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The assertion (3.1) can be formulated without reference to tra{nsla.tion
structure or to Riesz transforms. For p sufficiently near 1, agsertion (3.1)
holds on a number of “spaces of homogeneous ’nype” (see [2]). We .would
merely like to comment that 3.1 holds, in particular, on the unit })an
in € (for a proof, see [5]) and that the proofs of 2.1 and 2.2 transfer,
without significant change, to that context. .

Fmallirjjﬁwe note that the techniques of this paper can be used to
give some sufficient conditions that an operator f—>[E (2, 8)f(t)dt map
H?(R™) 0 WA (R™), m # 0y q > D.
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Inequalities for product operators
and vector valued ergodic theorems*

by
TAKESHI YOSHIMOTO (Kawagoe, Japan)

Abstract. The basic setting in this consideration is the function class QX5 %)
consisting of all strongly #-measurable X-valued functions f defined on X such that
LIS/ 81 [og* []1£111/£]° is integrable on the set where If1lE > ¢ for every ¢> 0, where
(X, 4, u) is a o-finite measure space and (X, [lI-1!1} is a Banach space. In this setting
some strong type and weak type inequalities (which are indispensable for studying
ergodic theorems) for products of Le-bounded quasi-linear operators of weak type
(1,1) are proved as generalizations of the maximal and the dominated ergodic the-
orems for the ergodic maximal operators. Moreover, we demonstrate that these results
enable us to obtain some vector valued extensions of the ergodic theorems of Dun-
ford-Schwartz type and further generalizations to functions in the class Q2 (X; X).

Local (mean and pointwise) ergodic theorems are also obtained to add to the above
results.

1. Introduction. The ergodic theorems (usually called the mean
ergodic theorem and the pointwise ergodic theorem) had received a con-
siderably general operator-theoretic treatment in the case where the
underlying space is just the Lebesgue space L,=L,X,%, u), where
(X, #, p) is a o-finite measure space. After the lapse of time, especially,
a new approach o the study of pointwise ergodic theorems has been devel-
oped in several recent papers. The contrivance to this is the weak type
inequality powerful and indispensable for investigating the convergence
almost everywhere of operator averages. The first step in this direction
was taken by Fava [4] who extended the so-called “non-commuting
ergodic theorems” of Dunford and Schwartz for positive operators to
functions in a larger class than the space L, by means of a weak type
inequality for products of maximal operators on L,+I, which iy the
clags of all functions of the form f = g% with gel, and heL,. The
method of proving the Fava inequality, as his proof shows, calls for the
Ppositivity of maximal operators. Recently the author [8] has generalized
his inequality to the case of quasi-linear operators without assumption

* Some partial results in this paper were presented at the Meeting of Math-
ematical Society of Japan on October 4, 1979.
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of positivity and then extended his generalizations of non-commuting
ergodic theorems to the case without agsuming the operators involved
to be positive (cf. [7]). However, the vector valued ergodic theorems have
not been given a comparable general operator-theoretic formulation.
Much less is indeed known about the vector valued ergodic theorems of
Chacon type. One such result was obtained in the author’s paper [5] being
appropriated for extending the theorem of Chacon [2]. Now it would
be an interesting problem to study the Dunford-Schwartz type apropos
of convergence of simultaneous averages of several gingle operators and of
continuous parameter semigroups of operators in the reflexive Banach
space valued case. In fact, our principal objectives in thig paper will be
to demonstrate the weak type and the strong type inequalities for pro-
ducts of quasi-linear operators of weak type (1,1) in the Banach space
valued case and to obtain some vector valued extensions of the Dunford-
Sechwartz theorems. The obtained inequalities are further extensions
of those by Fava [4] and. the author [8], and the obtained ergodic theorems
are further generalizations of those due to Chacon [2]and the author [5], [8].

Now our inequalities are of interest for some reasons. The first is
just the fact that they regulate the behaviors of quasi-linear operators
including those induced by the Hardy-Littlewood maximal function,
the ergodic maximal functions and the ergodic power functions ([6]).
Another reason for studying them is that they are natural extensions
of the maximal ergodic theorem and. the dominated ergodic theorem and
that the major role resembles the fact that the maximal-dominated the-
orems are of essential use in investigating ergodic theorems.

Let (X, 4, u) be a o-finite measure space and let (X, ||| |||) be a Ba-
nach space. We denote by Q;(X; X) (0 < a < o) the class of all strongly
measurable X-valued functions f defined on X such that

[1f() 111

(1.1)
auri>n 4

[log Hlf(f) ”l]adu(w) for every 1>0.

Then 24(X; %), 0 < a < oo turns out to be a general decreasing sequence
of linear spaces. We prove the weak type and the strong type in-
equalities for quasi-tinear operators om L,(X;X)+L(X;X) of weak
type (1,1) and for functions in Q4%(X; X) which permit to obtain some
vector valued ergodic theorems of Dunford-Schwartz type for any func-
tion in Q4 (X; X), where # is the number of operators involved. Further-
more, the analogous extensions for the case of continuous parameter
semigroups of linear operators will also be obtained.

