df,/ds are continuous at s uniformly in # 3= r, and the case 8 = 0
hag to be treated separately.) And so dg,/ds, = r, form a compact family
of functions in the space of continuous funetions with the topology of uni-
form convergence. Hence dg,/ds are uniformly eonvergent o their point-
wise limit agr—>oo.

(b) Let s, > 0. Simple geometrical considerations show that § (&) = f(8)
for s <0 and s> 8. Take 0 < << sy; then f(s) = f(sy) (Wig. 5). If
B(s1) < B(s,), we obtain two geodesic rays starting wt 4(s,) and contained
in the domain covered by geodesic rays y,, 0 8 < 8. Tho distance bo-
tween y, (r) and Vs (r)is bounded. in 7. On the other hand, on a plane without
focal points two geodesics starting from one point must depart unboundedly
(this follows essentially from Lemma 3, the details will be ropeated in

icm
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Lemma 5 in §2). Thus the resulting contradiction shows that B(s;) = B(s,).
Theorem 1 is proved. m

By Theorem 1 for a given geodesic ray Yo We obtain a family of geo-
desic rays y,; they are called asymptotic for Yo because the distance be-
tween y,(r) and ypy(r) is bounded in ». The existence and smoothness (cYH
of horospheres (limit circles) follows from Theorem 1.

Pig. 5

§2. Construction of semigeodesical coordinates in a horn without
focal points. We shall consider a horn J on some complete surface M
with a Riemannian metric of class €2 We assume that there are no focal
points in F (i.e. that the Jacobi equation along any geodesic intefval
contained in 7 has no focal points).

Let @, eg, n =0,1,... and @,~>oo. If », and &, are far enough
from the boundary of 7~ in M then the shorbest geodesic interval connec-
ting s, and , is contained in g ; it is 50 becaunse 7 is a horn. We choose
Tpy W= 0,1,... to have this property. Let y, be a limit geodesic ray
for the sequence of the shortest geodesic intervals connecting =z, and
By Bo==1, 2, . yy I8 an escaping geodesic ray contained in 7 and has
the property of being the ghortest connection between any two of its
points. (It will turn out that because there are no focal points in J the
Ty 9o is iniquely determined by ,.)

Let 6 Do a geodesic interval in 7 with endpointy in @, which goes
once around 7. There will be such an interval in 7 provided =, is far
enough from the boundary of 7.

Congider o tube 7, = 7 such that § is the boundary of 7;. We cut 7,
along y, and obtain an unbounded geodesical triangle 4 with sides y,, 6
and y, (more strictly, 4 is a geodesic triangle on a two-sheeted covering
space).
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Let s e[0,d] denote the length parameter on & and 7 € [0, - co)
the length parameter on y,. We fix 3 € [0, d] and connect 4(3) and y,(r)
in 4 by a geodesic interval. This can be done in two ways by taking y(r)
on the left or on the right side of 4. Denote by £ (r) and fx(7) the angles
between & and the corresponding geodesic intervals (Fig. 6).

Fig. 6

LEMMA 5. fi(r) increases and By (r) decreases as r increases and

lim B, (r) = limBr(r).
Te-r00 7r—00

Proof. Two geodesics in 4 can intersect only once because there
are no foeal points in 7. It follows that f(r) and fp(r) are monotonous
fometions of r as stated in the lemma.

Suppose that lim gy (r) — Bg(r) = 6, > 0. Between the limit geodesics

we introduce geodesic polar coordinates (g, 6) with a pole in §(8)(p > 0,
6 ef0, 6,]). The Riemannian metric in these eoordinates has the form
@o+Y (0, 0)@0 where Y(g,0) is the solution of the equation ¥,
= —Fk(p, 0) ¥ with initial values ¥(0, 0) =0, ¥(0, 0) =L (k(g, 0) i8
the Gaussian curvature).

By Lemma 3, ¥(p, 0) increases as p incroases and lim ¥ (o, 0) == o0,

Q=00
It follows that an arbitrary rectifiable curve (¢(0), 0), 0 < 6 < 0, Wwhich
ig contained in the domain g 3 g, has arbitvarily great lenght, provided g,
is sufficiently large. Indecd,

[ P Y Sa— O
do\* L
Of l/(d—ﬂ) r ‘w?oj Yo Do s

But 7 is a horn and hence there is a sequence of curves, divergent to in-
finity, connecting the sides of 4 and with bounded lenghts. The contra-
diction shows that 6, = 0. The lemma is proved. m
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From Lemma 5 we obtain that for every s e [0, @] there is a unique
geodesic ray y, starting in 8(s) and contained in A (in other words, not
intersecting y,). We denote by B(s) the angle at 6(s) between 6 and y,.
It follows from Theorem 1 that (s)is of class C*.

We introduce in 4 coordinates (r, s) such that s is the length par-
ameter on 6 and r the length parameter on y,. The coordinates (r,8) are
of clags C'. By clementary differential geometry the metric tensor in these
coordinates has the form

@r--2c088(s)drds - (cos® B (s) + m (r, s)sin?p(s)) d*s

where w(r, s) is the principal solution along y, such that w(0,s) = 1.
Congider the change of variables » =1'4-¢(s'), s =8’ where de/ds’
= —co8f(s") and ¢(0) is so large that ¢(s’) > 0 for s’ € [0, d]. The metric
tengor in these coordinates has the form

v’ (v 4 o(s), 8')sin2 B (s") s’ .

d
LevyA 6. ¢(0) = o(d) (i.e. feosf(s)ds = 0).
0 d
Proof. Suppose on the contrary that for instance f —cospB(s)ds
0

= a > 0, Forw > a congider & curvein 4: v = (#—a)t, s’ =d-t, 0 <t <1
In 7 the curve connects the points y,(¢(0)) and yo(e(0)+) (Fig. 7).
Ity length is equal to

1
fV(w—«a)“—}— @2 urgind B (s) dt < V(z — a)d + dz.
0
For sufficiently large # this length is strictly smaller than #, which contra-

dicts the fact that y, is the shortest curve commecting yo(¢(0)) and
y0(6(0)+w). "

7o(ct0) +x) 7o(clO)+x)

rolelo) 7olc0))

Fig. 7

4 -~ Studia Math., 73.2
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TeEOREM 2. If 7 is a horn without focal points then there is a tube
T\CT such that in ¢l I, we cam introduce coordinates (r,8) of class
CYr >0, smodd, such that
(a) the curves s = const are the only escaping geodesics in I L with
the property of being the shortest connection between any two of their poinis;
(b) the curve r = O with s as a parametor is of class C*;
() the Riemannian metric in the coordinates (r, 8) i of the form

&Fr+ Yi(r, s)d2s

where Y (r,s) is a solution of the equation Y, = —k(r,s) Y such that
Y(0,8) =1 and Y,(r,s)<0 (¥(r,s) is a principal solution); k(r,s)
denotes the Gaussian ourvature;

(d) for an arbitrary geodesic in 7, let a(s) denote the angle between the
vector of welocity of the geodesic amd the coordinate line s = consti; then
a(s) is of class C* and

da
ds

Proof. In view of Lemma 6 the line ' = 0 is cloged in 7. From
this and from the form of the metric tensor we obtain that the geo-
desics s = const are the only escaping geodesics in 4 ‘which have the
property of being the shortest connection between any two of their points.