2, Quasi-]i;ear operators and function classes Q%(X; X). Let (X, &, u)
and (¥, #, ) be two o-finite measure spaces and let (X, |||- [1]) be & Banach
space. Unless stated otherwise from now on, all equalities and inequa-
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lities are understood to hold almost everywhere. In what follows it will
be convenient to suppress the argument of a funection, writing f for f(=).
For an operator U mapping strongly #-measurable X-valued functions
defined on X to strongly #-measurable X-valued functions defined on Y,
we say that U is (M)-guasi-linear it there is a positive constant M depen-
ding only upon U such that

WU+l < MAUTFUI+ 11T,
NT NI = lel- 11 TF 1)

for any complex number ¢. In particular, U is said to be sublinear when
M =1. The operator U is of weak type (1,1) provided that for every
fe D(U) (the domain of U) and for any A > 0, there exists a positive
constant W independent of f and A such that

YT > B <~ [ st duta).
X

Moreover, the least value of such W is called the weak type (1,1)-norm
of U and denoted by W, ,(U). Now, the case that (X, 2,p0)=(X,F,)
will be considered throughout the remainder of the present paper. Let
Lp(X; %) = L,(X, B, u; X), 1< p< oo, be the usual Banach spaces of
strongly %-measurable X-valued functions defined on X. Let IL,(X; X)+
+ Ly, (X; X) denote the class of all functions f of the form f = g+ h with
geL(X;%) and heL,(X;%). An operator U defined on L,(X; %)+
+L,(X; %) is called L_-bounded if for all fin L(X;X)+L,.(X; %)
there exists a constant K independent of f for which |Ufl, < K- |fl.-
Furthermore, the least value of such K is said to be the strong type ( oo, co)-
norm of U and denoted by K, ., (U). The typical examples of I -bounded
quasi-linear operators of weak type (1,1) in ergodic theory setting are
the operators induced from the Hardy-Littlewood maximal function, the
ergodic maximal functions and the ergodic power functions as mentioned
in the introduction. Evidently the class of L -bounded quasi-linear
operators of weak type (1,1) is considerably larger than that of maximal
operatorsin the sense of Fava, which are operators U defined on L, (X)-+
+ Ly (X) satisfying that

(1) f> 0 implies Uf > 0.

(2) U is sublinear.

(3) 0< f< g implies Uf< Uy.

4) 10flle < Iflo -

(8) U is of weak type (1,1).
Throughout this paper the notation F,(4) will be used instead of the set
{=: |llg@l > A}.

2 — Studia Math, 73.2
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Levma 1. Let U be am Ly-bounded (M)-quasi-linear operator of weak
type (1,1) defined on L, (X5 X)+Lo(X; X). Let Wy, ((T) be the weak type
(X, 1)-norm of U and let K, . (U) be the strong type (co, co)-norm of U.
Then for every f € Ln(X; X)+ L (X; X) and for any 2 > 0,

W, (T
(21) By (M (Koo (0U)+1)2)) <—”~§(——ln £ 1 (@) 11 dps ().
oy

Proof. It is sufficient to prove the lemma for the case where |||f]||
is integrable over the set H,(4) since if the right hand side of (2.1) is in-
finite then the lemma holds trivially. Define f*(z) = f(w) Xy (x) and
Julw) = f(w)—f (), where yy stands for the characteristic function of
the set #. Then we have

Bof M(E o, T)+1) 1) = Byypa(2)
and so
W, (U
Pt [ @)1 auta)
X

which, when appealled to the definition of f, gives (2.1) and compietes
the proof. «

COROLLARY 1. On the hypothesis of Lemma 1,
F L (X;%). : .
" (1) For 1 <p < oo there is a constant A > 0 independent of f, such
that

F‘(Ew(M(Km,oo( U)+1) ﬂ)) < p(Bpp(d)) <

let fel,(X;%)+

JIms@ira@ <a- [isiiedue).

(2) There are two constamis B >0 and ¢ > 0 independent of f, such
that : ) :

Juwr@liape < Bl 1o Jiuscog* 117y au ()]

The proof of Corollary 1 can directly be done by the standard
argument (see [5], Theorem 1). Particularly, (1) may be given by using
the Marcinkiewicz interpolation theorem.’ ‘

In the sequel we denote by 22(X;%) (0< a< oco) the clags of all
strongly #-measurable X-valued functions f defined on X satisfying (1.1).
Such classes were considered by Fava in a sbecial -case ‘where X is the
linear space of complex numbers and ¢ = 0,1,2,...

Let L(X;%)[log" L(X; )" 0<a< o) denote thoe clags of all
strongly #-measurable X-valued functions f defined on X guch that!

e @) nog I1F @) due) < oo,

where log*u = logmax (1, u) for u > 0.
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THEOREM A ([5], [6]). Let 1< p < co and 0 <'a, B < oo.
(i) 2u(X; %) s o linear space.
(i) Ly (X5 %) © (X3 %) © In(X; %)+ Lo (X X).
(ifl) Q5(X;%) <« Q%(X;X) for a< f. ‘
(iv) L,(X; %)  Q4(X;%) « L(X; X)[log* L(X; ) = Ly (X; ¥+

+ Lo (X; X) for p > 1.

(v) 25(X; %) = L(X; X)[ogt L(X; X)1° if and only if u(X) < oo.
(vi) Q5(X;X) o Linear span of {J L,(X;¥).
. Yo »>1

3. Inequalities for products of quasi-linear operators. Of convergence
in some sense of the operator averages, a central role has frequently
been played by a weak type estimate (sometimes called the maximal
ergodic theorem). With this comprehension we appropriate the present
section to demonstrate the weak type and the strong type inequalities
for products of quasi-linear operators.