The line 7' = 0 is of class €' with respect to parameter s’ and its
unit normal vector is also a C* function of ¢'. Hence the line " = 0 is
of class C* with respect to the length parameter. Smoothness is perhaps
violated at the point of intersection with ¥o- But we can start all our
construction not from y, but from any other geodesic s’ = const. And so
the line ' = 0 must be smooth everywhere.

Now we obtain the coordinates (r,s) from the coordinates (+',s’)
by replacing the coordinate s’ by the lenght parameter s on the line #' = 0.
Then obviously (a), (b) and (c) are true.

(d) follows from Theorem 1. Indeed, the angle 8(s) from that the-
orem is our a(s) and if we take into account the difference between the
barameter s from Theorem 1 and our barameter s, wo obtain equation
(d). m

From now on we shall constantly use the coordinates (r, 5).

~¥,.

r

§3. Geo«le.sics in a hyperbolic horn. In the rest of the paper we consider
only hyperbolic horns, i.c. horns with a nonpositive Gaussian curvature.
Theorem 2 has important consequences concerning the behaviour of
geodesics in a hyperbolic horn.

THEOREM 3. Suppose 7 is a hyperbolic horn. T is a

' sharp horn if
and only if the cwrves s = const are the only

escaping geodesics in .

icm°®
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Proof. Suppose (r(r),s(r)),1>0 is an escaping geodesic in 7

and s(x) # const, for instance ds/dv > 0. Then a(s(z)) increases and
d

a(s(r)) <w=/2 for v>>0. Consider a real function f(r) — JX(r,8)ds. f is
0

pogitive, decreasing and convex (f > 0). 7 is a sharp horn if and only
it lim f(r) = f(o0) =0.

r—>--00

Let 7, <7,,,, # = 0,1, ... denote the coordinate r of the points of
intersection of our eseaping geodesic and the curve s = 0, and let a,
denote the corresponding amgles at those points. We have

ar cosa  wpd B _ Sne
'&; == CO8a d i == ¥ y
and so
d
ﬁg = Yetga.
Further,
a (l a
T
Ay =1, —1y = bfi—e—ds =6fthgads
a
< ctga, f Vs < ctg a,f(r,),
]
d
4
Aan =y A, =J —ads
J ds
d
= [ =Tds> —f (ra)
0
So we have
o0 ©a
D )< Y day = ag—a <2,
nm=l ne=0
On the other hand, f(r, )= f(r,)+F (r,) 47, and
.f('rn-H) ~. J Arn
S D T 1} £ (y ).._..,_
AN TS

2 14-f'(r)etga, = 14f (r,)ctga,

where L--f(r,)ctga, > 0 for sufficiently large n. Now we get

f(e0) 7
F(r) -1

"0 n=ny

F) T ,
7o 7 L] 9 et

n=ng
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and, once the infinite product converges, we’ obhm f (oo )>0550 T ig
not a sharp horn.
~ To prove the reverse part of the theorem suppose that f( )>0
Take o < w/2. We will show that there is an escaplng ‘geodesie, different
from s = const and such that all angles a, ‘are Smaller than a. Consider
a geodesic starting in (0, 0) at the angle a, (With the line s == 0) so small
that at the first point of intersection with the line s = 0, o, < a/2 and 71
is s0 large that
o1 T =F(=) ' !
- REAALLANCA S 2. : N
Frir)+: f( ) o <ol
We claim that such a geodesw is escaping. Indced let us asswine by induc-
tion that the angles a;, 4 = 0, ..., n are less than «. Then

Ar; > f(oo)etga,
and ‘ ¢

D) =) =~ 3 =LA
: o Aty

=1

y 1 v ,
< —f/(r)A ﬁ;@;% ~ ') dr,,

0

4 1 '’
—f (h)‘f‘m‘a@—a-! —f'(r)dr

Jlr) —f(o0)
-f(eo)ctga

A

= —f'(r)+

We have
1 = ‘11‘*‘24%‘ < ar!*Z —fr)<al2+af2 =a.
i=1 i=1

Hence by induction the geodesic i escaping. m

PRroPOSITION 1. 7 is o sharp horn if and o i [ y
. e 7z nl % 7k & s O
Jor almost all s. / Y f"f )i = o

) 4
Proof. 7 is a sharp horn if and only if lim ;'Y(r 8)ds == 0. Bub
r~»00 0

Y(r,s)is decreasing ag a function of r and so T i
8 a sharp horn if and
only if lim Y(r, = 0 for almost all s. Now the proposition follows from

P>
the propertles of principal solutions

[7]. For the sake of complot
we give a straightforward proof. : petene

icm°®
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Suppose Y () > 6. 0 f01 72 0. Then
7 v 17,
f~rk(¢)dr =J —--rdrg_f Yrdr
R 4 ¢
[ 0 0
(Y' ] ——j Y'dr)< 100'
’I‘ho lfhb'b moquahty fOllOWh fr()m the fact that ¥’ <
Conversely, wo see’ /thafr fY"rah/l Y( o) and so. lim X' (r)-r

=00

I limY' ( ) r = —a, a >0 then, for sui:ficiently big r X' (»)

P00 . C o . X )
a2, We obtain” Y(ooy~Y(r) = —oo, which contradicts the fact
that ¥ > 0. Henee lim Y’ (#)-r = 0. X ¥ (o0) = 0, we have for cvery ¢ > 0

, w00 .
[ ~reyrar = [ 3
i

f Y rdr
1

y()(r@ a»]‘ fy w)da):

) ' [

The lagt moqua.hty ghows tha.t f rk r)dr = 0. W'

exigts,

00 . r'ooﬂ

')(lfr/ —

—~ X' (¥

—«——fzt—)———l—lZl_ .