LevmmA 2 ([4], Lemma 3, p. 273). Let p(t) be a non-decreasing function
on the real interval 0 <t < oo, such that ¢(0) = 0 and @(f) s absolutely
continuous on every finite subinterval. Then for any non-negative function f
defined on X

[olf@}au@) = [ w(BaB@)¢ (1)dt, BeB.
E ¢

THEOREM 1 (Strong type inequality). Let U;, 1L.<i<n; be n Ly-
bounded (M,)-quasi-linear operators of weak type (1,1) defined on Ly (X ; %)+
+ Lo (X;X). For each i (L<<i<n) let Wy(i) = Wy, (U,) be the weak type
(L1)-norm of U; and K, (1) = Ko,o(U;) the strong type (oo, co)-norm
of U;. Let 0 be any real number with 0 > 1. Then for every f e QE+™(X; X)
(5 =0,1,2,...) and for any A >0

\T, ... U.f( v,...T k
(3.1) N, ZUJf(w)Ill [log I ] 1f(‘$v)lll] du (@)
EUn... Ul,(oz)
B, B, lIf @) T
VA f 0 Hg(ﬂﬂ)l\l[mg Hl{( )IH] du(a),
Bg, 108
where
“y({ 2 1 )
Anx = !J (log 6" ,er?)Wl(% —?_HQ.’
B, = M (K (4) +1).
Consequently fe Qi (X;%X) implies U, ... U,fe Q¥X;%).
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Proof. The proof will be achieved by induction on the number of
operators. Let 6>1, 1> 0 and fe 24+ (X;X), and put ¢ = f/A. Then
by Theorem A, g eQ"“(X X) and thus U,f and U,gare well defined
for each 4 since Q"“(X X) € Ly(X; %)+ Lo (X; X). With the function ¢
defined by ¢(w) = w[log* u] for % > 0, it follows from Lemma 2 that

Inequalities for product operators

S
<Wi) [ o/ wan MK, (i) +1) llg (@)1l s (o)
6

k
(Al [log mw;(wﬂll ] du(@)

E Uﬂ‘“’ 2

= flHUiy(w)lll[longUr;y(m)llll"du(w)

Hy®

= f (B, (6) By g (1) " (1) .

However, since Hy,(0)  By,(u) for w < 0, we have by Lemma 1

]

(3.2) f (B (0) "By ()}’ (w) s
= f By (6))9' (u) du
NIl dp (@)

< (log 6YW, (5) M (K (5)+1)illg (w

B MR ot +1)g®

M (Ko (1) + 1) [IIf ()11

E MR i +1)f 0P 4

= (log 0)*W, (4) dp ()

_W) /AL
= 10g0 EM.;(KQQ(I')+1)/<M)

w(8) F 1) [1If (@)1
A

X

o ) Kl
« [1()g Mi(Kw(%)-;l)le(m)Hl]

while, also by Lemma 1

0

©3) [ ulByy(O)nBy,w)e W
']

oo

= f p(E'Uig(u))q:’ (u)du
¢

du(w),

< Wi(9)

By Lo+1)0?

MK (3)+ 1) llg (#))]] du () x

Mi(E oot} Hatm i |
X f — o' (u)du
AL

< W(d)

EM (K oty +1)g'®

M (K, (2)+ 1) llg (@)l x

{[log MK, () +1) g @)l T +

T+ IO EL )+ 1) @ [ auco

/( 1 1
<=+

log6 k41 ) 1 B & otr+1)5® , (Kw )+ 1) Mg e)ill >

X [log M (K o (4) +1) i11g (#)111]*+* dp ()

[t 1 M (B (i) + 1) 11f (@)11]
(1 M=y E+1 ) Wit EMy(& o+ 1)1 0P 2 8
. k41
y [log ML(Km(z)ng)mf( |||] Ba(a).
Therefore, adding (3.2) and (3.3) and letting
2 1
Ao = (o + ) ),
B, = Ml(Kw(1)+1)
give
U f (@)1 U, f(
LECT g WL T,
By, 60

f By lilf (e

< Al kT
B j0b A

n|[iog.Bl-lnf(m)n|]k+ld“(w)
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which establishes the fact that the theorem is true for tl}e case of n = 1.
We next assume that the theorem has been proved 13,(0) hol;i ‘for the case of m
quagi-linear operators Us, ..., Upiy- Let * f e Qi+ (X; X). The fact
just observed then implies U,f e Q™ (X; %) and so we see from the
induction hypothesis that

Nz -+ Tuf (@)1

54 J
(34) By i1 UOP A

’ . k

. B, ® B, 11U f @) Te
<i,, Ba I10S 00 [log SULE )III] auta)
B u1r®
‘where
2 1 :
i = [ -9 —
Ay = lwll (logﬁ } 70+7:) Wy(m 1),

m+1

B, =nMi(Kw(i) +1).

Moreover, using the quasi-linearity and the result for » = 1, the last
term of (3.4) is equal to

~ P = Te--ine
65 A, | ||1U1(B,;f)<w>m[log H|U1<Br;f)(m>|“] du()
By By n0®
X ; Jorp-m-1
. f Buulllf @)1 1OgB,,WHlf(as)Hl] du (@),
= “m+1, hEBm.,_]fW" 2 i
where

2 1

iy . _\w,
Am+1,k 'Am,h(logo + ]C—[—’m—l—l)Wl( )

m-+1 )
(e 1\,

- L W2 —d
Q (1og0 ! me) (424,

mel-1

Buiy = By My (Ko (1) +1) = [ [ M (K, () 1-1).