Oonsider the seti % of umt . tangent vectors with carriers at the points
of the curye 7.=0.: We introduce. coordinates (s, @) in #: s(modd) is
the length payra.meter on the curve r = 0 and ¢(mod 2x) is the angle between
the tangent vector and the line s = const. It follows from Theorem 2(b)
thsut # with coordinates (s, ) is a cloged submanifold of T, M of elass

L (7, M is the unit tangent bundle of M). '

Let y(t; ¢, ¢), t € R denote a geodesic in M starting (¢ = 0) at (0, s)
on the 'cm've‘- r ='0 with an initial velocity vector equal to (s, ¢) e .
By %" we denote the 56t of (s, ¢) € # such that y(¢; 8, ), t 2> 0 is contained
in 7,. Similarly, %~ .is the set of (8, ¢) e# such that y(f;s,¢), <0 is
contained in . Obviously %™ ={(s, ¢)| (s, p—m) e}

According to Thédrem 2 (d) for %(t; 8, @), (s, @) €™ the angle be-
tween dy /dt and the coordinate lines s = const is not decreasing if ¢ < 0
and not increasing if ¢ 0 as ¢ increases. Wo denote by a™ (8, qa) the limit
value of this angle a8 ¢~ co. .

For a sharp horn Theorem 3 gwo

U ={s@)lp=05 U ={&ele=r}
@* for a horn which is not sharp is deseribéd in the following theorem.
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THEOREM 4. If 7 is a hyperbolic horn which is not sharp then there
is a family of functions f,(s),s(modd), —w2< a2, of class ('
such that

(a) fa ond df,[ds, —=[2 < a < (2 are continuous families of functions
wn the topology of uniform convergence;

(b) —-TC/2 <f—n/2 <0 <.f1:/2< TE/2 and %+ = {(87 ‘P)ff-nlz(s) "\" @ < .fn‘lz (8)};

(© {8, 9)l a*(s,9) = a} = {5, 9) ¢ =ful8)}-

Proof. Consider intervals I, = {(s, ¢)| —n/2 < ¢ < 7/2} = &#. Obvi-
ously y(t;s, 4:m/2) goes out of 7, or coincides with the curve r = 0.
The last case is impossible because then ¥, = 0 on the curve r = 0 (in.
view of Theorem 2 (d)), and this contradicts the fact that 77, is a born.
Geodesics y(¢; 8, ¢) with @ close to —m/2 or w/2 also leave J7;. Henco
in view of Theorem 3 there are f_.,(s) and f,,,(s) such that — /2 < Fenpn(8)
<0 < fp(s) < /2 and

YOIy ={(8,0) foma(8) <@ < Frp(9)}

By an argument similar to that used at the end of the proof of Theorem 3
one can check that a* (s, fi..,(s)) = /2.

By Theorem 2 (d) a* is continuous and increasing as a function of ¢
on I, n%™*. Consequently, o™ takes on all values from —nf2 to =/2 and
each of them once as ¢ changes from Jomp2(8) to fou(s) (s is fixed).
It follows that (c) defines uniquely a family of functions for —72<a
< n/2.

Consider a geodesic ray y(¢; s, @), t > 0, (8, @) e ™; for its asymp-
totic geodesie rays a* has the same value. Then from Theorem 1 it follows
that f, is of class €' and (using Lemma 8)

d;

(* T = 45(0; 9, £, cosf)— 100, )
where u(t; 8, @) i a principal solution of the Jacobi equation along y (3 8, ¢)
such that w(0; s, ) = 1. The last formula shows that df,/ds are bounded
uniformly in s and e. It follows that Jar =m[2 < a2 i8 a compact
family of functions and hence it is continuous in the topology of uniform,
convergence. Then once again, by formula (), Afofds, —7[2 < aKn[2, is
also a continuous family. m

Note that, by Theorem 4, a* is a continuous function on %+,

ProrosirioNn 2. Denote by k(t; s, )

the Gaussian ourvature along
& geodesic y(t; 8, @). Then for almost all s

Jth{t; 8, funp(®)dt = oo.

icm°®
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Proof. From what was said in the proof of Proposition 1 it follows
that we have to show that, for almost all s, u(t; s, fins(5))—>0 as t—>o0
where %(t; s, ¢) i8 a prineipal solution of the Jacobi equation along y(¢; s, @)
guch that % (0;s,¢) = 1.

The lengths of the closed curves r = const in 4, are bounded. Con-
sider the geodesics y (t', 8, fru(8)) for all 5. Denote by a,(s) the angle between
dy[dt and the curve s = const at the point of intersection with the curve
r = const. Then the length of the curve » = 7, is equal to

d

fu(t(s, Tu);s7fﬂ/2(s))

0

08 frn (8)
co08 a,, (8)

where (s, 7,) is the length of the geodesic y(i;$,f.s(s)) between the
curves r = 0 and r =r,. We have i(s, r,) >, and a, (8)—>=/2 a8 r,—>o0.

Suppose u(t; 8y Frpa (s)) >¢>0 for all ¢t for a set of ¢ of positive
measure. Then the lengths of the curves r = r, grow unboundedly as
ro—co. The resulting contradiction ends the proof. m

Note that Proposition 1 ig the limit case of Proposition 2.

Let

A ={(s,9) —x[2 < ‘P<f—n/2(3)}7
and & = &} U RS . Similarly
g = {(s,9)| (8, p—m) e},
and 2~ =R V%, . )

The geodesic flow in T, M defines the Poincaré map &: T ->A~. S is
a diffeomorphism and ®(&#;) = %, i =1,2. By Theorem 4 the sets
IIF = u*n R, i =1, 2, are smooth curves. In the case of a sharp horn
we pub f_.2(8) = frp(8) = 0 in the definitions of RE, & = 1., 2. In this
cage ITE = ITE = 9/*. Our aim is to investigate @ in a small neighbourhood
of IIjf, i =1,2.

LMmA 7. Let 8 be fived and (81, @) = D(8, ¢).

If @ 7 fonpn(8) then @y —Ffrp(81)>m and 8;—>—co.

If N fra(8) then @y—f np(8)—>7 and g, + oco.

Proof. We will prove for instance the second part of the lemma.
Oongider the covering space of 7y with coordinates (r,s_),r; 0,seR
(a projoction of this covering space on Iy is obtaiyed. by taking s(modc.l)).
The geodesics y (13 8,¢), 420, fpu(8) <@ <=2 lxﬁzed o?lto the covering
space and beginning at (0, s) intersect only at this point. Hence 8, in-
creages a8 @ M f,(8). For a horn which is‘not sharp. 8,—cc because thg
geodesic y(f; s, ¢) converges to an escaping geodesic Wht?n @ frp(8):

Trom the fact that @ is a diffeormorphism of &2, on #; it follows that

O1—frpa (82) >

A ={(5,9) fan(®) <@ <m[2}.