Consequently, combining (3.4) and (3.5) shows that the theorem holds
good for n = m+1 and establishes (3.1). Hence the proof is complete.

THEOREM 2. (Weak type imequality). Let U, L<{i<m, be n Lg-
bounded (M,)-quasi-linear operators of weak type (1,1) defined on L, (X ;%)
Lo (X5 X). For each i (L<i<n) let W(i) = Wy,,(U,) be the weak
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type (1,1)-norm of U; and K, (i) = K, (U, the strong type (oo, oo)-
norm of U;. Let 6 be any real number with 6 > 1. Then for every fe
Qe X %) (B =0,1,2,...) and for any 1> 0

/‘(EUn...Ulf(B}“))

k+n—1
<, [ Blif@il [mgB"'“f(“””] (e,

(3.6)

’ -EB"f(M) i
W.(1) _
Cor = ] 0 (log 0)* for w=1,
lGn—l,k'-Al,k for nz=2,

where B,, and A, , are as given in Theorem 1.

Remark. Inequality (3.6) looks like the natural weak type analogue
of inequality (8.1) at the first glance. Indeed, (3.6) can immediately be
derived from (3.1) for functions in Q%*"(X; ¥). However, (3.1) is no gua-
rantee of (3.6) for funetions in QF*"'(X;X) but not in QK(X;X).

Proof. The proof will be by induction on # (the number of operators).
Let 6>1, 2> 0 and fe QF(X;¥). Then U,f is well defined for each i,
g0 that by Lemma 1 we have

: W, (i) M (Ko (6) +1) If(@)]l]
1) H(EUif(M))g 0 Baamnson 4 (@)
Wi(s) (K () +1) [l (@)l %
= 6(log 6)* By & i+ 1100 A
7. ; =
y [log M,(Kmm;l)nv(w)in] au(a).
Then taking

Wi(1)

e = 0(log 6)*

and inserting the constant €, , into (3.7) yield

Bl Bl k
B o0) < Oy | |||/{(w)m[10g HIJ;(w)IH] ()
EBII(UJ.)
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which shows that the theorem holds for # = 1. To apply induction we
suppose that the theorem has already been established for the case of m
quasi-linear operators Us, ..., Upyy and leb fe QE™ (X5 X). Since U,f
e Qi+m1(X; X) on account of Theorem 1, it follows by the induction
hypothesis that

(38)  p{By,, .0 (O)

~ 2 et m—~1
<o, | ZalTS@i [logBmmUIf(w)m] inta),

BBty A A

where the constant B, is as given in the proof of Theorem 1. Again, by
Theorem 1 and the quasi-linearity the right hand side of (3.8) is equal to

B B k-km~1
O [ lHUl(B;f)(w)Hl[logHIUl(Bsz)(m)m] -
By Gy v
By lllf @)1 Bm_llelf(m)lH]k-J«m
< O EBm+“£f9l) f [log A (o)

with the constant B,,, given in Theorem 1, where Cp1,p = O 4y

This observation, when combined with (3.8), proves that the theorem is

true for the case of n = m-+1 and concludes the proof of the theorem,
COROLLARY 2. Let U, My, W, (i), K, (?), L< i< n, be as in Theorem 1.
(1) If 1 << p< oo then for every fe Ly(X; X)+ L, (X; %)

(3.9) [T, ... Tuf@\IPdu(@) < D, p [ NIF@)]117 du (=),
X X
where

Dy, = (171_0_—1) J AL NCES AT

4=l

(2) Let 0> 1. Then for every fe Ly(X;X)+ Ly(X;X) and for each
k(k=0,1,2,...) there holds

(8.10) Xf[l[Un--- Uf (@)l| du ()

O
<o-fut) + j;’,;if Bjif(@) [og" Bl S} @)

with the constants B, and O, ; given in Theorems 1 and 2.
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Proof. It suffices to show (3.9) for fumctions in L,(X; %), for if
the right hand side of (3.9) is infinite then it holds trivially. So, if
f e Ly(X; X) one gets by Lemma 1

f TS @)1 dus (@)
X

= p[M(K () +1)]° f w0 (B M (B () +1) )
)

oo

<P+ NP [ tan [ wr@inan

0 )

= () a1 [ roneauta)
P— X

implying U, f € L,(X ; X). Hereby the desired conclusion may be under-
stood to hold after using an induction argument.

As for (2), by the same reasoning as (1), we may consider only the
cage where u(X) < oo and fe L(X;X)[log™ L(X; X¥)T"**. Let 6 >1 and
fe V(X X). It follows that

311 [T,... Uf@ldp@) = [ #(Bg,. g 0)du
X 0

<O[wX)+ [ #(Buy,..v(00) du].

Using Theorem 2, the estimate of the second term of the last part of
(3.11) is as follows:

oo

(312) [ #(By,..p00(00) du

1

i k-1
<O [ du B [1og B"'”i(m)mr du(a)

Eg, 0w w

<0, [ BullF@)180(2) %
X

max(1, Bplllf@ll) -tk
ST A g B T,
U wu

1

c, |
= ’kk Xf B, ||If(@)|| [log* B, ||| f (#)| 11" * e ().

n -+
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Recall that Q0+*(X;%) = L(X;¥)[log*L(X; %)™ by Theorem A.
Then, combining (3.11) and (3.12) gives (3.10) and completes. the proof.