A7 = {(s,9)| (s,9p—m) e &}
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For a sharp horn ¢,—=. We use Theorem 2 (d) and obtain
. 8y

o= = [ —X,ds.
g

Suppose s; is bounded. Then the integral on the right tends to zero and
the left side tends to =. So also in this case s;—co0. W

Now we shall study d0 in a small neighbourhood of J7; ¢ =1, 9.
We begin with a description of Fermi coordinates in a tangent space
of T, M. Let # € M, v e (T, M),. By v* e (T, M), we denoto a vector ortho-
gonal to v such that the pair (v, v) is positively oriented. We introduce
linear coordinates (Fermi coordinates) (y, 7 ») in (T(TyM)),, in the
following way. We represent a vector in (T'(7,M ))W,) by a parametrized
curve in Ty M: (2(0),v(0)), lo] <&, @(0) =a,v(0) =v Then (y,7)
are coordinates of the vector (dw/do)|, in the basis (v, »). - ‘

" Let D,0(c) denote a covariant derivative of v(c) along (o) with
respect to o (i.e. wo translate the vectors v(o) parallely along the curve
#(0), |o| < ¢ t0 a common tangent space (T M)y, and then differentiate
them with respect to the parameter o). If (dw/do)|,. %0 then D,0(0)] 4y
= Vazao? ()omo. Dy0(0)l,0 is always orthogonal to v and » is defined
by the equality D,v(0)|,.e = xo'. The Jacobi equations in the coordi-
nates (y, 7, ») take the form

=%
=0
—k(t)y
where k(?) is a Gaussian éqrva.’mre along the respective geodesic.
Let o: Z—T, M be a natural inclusion. Consider the coordinates
(&, £%)in T# with respect to the basis (9/0s, 0/0p). Fix (3, p) e &..

LevmA 8. The differential dew: (TZ);, ;)—a(T(TIM)),,,(;,;) has in the
coordinates (%, &%) amd (y, v, %) the form . )

’
Y

'
P

= CORP &t
‘7 = §inge
% = Y,(0, 5) & &7,

Proof. Let us Tepresent a vector (&°, &N e(T%)s,5, by a curve

(S(U)v ‘P(G))y lal <& §{0) =3 @(0)= 7, that is
‘ ds | . dp o
—‘.i; o—wg 7 - &

We have

a(s(0), (5] = ((0, (o}, coscp(a)%—[-sinqa(u)t—:;);

icm°®
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Hence (Fig. 8) y = cos P&, v = sinp£°. Suppose & 5% 0. Then

¢ 0 b7} 7
. 9 PR ) | e ) = - RIN FHEF—— FEP ——
(1 D, (coup(a) oy Ting (o) s )L SInpEr—- 4 §OS¢E % T

0
- co8 ¢£s V,‘) —
5 or

b7}
+ 8in gEV 5 —
worf; 7 0s

3

From the eonstruction of the coordinates (r, ) it follows (one can also use
Theorem 2 (d)) that

(2)

0
Viyomm| = X0, .
= or n g " Os

(Note that we cannot use Christoffel symbols in eomputing covariant
derivatives bécanse the coordinates (r, s) are only of class C*; nevertheless,
formal computation gives the right answer.)

r

5\ s
}

| vk .
Tig. 8

Parallel translation along a fixed curve is an isometry of tangent‘
spaces. So, in view of &/ér and 9/0s being orthogonal, we obtain that
Vos(0]88)[; has equal length and is orﬁhogqnnll t0 Vyes(0/0r)l5. Hence

o 0 ' 0

o = 002

(3) 2 |5 T or

Combining (1), (2) and (3), we obtain

)| = Y,(0,8 é*"»]— 5"’)‘ - sin“-——a—.-i»comi .
), 9 " %
Hence » == Y,(0, 8/ &'+ £ m o o o
In a neighbourhood of the curves IIf, ¢ =1,2 we introduce coor-
dinaties (s, y) by tho formula ’ ' ‘ '

9 ‘
J‘)‘,(cos (o) (jr} sing (o)

Y =9 "f:'l:n/?(s)
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where we take “+” in a neighbourhood of I7; and “—7” in a neighbour-
hood of IT}. In neighbourhoods of IZ;, 4 = 1,2 we define (s, ) by the
same formula but taking “--” in a neighbourhood of IT; and “—” in
a neighbourhood of II;. In the limit case of a sharp horn the coordinates
(s,y) and (s, @) coincide.

If (9%, ¥) are coordinates in & tangent space of # in the basis (9/ds,
8/0y) then they are comnected with the coordinates (&°, &%) by the for-
mulae

8

7 = £,

(4) df:l: g
=g

From Theorem 1 and Lemma 8 it follows (see the proof of Theorem 4)
that

d , ,
sts . 41(05 5, Fam8) 008 Fm8) = T3(0, )

where w(t; 8, p) has the same sense ag in the proof of Theorem 4. For
simplicity we put w;(t; 8) = u(t; 8, fyinn(8)), # =1, 2.

Now, using Lemma 8, (4) and Jacobi equations, we can deseribe
the differential d® in the following way: Let (8,, w) € &f (31, ¥y
= D (30, Yo) € AT, APig,p0y (0%, 1%) = (0], 7). Given (n°, n*) wo pub
(5) ¥(0) = cos ("Po +f(—1)1'n/2(30))’?ay
y'(O) = "1':'(05 so)cosf(—l)‘wlz(sn)’?"*"7IW-

Then we solve the equation

Yy = "k(t; S0y ‘Po‘i“f(—l)fn/z(so))?l
with initial values (5). In the end we find (4, #¥) by the formulae

1
e P ———
o P 008(py FFiayiepa(81)) v
v COSf(..l):/n-/z(s:l)
M = —

T .
05 (e 90 YY)
where t, is the length of the geodesic y(; 8o, po-Ffioyina(ss)) between
the points (0, s,) and (0, s,), and (3, ) = (1, 2) or (2, 1) (k(¢; 8, ¢) is the
Gaussian curvature along y(f; s, ¢))-

We shall use the description of d® above to prove the following
theorem, erucial for the construction of symbolic dynamics in Chapter IIT.
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TunorEM 5. Lot 5, and 3, be fived and lot (sy, po) e &, i =1 or 2,
D (89) Wo) = (81, 1), d(b(go,v(,)(")s; 7*) = (u, nf);
(a) for every p >0 therc is a § >0 such that if
lpol < €,

then from |n*| = ul|n’| it follows that |9} < p|nil;

[$o—8ol <&, lp—m<E and 8, —8| <&

(b) & wy(t; 8)—>0 as t—co-t (ice. [ th(t; 5y, fi_syinn(Bo))dt = 00) then
0

Sor every p > 0 and A > 1 there is a { > 0 such that if |y, <&, [8o—3Fl < &
then from |n®| = u|n’| it follows that |n?| = A|nY.