4, Vector valued ergodic theorems for L,(X;X). Let {T'(¢): ¢ 0}
be a strongly continuous semigroup of bounded linear operators on L,(X; X)
with 1< p < co. For each feL,(X;X) there exists a scalar represen-
tation £(¢, ®) of T(¢)f (which is often denoted by T'(¢)f(x)) such that

(L) &(¢, ») is meagurable in (¢, #) on the product space [0, oo) X X;

(2) &(¢, @) is uniquely determined up to a set of points (£, #) whose
product measure is zero;

(3) &(t, ) =T(#)f(-) in L,(X; X) for almost every ¢ 2 0;

(4) there exists a null set N (f) which may depend on f but which
is independent of ¢ and is such that for any » e X — N (f), &(-, #) is inte-
grable over every finite ¢-interval and

[&@, &= [Tof(H)at in  L(X;%), 0<a< oo.
0 0
‘With this funetion &(¢, #) we define

Jrof@adt = [ £, mat, 0<a< oo,

which will be continuous in a for almost every «. In this section X is agsumed
to be reflexive. In fact this assumption is requisite for proving theorems
about convergence of operator averages.

THEOREM 3. Let T;, L << j< n, be (not necessarily commuting) linear
operators on L, (X5 X) with | Tyl < L ond sup {|Tl.: k> 0} < K, L <j< n,
for some comstant K >1.

(1) For every feL,(X;X) with 1< p < oo, the multiple sequence

Fey—1

ool
1 ) . .
Vikyy ooy By)f = N 2 e E T ... Iaf
N 4
ip=0

iyl

18 convergent in the wnorm of L,(X; %) as by, ..., b, >oco independently.
(2) If for every f e Ly(X; X) with 1L < p < oo, one can show. that

(%) Sup {1V (by, ..., ) f(@)]]] < o0

kyyvess n>0
Jor almost all points @ in X, then the multiple sequence V(ky, ..., k,)f con-
verges strongly in X almost everywhere on X as By vy by -ro00 independently.

3) If Ty, ..., T, are commulative and condition (*) 48 fulfilled for all
FeL(X; X) then the strong limat ]lim V (k) f (@) ewists for almost all @ in X,
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where
1 k—1 Jo—1
VOf@) = = D)oo DT Thf(w),  feIy(X; %)
iy=0 i =0

Proof. Let us put
1
V(T k)f = — Y Tjf, 1<j<m,
PR kjg: ’

then V(kyy ..., k)f = V(Tny k) ... V(Ty, ky)f and it follows from the
Riesz convexity theorem that

sup {{V (T}, kj)upi E>1<K,
sl By ey By 2 1< KT

1<j<n,

sup{I| (ks -

According to [B], Theorems 1 and 3, there are projection operators B,
1< j < m, such that

Hm ||V (T, k)f — Bf ll, = 0,

Je>o00
Then the induction argument (similar to the Dunford—Schwartz’s) yields
that

1<jgn, fel,(X;X).

B [V (kyy oees k)f =By - Bifll, =0, f € L,(X; X)

as ky, ..., k,~>oo independently, which proves (1). Now it is ].mown
([5], Lemma 3) that (2) is true for the case of n = 1. To establish (2)
for the general case we shall therefore apply induction a.nd. agsume that
it has been proved for the case of m operators Ty, ..., Toyr- Su%ce L,(X;X)
is reflexive for 1L < p < oo and lim V(Ty, k)f exists strongly in IL,(X; %),

F~ro0

wo can use the Kakutani-Yosida mean ergodic theorem to say that the
linear manifold 9, generated by functions of the fo;-m f= g+(h—1‘1h)
with g e L,(X; %), Th9 = ¢, b € L,(X; X) AL (X ; %), is dense in Ly, (X; X).
For such a function f we have

me-1

ky

WV (Tory ey Ty ) F(@) =V (Bay oy Fmpp) 9 (@)IT < - [1flles

tending to zero as k;—»oo for almost all #, which, together with the inducj-
tion hypothesis, implies the almost everywhere convergence of the multj;l-
ple sequence V(ky, ..., k,4,)f for every feM, dense in L,(X;X). We
may now deduce (2) from.the principle of Banach (convergence the-

orem) by considering (x). Apropos of (3) it is sufficient to note that (3)
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holds for functions in L, (X;X) nL(X;%X) (p>1) dense in I,(X; X)
a8 a special case of (2), for nothing remains but to use (*) and the Banach
convergence theorem. .

Now it is very important to indicate the class of operators fo? which
condition () appearing in Theorem 3 is satisﬁ’ed for .ajll fum?tlons in
L, (X; %) with 1 <p < co. In connection with this question, (+) is known
to hold for a general semigroup of Dunford-Schwartz typfz oper‘fmors
([2], [5]))- By the way we note that in the special cage where X is the linear
space of complex numbers, this condition is also known to hold for smTe.ml
semigroups of Dunford-Schwartz operators ([3], [4:],_[8]) and of posml.w
L, (p > 1) and L-contractions ([1], [7]). Here wo indicate two special
cages in which X is a reflexive Banach space.

CoroLLARY 3. Let 8, 1< j<m, be operators in the B-space .B (%)
of bounded linear operators on X with sup{|IISFlll: k2 0} < K, L<j< m,
for some constant K >1. Then the statements (1), (2) and (3) of Theorem 3
hold for 8y, ..., 8, and for all f € L,(X;X), 1<<p < oo.