The same theorem can be formulated for P~ and it does not need
a goparato proof because @' can be expressed by ¢ in the following
way: if P7H(sy, 1) = (8, ) then B(sy, p,—~n) = (89, 9o+ ). In the
proof of the theorem we shall use the following lemma.

Lmwwa 9. Let Ty(t) be a continuous, nonpositive funetion for t>=0
and let yy(t) be a principal solution of the equation

(7o) Y= —hy(t)y;

then for overy & > 0 there are 6 >0 and T > 0 such that if k(1) is a con-
tinuous nonpositive function for 0 <t << T and |ko(t) —k, ()] < & for 02
< I then from 95(0) [54(0) —y1(0)/4:(0)| > & it follows that y;(T) [y (T) > 0
where y,(t), 0 <t T is an arbitrary solution of equation (7,).

Proof. If for an arbitrary solution y (¢) of equation (7,) (with ko (f) < 0
for 122 0) y (%) 5% 0 and y'(t,)/y (%) > 0 for a certain ?,> 0 then y(f) % 0
and y'(t)/y(¢) > 0 for ¢ >1,.

Put y(¢) = y'(t)/y(¢) on an interval where y(t) # 0. Then () satisfies
the Riccati equation

(80) 2= =k (t)—g*

The solution x,(t) = yo(t)/y,(f) of (8,) corresponding to the principal
solution. of (7,) is the only nonpoesitive solution of (8,) defined for all
t 2 0 (Lo. overy other solution x () of (8,) such that x(0) < 0 either becomes
positive or goes to — oo in a finite time).

Lot Ty (1) == K(t), t >0 and x,(¢) denote a solution of equation (8,)
such. that x,(0) < £(0) < 0. Then y, (1) << z(1) for all ¢ > 0 for which x,(?)
is defined and y(t) < 0.

Let ,(t) be a principal solution of equation (7,) where ¥,(1)
= min (0, kg () +») for [»| < 1. From the comparison theorem ([7], Corol-
lary 6.5) it follows that

Yeolt) Yol

—if

e y< Y.
Yupoll) =

Yo (t) h
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Take &> 0. From the continuity of prineipal solutions (Lemma 4) it
follows that there is a 0 <% < 1 such that

hO) e 'm0 o g0 _ 5O e

Y0(0) 2 7 Y 5(0) Yi0(0)  9o(0) 27
Further, from the properties of a principal solution we obtain 7' such
that for solutions y;,(t) of (7;) and y_; () of (7_;) defined by the initial
conditions

¥a(0) _ %(0) v (0) _ 9,(0)

+& and S = E L
" ya(0)  %,(0) Y (0) T ye(0)
we have :
' Y5 (T) oyl ()
>0 and
YulT) Y- (D)

Put 6 =75. From what was said in the beginning of the proof about
solutions of the Riceati equation it follows that T and ¢ satisfy the
lemma. m ‘

Proof of Theorem 5. Put 4 = 1.

(@) I [nf| > wlnj| then, using (6), we obtain

e » i _y'(tl) ‘

1038 = Y (%) o
et _ C08fmn(81) ., ‘_ N L l i
B A ot o) 20 él)ﬂ.‘cos(_v}ﬁ-fn/g(sl)_)_ﬁ

LS P co8frn(sy) ., :
> — | . — s .
i (0 81)+005(7/’1 —I_fnlz(sl)) MZ(O" %) r > ul2

provided [s;—5,) and |p; — x| are sitficiently sxall. We apply Lemma 9
to the function %(t; 3,f,,(5,)) and ¢ = u/2 and obtain 6 and 7. Y (t,—1)
is a solution of the equation y’' = =k (; 84, Pi—m+ o (80))y. T |8y — 5|
and |y, —=| are sufficiently small then : Co

Rt 8 Fa (3)) = (85 84, p— L )| < 8 for O<t< T

and Lemma 9 yields  —y' (t, —T') fy (¢, —T) > 0. Oonsequontly‘, for sui

ficiently small ¢ if Y (& ~T)y (¢, ~T) > 0 Shen  |nY) < plyl). . Purther,
using (5), we have ; o .

fo s ‘(0
.“1(05'5'0)‘%‘((‘6%‘ .
=l 0: 5y COSFmplse) R S
Uy (05 5,) eos('*—-———-f-nlz(so)_l_%) Uy (03 8p) — mg gt

=

778

~ w005 30— 0wl __ o, ‘so)‘> ul2

08 (f s (86) -+ o)

* ©
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provided‘].s'owtﬁoi and |yl are sufficiently small, We apply Lemma 9
once again to the function k(t; 3, Jena(3)) and & = /2 and obtain 3
and 7. X ¢ is sufficiently small then

’k(t; 507f—n/2(§0)) - 7‘7(“ S5 1/’0’]“f—n/z(3o))[ <8 for

In consequence y'(T)/y(T) > 0. Bubt then also Y (t—T)fy (4, —T) > 0
provided ¢, —T > T, which can be achieved by taking ¢ sufficiently
small. (a) is proved. .

(b) Lot [1¥] = pin'|. Denote by #,(¢) the solution of the equation
Yo =t 89y ot Seomga (80))y With initial values corresponding by (5) to
the wvector (0, n"); similarly y,(4) is the solution, corresponding to the
voctor (7, 0). Tence y(f) == y,(t)+ya(t). We can assume that n* > 0.
We havo
(9
and. consequently

0t T.

n =g and gy () > 9"t

3
(10) Ui 2 7 (11 [ (5 30, o+ F_sia(50) ).
[

In the rest of the proot we will show that the growth of y,(¢) is much
greater than that of y,(f). We have
Y2(0) _ 008f_ps(so)
¥2(0) o8 (T (80))

and so from the continuity of principal solutions we obtain that for every
T>0 and e > 0 there is o ¢ such that if lwol < ¢ and {8,—38,| < ¢ then

(05 8,),

EAURCAGED)
U (5 o)

Ya(?)