Proof. Define (T;f}(z) = 8;(f(2)), 1L < j < n. It follows that

sup

BV ey oy B)FUL< K IF]
Ty cens i1

almost everywhere on X. Then the desired conclusion follows at once
from Theorem 3.

COROLLARY 4. Let ¢;, 1 < j < n, be measure preserving transformations
on X. Then all the conclusions corresponding to (1)~(3) of Theorem 3 remain
truefor @, ...y @,.

Proof. For fe L, (X;X) with 1 <p < oo, define (T;f)(z) = flpm),
1<j<n. Then there holds

sup |V %y ooy BIFINNS Uy oo UallIFIN
Ko oo kp>1

almost everywhere on X, where U;, 1< j< #, are L_-contracting sub-
linear operators of weak type (1,1) which are given by

k-1
1 ; i
(T HIF 1 () = 21:%»-7;30 Nflilge), 1<sj<mn,

NI () = 1IF (@)
Therefore, the corollary may be deduced fromn Theorem 3.
The continuous analogue of Theorem 3 is also true and may be stated
ag follows.
TeEEOREM 4. Let {T)(t): t>0}, 1L<<f<in, be strongly continuous
semigroups of linear operators on Ly (X5 X) with | Ty(t)]l, < 1 and sup {|T;(t)e:
1> 0} < K, 1< j< n, for some constant K > 1.
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(1) For every f e L,(X; X) with 1 < p << oo, the functions

1

...q,

Aoy, ..ya,) f =

fl"' TTn(tn) < Th()fde ... e,

0

are convergent in the morm of L,(X;X) as g, ..., a,—>00 independently.
(2) If for every f e L,(X; X) with L < p < oo, one can show that
()

sup
Ayyeney "n>°

N4 (e, ...y ap)fl@)lll < oo

Sor almost all @ in X, then A(ay, ..., a,)f converges strongly in almost every- A
where on X as a;—~o0, ..., a,~>00 independently.

(3) If {T1(t): =0}, ..., {T,(¢): t= 0} are commutative and condition
(%x) 48 fulfilled for every fe L,(X;X) then the strong limit lim A (a)f(2)

exists for almost all % in X, where

1 a a
A(a)fzyof...of To(t,) ... Ty(t)fdt, ... @t

We omit the proof of this theorem since the same argument as that
in Theorem 3 applies to the continuous-parameter case.

CorOLLARY 5. Let {8;(t): 1= 0}, L<j<n, be strongly continuous
semigroups of operators in B(X) with sup{||[S;(®)[|]: 1> 0}< K, L<j< n,
for some constant K > 1. Then the statments (1)~(3) of Theorem 4 hold for
these semigroups and for all f e L (X; %), L< p < oo,

CoroLLARY 6. Let {g;(t): 1= 0}, 1< j<m, be measurable semiflows
on X. Then all the conclusions corresponding to (1)~(3) of Theorem 4 remain
true for these semiflows.

TeBOREM 5. Let {T;(t): ¢ = 0}, 1< j< n, be strongly continuous (and
not necessarily commuting) semigroups of linear operators -on L,(X;X)
with |T;(®), <1 and sup{|T;(t)l: =0} < K, L j< m, for some con-
stant K > 1. Then for every f e L,(X; %) with 1< p < oo,

(4.1) lim [[A(ay, ..., a)f—Fl, = 0.

ayy aeey G0

Proof. Let 1 < p < oo and define for f e L,(X; X)

A,(a)f:%ffl'j(t)fdt, a>0, 1<j<n.
0
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Then it follows that -
Ay, .oey a)f = A (ay) . Ay(ai)f,
(e, <K, L1<j<n,
14 (e .oy )b < K",  a@>0,...,a,>0.
Now we have by Theorems 1 and 4 of [5]
(4.2) lim 141 (@)f—flp = 0, f e Ly(X; %),

and, moreover, (4. 2) is also valid for p=1, since there holds
1 a . 1 a . . .
H— [ mewsa ——fH < = [ I —flad,
o Alr ey

which fends to zero as a—>0- because of the strong continuity of T, ()
in L,;(X; X). The theorem is therefore true-for the case of » = 1. In order
to show (4.1) for # > 2 we apply induction and assume that it has already
been established for the case of m semigroups T,(t), ..., Tpyr(t). Then
for every f € L,;(X; %), 1 < p < oo, we have

”Am+1(am+1) eee Al(%)f“f“p .
< Mg (@) - - A (o) [y (o) =1l +
+ Mopir () - a(@a)f— f”p
< B s (0)f —fllp+ M (i) - As(az)fmfll,,,

which approaches zero as a, ..., @,,;—>0-}: independently by the fact
observed forn = 1and the mductmn hypothesis. Consequently the theorem
follows by -what we have observed above. . -
THEOREM 6. Let X be the linear space of complew numbers. Let {T;(t):
=20}, L<j<n, be strongly continuous. (and not necessarily commuting)
semigroups . of linear operators om - Ly (X) = Ly(X; X) with | T;(t) < 1
and . sup{|T;(t)l.: 2 0} < K, 1<] < myifor gome  constant IL >.1. Then
for every f € L,(X) with 1 < p < -co the equation .

hm cA{agy ey an)f (@) = f(2)
ay,. an->0+
holds for almost all © in X. :
Proof. Observe that there emst L -bounded subhnear operators

Uy, U, of Weak type (1 1) such that Eor every f eL,(X),1<p<
31113 |A(a1, . :an)fl U1|f|
01y eeny 0>

©
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almost everywhere on X. Furthermore by Corollary 2, U, ... Uy[f] € L,(X)
for every feL,(X). Therefore, the theorem follows from Theorem 5
and the Lebesgue dominated convergence theorem.

It is an interesting problem to study the pointwise local ergodic
theorem corresponding to Theorem 5 (cf. [8]). In connection with this
we state the following two special cases.

COROLLARY 7. On the hypothesis of Corollary 5, let feL,(X; %),
1< p < oo. Then the equa,ti-on

dim

ay,eeny G0+ ‘11

f f 8, (E)f (@) dty ... dt, = f(@)

holds strongly in X for almost all i'n, X.

COROLLARY 8. Under the hypothesis of Corollary 6, let f e L,(X; %),
1< p < oo. Then the equation

lim
A pens n—»ﬂ + ay .

f f F(oalta) - 02 ()2 s .. dt, = f(2)

holds strongly in X for almost all z in X.

5. More about vector valued ergodic theorems. Given a semigroup
{T'(t): t =0} of linear operators on I,(X;X)+ZL,(X;X) we shall say
that it is L,-continuous and L-integrable if T'(t) is strongly continuous
in the norm of IL,(X;X) when restricted to L,(X;X) and strongly inte-
grable on every finite ¢-interval when restricted to L (X ; X), respectively.
Let {T'(t): t> 0} be an IL,-continuous and I -integrable semigroup of
bounded linear operators on IL,(X;X)+ L, (X;X). For f = g-+h with
geL,(X;¥) and heLl (X;X), we define
(5.1) } fT(t)fdt = (Ly) [ T(t)gdt+ (L) f T(t)hdt,

0 0 d 0
where the signs preceding the integrals indicate the norms with respect
to -whieh each integral is defined. Then it is easy to verify that the defi-
nition (5.1) is consistent. Using scalar representations 7(t)g(x) and
T@)h(z) of T(t)g and T (t)h, respectively, we have a scalar represen-
tation T'(¢)f (%) of T'(¢)f by setting T (¢ )f( w) = T(t)g(x)+ T (t)h(x). As a mat-
ter of course, the integral L

- f T0f@ it = [ T0g@)d+ [ Twh@aE,

a8 a function of , is a scalar representatlon of f T(t)fdt. In the sequel, X

will be assumed to be reflexive. Let Ty, 1< ] 1, be linear opera,tors
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on L(X;%)+L(X; %) with [Ty, <1 and sup{|Zfle: >0} < K,
1< j < n, for some constant K > 1. Let {T;(2): 1220}, L<j<n, be L,-
continuous and L-infegrable semigroups of linear operators on L, (X; %)+
+ L, (X; %) with [T, <1 and sup{(IT;()-: 1= 0} <K, L<j<n
for some constant K > 1. For f e L,(X; X)-i—L (X; %), put

fi@) = swp [V (ks --s KM (@),
(5.2) pr e
fi(@) = Sp_ R CTRBEN (CIIE

In what follows we write f* w) for fi(») in the discrete time case and
for fi (z) in the continuous time cage. We set up the following assumption.
(*,5) There are L,-bounded sublinear operators Uy, ..., U, of weak
type (1,1) such that for every fe L,(X; %)+ L, (X; X)
@< T, .. Cilliflli@),  liflll@) = {1f @)l

In fact, we have some examples of operators materializing the assamption
(*+) as mentioned in the preceding section.

1. The operators in the setting of Corollary 3 realize assumption (*.*).

2. The semigroups in the setting of Corollary b realize assumption (*.*).

3. The measure preserving transformations in the setting of Corollary
4 realize assumption (*.*).

4. The semiflows in the setting of Corollary 6 realize assumption (*,*).

5. The semigroups in the setting of Theorem 6 realize assumption (*,*).

6. The operators in the discrete setting of Theorem 6 realize as-
sumption(*.*).

Now, as a direct consequence of Theorems 1 and 2, we have the
following theorem which offers a powerful tool to the study of ergodic
theorems.

THEOREM 7. Under assumption (*,*), let 0 > 1 and 1 > 0.

(1) For every fe QX™™(X;X) (5 =0,1,2,...) there holds the strong
type inequality (which implies f* e QF(X;X) whenever fe Q% "(X; %))

ff(w)[ f(m)]d(

S0y

Bnmf(w)m B, llIf @i T
mE i:m [0 7 ] du ().
(2) For every f e Q57" (X; %) (k = 0,1,2,...) there holds the weak

type inequality

u{f* >03<c

[ BalF@I [,  Ba P
[| Bl i BSEN

E By, 7164
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Here the constants 4, , B, and C, ; are the same as in Theorems 1 and 2.

THEOREM 8. Under assumption (*.%), let fe Q7 1(X;X). Then the
functions V(kq, ..., k,)f converge sirongly in X almost everywhere on X
as kyy ...y k,—> 00 independently.