Oonsequmx(;ly if ¢ was taken sufficiently small then

for 0<i<T.

’

?‘{“Mg) <«

for 0T,

N

I the last inoquality holds for all 0<3<Ct, then (b) is satisfied.
Indeed, in such o case |yy(4)] < o] and in view of (9) we obtain

il 2 [y (E)] s [y (t) +ya(h)] 2 I¥lt— 1l 2 n”](t —1/p)

and, for sufficiently small ¢, ¢, —1/u > A.
Therefore it suffices to consider two cases:
1 oase. y, (1) = 0 for a certain Ty, T < T, < t,.
IT case., y,(T) = 0 for o cortain Ty, T < Ty < 1.
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I case. Clearly ly,(T,)| < [¥.(0)]. Using (10), we obtain

Y(Ty) = 9, (Ty) +Y2(Ty) = y1(Ta) — 92 (0)]
=0T — ') = (T —1/p).

Hence y(T,) > 0 provided 7 was taken sufficiently large. We have also
¥'(T:) = y;(T,) > 0 and so

Il =y (%) = y(Ty) = ¥ (Ty—1iu).

Consequently || = A|n¥| provided Ty —1/u > 4, which holds if T wasy
taken sufficiently large.
II case. We have

192 { T < 92 (0)] < —u(05 80) 17°] < 0¥ [uy (05 80)] /12

So, using (10), we obtain

Y(T) = 9 (L) +92(T1) = ¢1 (L) — 12 (T4)|

Ty

= (L4 [ =7k (v5 80, Yot _melso)) d7 — 0] (05 80)] /).

Consequently y'(T,) > 0 provided T, is sufficiently large and { sufficiently
small. Moreover, if T;> 4 then

It = 9(t) = ya(t) +Ya(t) 2 2 (Th) -+ g (1)
=y (Ty) = n*T, = in*.

Theorem 5 is proved. m

III. Symbelic dymamies

§1. Abstract theorem. Let 4 denote a denumerable or finite set. 4
will be referred to as an alphabet. Let o and £ be two topological compact
spaces. We will call & the set of entrances and £ tho set of exits. 'Wo
agsume that «/Ud and QUA are compact topological spaces and the
topologies restricted to 4 coincide with discrete topology.

By 8 we denote the set of sequences {an}Zi,L]l where —oeo < ny = —1
<0< << +coand a, € 4 for ny, < 1 < ny, Oy €A iny > —00, a, e
if my < 4-c0. Bo § comtains infinite sequences of eloments of A and also
sequences with a beginning —an element of &, or an end—an element
of Q.
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We introduce a topology in § by describing neighbourhood bages.
For infinite sequence {,}7> ., we take as neighbourhoods the sets

n=—00
Oy = {{a, win €8 M < —N, ny, 2 N, a, = @, for In| < N},
N=1,2,..

For a sequence {&"}ﬁi_w a neighbourhood is given by the set of {a, iy
with n, < —N, 5, >, and a, = @, for —N<n < 7y, and a5, belongs
to a fixed meighbourhood of @, in AvQ. Similarly we introduce the

neighbourhoods for sequences infinite on the right and for finite sequences.
e
‘We obtain a topology in § such that {aﬁ“)}""_ L {8k, a8 k> oo
e |

i and only i Lima® < n,, limn®>n, and lima® =a, in A for
k—ro0 o0 k—>00
<N <y, limal = a, in AU it n, > — oo, limal) = a, in AUQ if
P 1 k00 b

iy < +oo. § is a compact space in this topology ([2]).
The shift transformation = is defined on 4+ = Hanel > 1) by
1:'({0/" :g-:nl) = {a’n+l}::lz=_nll-l‘
7(4%) = 4~ consists of {a, nin, With n, < —2. Now our goal is to formu-
late sufficient conditions for a local diffeomorphism to have 7: A4+ —A~ ag
a subsystem.

Consider a square in R* @ = {(x,9)] 0<a< 1, 0<y<1} and fix
2 number u, 0 < u<1. We call a curve y =u(@) in @: 0 u(r) <1
for 0 <2< 1 a horizontal curve if [ (1) —%(2,)] < |y — ] for 0 < 2,
L2 <1. I wy (o) and wu,(2) define two horizontal curves and Uy (%) <
< %y(®), 0 < <1, then we call the set U = {(&, ) 0< <1, uy(a)
<Y < uy(2)} a horizontal strip. Similarly, by exchanging the role of
and y, we define vertical curves and vertical strips.

Let {U,, a € A} and {V,, a € A} be two families of disjoint horizontal,
respectively vertical strips. Further, {u,, ae o/} and {0, ® € Q} are
families of disjoint horizontal and vertical curves in Q-\JU,and Q- 7,,
respectively. oed aed

We assume that the family {u,, o € &} and also the union of this
family and the family of horizontal boundaries of U,yaeAd are closed
(and hence compact) in the space of all horizontal curves with the topology
of uniform convergence. Identifying two horizontal boundaries of the
same horizontal strip, we obtain the topology of a compact space on
Aug. We require that the topology restricted to 4 should be diserete
(in other words the horizontal boundaries of U,,a c A form a discrete
set in the space of all horizontal curves).

We constrain {V,, a e A} and {v,, w € Q} by similar assumptions
and obtain a topology of a compact space on 4 URQ sueh that Q is a com-
pact and A a discrete subspace.
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Congider a diffeomorphism of class €' &: [ U,
the following conditions: aed

(1) &(U,) = V,yaeA and & maps the vertical and the horizontal
boundaries of U,, respectively onto the vertical and the horizontal boun-
daries of V,.

(2) d® takes the boundle of sectors It = {(&%, &)| &l < u|&]} in
the tangent bundle T'Q into itself ((&7, &) are mnatural coordinates in
a tangent space of Q). AP~ takes the bundle of sectors X~ = {(&, &)
&) < w|£7f} into itself.

(8) There is a 1> 1 such that for (&7, &) = d® (&, &) if (&, &) e 21
then |&] > 4|&Y| and if (£, &) € £~ then |£] > A]&).

TagorEM 1. If, for &: U U, -—>U Vo, conditions (1), (2)

are satisfied, then there amsts a homeomorpmsm h: 8—Q such that ihe
diagram ‘

~\J V, satisfying
aed :

and (3)

A+
h L
» v
Uuo, —=— >V,
aed agd
8 commutative and
h’({a'n}::?énl) € Uaa if  my=1, h({%}ﬁﬁnl) € %ao 'Lf Ny == 0,
h({a'n}zinl) € Va_l ”f My < "'27 h({ @y, n=n1 € Iua,‘l "/f Ny = —1.