Proof. We denote by D, the set of all n-tuples a = (ky,...., %,)
of positive integers k; with. &; > », L < i < n, and let @ (n; a) = V(ky, ..
for @ = (ky, ..., k,) € D,. Define for f e 227(X; X)

o(f) (@) rhm igp 11Q(n; a)f (x) — @ (15 D)F ()],
£ —o0 a4 7'

then o is clearly subadditive and o(f) < 2f;. Let us choose a sequence {f;}
of simple functions having support of finite measure, such that lim f, =f
k>0

:7.)

strongly in X pointwise and |{|f —f/l| < 2{{f{]} for all & > 1. From assump-
tion (*,*), Corollary 2 and Theorem 3 it follows that w(fy) =0, 1<k,
and s0 o(f) < o(f—fi) +o(f) < 2(f—f)e for all k = 1. Thus by Theorem 7,
for a fixed 6> 1 and any 4 > 0, we have

wio(f) > 202} < p{(f —fi)z > 04}

[ Bl [y BRI,
A

B B, 17 (<)

<o, [ Tl [log

EZB f(BZ)

<0

7,0°

Bnl”fl_fkm ]"_’dﬂ

tending to zero as k—oco by virtue of the Lebesgue dominated convergence
theorem. Hence p{w(f) > 264} = 0 for any A> 0. This implies o(f) =0
almost everywhere on X and completes the proof.

The continuous analogue of Theorem 8 is stated as follows.

TEEOREM 9. Under assumption (*.*), let fe Q1 (X;X). Then the
functions A(ay, ..., a,)f are convergent strongly in X almost everywhere on X
as ayy ..., a,—> oo independently.

The proof of Theorem 9 follows exactly the same line as that of The-
orem 8 and we omit the details.

TaEOREM 10. Under assumption (*.), let f € Q1 (X;X). Then the
equation

H]'Il ? a‘n)f = f
a, ...,an—rD-i-
holds strongly in X almost everywhere on X.

Proof. For 6 > 0 let G, denote the set of all n-tuples a = (ay,...
of real numbers a; with 1/a; > 8, 1 < i < n, and put B(n; a) = 4 (ay,..
for a = (G, ..-5 @) €G5. We define an operator 7 by

7(f) (@) = lim SuleR(% a)f(2) — B (n; B)f (@)Il]

S->00 a, f

Afag, ...

) O)
-y On)

3 — Studia Math, 73.2
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for fe Q,7'(X; X). Then 7 is subadditive and 7(f) <2f). Now for fe

Q21X ;%) we choose, as in the proof of Theorem 8, a sequence {f} of sim-

Ple functions having support of finit emeasure, such that lim |||f— Fulll =0
k>0

pointwise and [||f—fll| < 21||f||| for all k> 1. From assumption (*+")
Corollary 2 and Theorem 5, it iy seen that 5(f;,) = 0 and 5(f) < n(f~7, )_|j
+7(fy) < 2(f—f,)s for all k > 1. Therefore the same argument ag thalic: in
the proof of Theorem 8 then gives 7(f) = 0 almost everywhere on X after
applying Theorem 7 with 0 > 1 and A > 0. Hence the theorem follows.

Remark. It is known [5] that Theorems 8,9 and 10 hold without
the assumption (*,*) in the case of n = 1, for (*,*) is in fact true for n = 1
Particularly, for the operators in the setiting of Corollaries 8 and 5, these
Theorems 8,9 and 10 remain also true for functions in the larger class
(X ; %). :
Finally, I'd like to raise a problem unanswered at this time. In the
sr;tting of Section 5, let # > 2 and let f* be the ergodic maximal function
given by (5.2). The following question is open as yeb.
Are there L,-bounded sublinear operators U,,

<oy U, of weak type
(1,1) such that the product operation U, . 08 4 i

.. U;f dominates the function f*1
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Geodesics on open surfaces containing horns

by
MACIEJ WOJTEOWSKI (Warszawa)

Abstract. Symbolic dynamies for the geodesic flow on an open surface containing
a hyperbolic horn is constructed in a neighbourhood of the geodesic which escapes
in the horn in the future and in the past. It provides a variety of geodesics with differ-
ent asymptotical behaviour. It is proved that a hyperbolic horn is sharp if and only
if the geodesic escaping in this horn form a one-parameter family. A description is
given of the set of escaping geodesies for a hyperbolic horn which is not sharp. Also
the existence of a continuum of oscillating geodesics is proved under the condition
that the topology of the surface is sufficiently rich.

Introduction. Let X be a locally compact, separable topological
space and let {@;};.z be & continuous flow on X.

DeriNIiTION 1. We call 2 eX

(a) bounded for t->-+ co (t——oo) iff there is a compact set K such
that gz e K for t > 0 (<< 0);

(b) escaping for 1—-+ oo (t——oco) itf for every compact set K there
isa TeRsuchthat gz ¢ K for t =T (1< T);

(¢) oscillating for t— -4 oo (1—>-—oo0) iff (a) and(b) are not satistied.

Obviously the properties (a), (b) and (c) are the properties of the
whole trajectories of the flow. In this paper we study the problem of the
existence of oscillating trajectories for geodesic flows on complete open
surfaces.

Let M be a 2-dimensional manifold (a surface) with a Riemannian
metric of clags €2 . We assume that M is complete in this metric, not
compact and finitely connected. In view of the last assumption there is
a homeomorphism h taking M onto X\ {&4, ..., #,} where X is a compact
surface and ;€ X, ¢ = 1, ..., n. The points {®,, ..., @,} are called poinis
at infinity.

DEFINITION 2. A tube iz an open subset  — M homeomorphic to
a puncbured disk such that h(7T) is a punctured neighbourhood of a point
at infinity and the closure of h(77) in X contains only one point at infinity.

Consider clogsed rectifiable Jordan curves in a tube J which cannot
be contracted to 4 point in 7. We denote by w(Z) the infimum of their
lengths.
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