The proof of this theorem can be obtained by general methods devel-
oped by Alekseev [1]. The theorem is a slight generalization of a theorem
given by Moser [9]. So we give only a sketch of the proof. For details
the reader iy referred to [9].

The sketch of the proof. Let {a,)2, €8. Consider the sebs

nEany

(2

g, Qe {pe@| Ppe Uap =0,k k<ny.

By (1) and (2) they are horizontal strips. If ny = --c0 we got an infinito
sequenco of horizontal strips Uy = Ugpqy @ .. and their interscction
ﬂ an1 o, 18 @ horizomtal curve because by (3) the width of the

strlps exponentially decreases. ng—1

If g < + o0 we consider a horizontal curve () U, g~
Jew=(

In both cases the resulting horizontal curve deponds continuously (in
the respective topologies) on the sequence {a, i, € 8.

2
g, Ay penny O u“‘nz'
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Similarly, we consider the sets

- -4 .
V“—l"“’“—k ={pe@| &'p EVau t=—1,..., —Fk}, —k>n,
. had —=ny—1
and get a vertical curve (M Vapo , i 1y = —oo0 and () Veppora
li=1 Tomel

nP™M g, iy > —oco. :

We define h( {an},Hnl a8 the intersection of the resulting horizontal
and -vertical curves. The point of intersection depends continuously
on the curves and hence & is continuous. % is also injective and so it

is & homeomorphism for which the statements of the theorem are
satigficd. =

§2. Application to geodesic flows on open surfaces with a hyperbolic
horn. 'We will use the notation and results of §3 Chapter IT. Suppose
there is & geodegic y which intersects II;7 and 7T}, i = 1 or 2 (in this case
we consider y a8 @ curve in T,M). Note that by reversing if necessary
the time parameter we can always achiove that » intersect I7; and
II. The coincidence of indexes will play an important role in the
sequel.

So, as the geodesics which intersect IIf, ¢ = 1, 2 are transversal to
2%, we obtain the Poincaré map ¥ taking a neighbourhood of y 17 in
# onto a. neighbourhood of ynII; in &. In the coordinates (s, ¢) we have
W(8,, ) = (5, 0) for some 5, and &.

We require thafu the following conditions hold:

(A) (trangversality condition). ¥(I7;) intersects II,” transversally atb
the point (5, 0).

(B) uy(?; §)—>0 and w,(?; 5,)~>0 as t—oo.

Remember that in the limit case of a sharp horn IIF = IT¥ and
Uy (5 8) = uq(t; 8) = ¥ (t,s). For an integer N >0 and real 6 >0 we
congider an alphabet A = {¥, N +1, ...}, the set of entrances & = [0, ]
and the set of exits 2 = [0, 6]. The topology indue = AR is defined
by the map onto {—1/N, —1/(N¥-1),...}u[0, 8] R. We denote by
§(N, 8) the corresponding space of soqnen(,es

For an integer N > 0 wo consider also an alphabet 4 = {4 N, £ (N +
-+1)y ...} and the sots of entrances and exists o = Q = {oo}. The top-
ologyin AU == AU is defined by the map onto {£1/N, £L/(N +1),..

LU{0} e R S(N ) denoties the corresponding space of sequences. Let
Ve ={&, ) ls—&I < wl <L} for  [>0.

TorormMm 2. If for o geodesic y on a surface with o horn which is mot

sharp (with o sharp horn) conditions (A) and (B) are satisfied, then there

5 - Studia Math. 73.2
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are N>0,6>0,{>0 (N>0, {>0) and o homeomorphism h: 8(¥, 9
¥ (h: 8(N)—¥",) such that the diagram

A+ T A-

h h

v v
Yo
Yy L A

is commatative. (More exactly, Wod takes h(A*) onto h(A~) and Wodoh
= hov on A*.)
Morgover, for (sy,y,) = W, Yy2 ) if 2o = 0 then (sy, py) € U+ and

a*(Soy wo) = 7/2—a9 (1, = 0)
and if 1y, =1 then for (s;, y,) = D(sq, v,) we have
B(sy—s0)/d) = ay  (B(jsy—s0l/d) = (sgn(s;—3,))ac).

Analogously for (s, y,) = (¥ %o B ({0 ny) Of 9y = —1 then (s, )
e U™ and

at (s, p—m) = —n24a_;, (p, =m).

This theorem gives a large family of geodesics with different geo-
metrical properties. If a sequence {@,}_ _. is bounded on the right, the
corresponding geodesic is bounded in the future and when it is unbounded
the geodesic is oscillating. In particular, we obtain & continuum of oseil-
lating geodesics. Periodic sequences correspond to cloged geodesics. Finite
Sequences correspond to escaping geodesics. All kinds of behaviour in
the past and in the future can be freely combined. For a sharp horn we
find that a geodesic can arbitrarily change the direction in which it goes
round the horn.

We give the proof of Theorem 2 only in the case of a horn which
is not sharp. The proof in the case of a sharp horn is almost the same.

Proof. We will show that Theorem 1 can he applied. For simplicity
of exposition we assume that ¥(II;") and II; interseet at the point (3, 0)
perpendiculary. The role of the rectangle ¢ will be played by ¥, with
a sufficiently small ¢.

For >0 we introduce the following sectors in the linear space
(% n%):

Ziw) =", ™)1 "I < win'l},
Ziw) = {0y )| ") = i),
Zo(p) = {(n" 17| e %1}

.Ci'l 1@
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If 4, 0 < u<land >0 are sufficiently small, then for (sy, v,) € ¥,
we have ’
(1) WG () © Z(p).
Taking perhaps a smaller { and for sufficiently small u,, 4, < u we have
for (81, y1) € ¥H(Y7Y)
(2) AV wyZalp) © Za(p).

By Theorem b (a) and analogous theorem for @7, if ¢ is sufficiently
small, (8o, wo) € ¥ and D(s,, yo) € ¥~ ¥7,), then we have

(3) dd)(so,wo)xi(ﬂl) < Zy(p)
and
(4) d(p[‘;;, wl)zi(l") = Zi@)y (81 91) = D (S0, Yo)-

Combining (2) and (3), we obtain that for a sufficiently small { and
(80 Wo) € ¥ NPT yf—l(yc)

(5) (o Dy, yy2a(p) = Zo(p).
Similarly, from (1) and (4) it follows that for (s,, w,) € ¥ nWo B(¥7;)
(6) WP W)y Za(0) = Zy(m).

By Lemma 7, Chapter IT and (6), connected compone]_ﬂfs of &(77,) n
AP~ (¥,) are, except for a finite number of them, curvilinear quad,n—
laterals P,,P,, ... such that &~ (P) = U,, 'i =1,2,... are horizontal
gtrips in the rectangle ¥, (Fig. 9). Similarly, by (5), ¥(P,) = V;,
+=1,2,... arve vertical strips in the rectangle ¥7.

» . //ti\ ¥ )
Vs
U

Uz

Fig, 9

Moreover, for every ¢ = 1,2, ... there is an integer ny, n;,, = n;+1
guch that if (3o, vo) € U; and (85, 91) = P(80, ¥o) then

B (81— 80)/B) = ny.
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Roughly speaking, the geodesic y(t; so, 1) between the points (0, s,) and
(0, s,) makes approximately , loops round the horn. (If, for a fixeq
8.~ 5ol, £ is mot sufficiently small then wo have only |7((s;—s,)/d) —
<1)

‘We change the indices of U, and V, in such a way that n, =4 and
t =N, N+1,... for a certain N > 0. By Theorem 4 (a) the intersection,
of the curve

p = fr:l"«a frc/’(

with 77, is a horizontal curve for 0 < e« 6 and o wulficiently small 8,
We denote the curve by ,.
Correspondingly, the intersection of W-image of the curve

P == f—nlz-l w(s) "“f“n/.'z (“"

with ¥7; is a vertical curve for 0 < v < § and u sufficiently small § (in
this case we use also (2)). We donote the curve by 2,

Now it suffices to show that the asswinptions of Thoormn 1 for Yo
are satisfied. (1) is a straightforward comsequence of the construction
of the strips U; and V,.

(2) is satistied by (5) and (6).

Take 1> 1. Condition (B) allows us to apply Theorem 5 (b) and
an analogous theorem for &=, Put

v = max (|d¥]y-1p,, |}dl[f“"“,‘c)

where
(dF ]| y1yr, = sup, |]d‘l s
rg¥—lp
Hd‘f’”lﬂwc = sup ]|d$lfx Ui

and ||-|| is defined by the norm (s, 1]’” = [9"|+n"]. Let &> 0 be as in
Theorem 5 (b); then for

(Sos Wo) € ¥4y D(sg, Wo) = (84, py) € YLy,
(n*y ") & Zy(4), (5, Yy == dq)(“nd"o)(”‘q’ 7",

(n3y m8) == AW\ (nf, m})
we have

I3l A"t and [yl ng] 2= (L) (o] - ).
Further, (5) means that |nf] < < gl Oombining these inequalitios wo got
)11 = 03] 411 = (L) (3] +- In 1) 2 (L) 1 2= (A) 19",
and hence
(7 5] = (Al (L + )"
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Now let
'y n*) € Zy(u)y, (o, mb) = AP, (' 1),
(n3, w§) = ADg) . (ni, n)
where (89, o) € ¥, and. (84, p1) = P78y, y,) € P(¥7;) Similarly, we have

gl = Amfl, bl ldl = @) (n°) -+ %))
and
] 2 p il
Combining these inequalities, we get

(A A+L/w) 95l 2 A1 u) 9] = A(1%8] -+ n?)

2 (A ('l + %)) = (A 1P|
and hence

(8) Ingl = (Aufy (L4 w) 9.

Agsumption (3) of Theorem 1 follows from (7) and (8) provided
A is chosen go large that

AL+ ) > 1.
The theorem is proved. m

§3. Final remarks. Consider a surface of rotation homeomorphic
to a plane and containing & hyperbolic horn (the surface M, on Fig. 3).
The Clairaut intogral shows that all geodesics starting on I7; eventually
arrive on II} or all of them are agymptotic to some closed geodesic. The
latter case is degenerated in the sense that it can be destroyed by a C®
small change of the metric in a compact region (in the class of surfaces
of rotation). In the first case the transversality condition (A) is obviously
not satisfied for any of the escaping geodesics.

For a surface of rotation homeomorphic to a cylinder (the surface
M, on Fig. 3) and containing two hyperbolic horng 7 and 7,, if w(7)
> w(7,) then the geodesics starting on IT; arrive eventually on II; or
(similarly to the case of one hyperbolic horn) this can by achieved by an
arbitrarily small change of the motric.

Asgume that there is a geodesic y intersecting [7; and IT+ for some
hyperbolic horn but condition (A) is not satistied. We take an arbitrarily
small neighbourhood of & point on the geodesic y and change the metric
in it in such a way that it continues to be a geodesic in the new metric
and the Gaussian curvature on y increases (decreases) at some points
and does not decrease (increase) at the remaining points. From the theory
of linear differential equation it follows that condition (A) holds for ¢
in the new metric at least if the change of the Gaussian curvature is
not to large. The change of the metric can be made C* small.
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Now, if (A) holds but not (B), then in view of Proposition 2 (Prop-
ogition 1 in the limit case of a gharp horn) after a C* small and loea)
change of the metric (A) and (B) will be satisfied for another geodesic
close to y.

Consequently by a small change of the metric we obtain a continuum
of oscillating geodesics on the surfaces of rotation from TFig. 3.

Symbolic dynamics similar to that in Theorem 2 can be constructed
for a geodesic flow on a surface with several hyperbolic horns which are
“connected” by geodesics which escape in the future and in the past
and for which conditions analogous to (A) and (B) aro satisfied. Now,
a geodesic makes a prescribed number of loops round a horn, then goes
outi of the horn closely to the “connecting” geodesic, makes the prescribed
number of loops round another horn and so on. For different graphs of
“connections” we obtain as symbolic spaces a variety of topological
Markov chains with entrances and exits (for a definition see [27). Morcover,
if some power of a Markov matrix has 1 on its diagonal, wo find a poste-
riori a geodesic that escapes in the future and in the past in one and the
same horn.

For two tubes on a complete surface there is always a geodesic that
escapes in the past in the one tube and in the future in anothor tube [4].

The following problem arisos:

PronLEM. Suppose M is a complete surface homeomorphic to & plane
and containing a sharp hyperbolic horn. Is there always a goodesic on M
that escapes both in the future and in the past? If not, is the exigteneo
of guch a geodesic in some sense typical?

Added in proof. Recently Bangert solved the problem in the affirmative (there
is always such a geodesic, and even without selfintersections): V. Bangort, On the
exislence of escaping geodesies, Comment. Math. Helvetici 56 (1981), 59-65.
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