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W*-algebras on Banach spaces

by
PETER LEGISA (Ljubljana)

Abstract. The linear span of hermitian operators on any complex Banach
space X with a hyperorthogonal basis is a type I W*.algebra. Moreover, the group of
all linear isometries on X is a Banach~Lie subgroup of GL (X). A slight generalization
of the first statement is also proved. -

Introduction. Let X be 2 complex Banach space and denote by
2(X) the algebra of all linear bounded operators on X. An operator
H e #(X)is called hermitian if |lexp (itH){ = 1 for all real ¢, or equivalently,
if [I+9tH|<1-+o(t) for teR, {—>0. Hermitian operators on Banach
spaces (and, more gemerally, hermitian elements of Banach algebras)
were defined in hope that Hilbert space (resp. (™-algebra) technmiques
could be applied at least in some cases, and this article is based on the
gsame motivation. Denote by #(X) the real Banach space of all hermitian
operators on X. The elements of ¢ (X) are called skew-hermitian operators.
If H e #(X) implies H* € # (X), then #(X)-+is# (X) is an algebra. In
this case we can define an involution on #(X)4-is#(X) by (H+iK)*
=H—iK (H,K e #(X)) and in this way »#(X)+4i#(X) becomes a
C*-algebra (Vidav-Palmer; see [1]).

But even if #(X)+i#(X) is a O*-algebra, it need not be a W*-al-
gebra. )

ExavPLE. Let X = C[0,1]. Then T e s#(X) if and only if there
oxists hy € X with Ry = hy such that Tf = hyf for all fe X ([2], p. 91).
Clearly Trrhg defines a *-isomorphism between the (*-algebras # (X) -
i (X) and the ¢™-algebra ([0, 1]. But [0, 1] is not a W*-algebra.

Our purpose is to present & class of complex Banach spaces for which
H(X)+i#(X) is a W*-algebra. This class includes all spaces with a
hyperorthogonal basis (i.e., @ Schauder basis such that the norm of any
veetor depends only on the absolute values of its coefficients relative
to this basis).

Finite dimensional complex Banach spaces with a hyperorthogonal
basis were studied independently by Schneider and Turner [9] and Vidav
[10]. Fleming and Jamison pursued this work to obtain niee results on
the structure of such spaces in the infinite dimensional case, too ([4],
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[5]). A certain generalization was published by Kalton and Wood [7].
Actually we will only make use of the fact that, for a finite dimensional
complex Banach space X with a hyperorthogonal basis, o (X)+i#(X)
is an algebra. (The properties of infinite dimensional spaces with such
bagis will come out as @ side product.) An important tool will be the
characterization of W*-algebras due to Kadison [6]. As a consequence
we will be able to prove that for every complex Banach space X with &
hyperorthogonal basis the group ¢ of all isometries in GL(X) is a Lie
subgroup in GL(X).

First of all we will prove some theorvems on isometrie represcntations
of type I factors on Banach spaces.

1. Isometric represemtations of type I factors on Banach spaces.
Throughout this section let X denote a complex Banach space, K a com-
plex Hilbert space and r: % (K)—»%(X) an isometric algebra homeo-
morphism such that r(Ix) = Ix.

1.1. Levya. Let {P;; 4 eI} b#q family of mutually orthogonal equiv-
alent mon-zero projections in £ (K). Choose j €I, denote P; =P and lgt
V, e % (K) be such that ViV, =P and V,Vi = P; (¢ j). Let f be a vector
of norm 1 in #(P)X and let fi =v(V)f (@ #5), f =1 If {ti; iel} is
a set of scalars such that X [LI* (i € I) converges, then 3 4,f; (i eI) con-
verges. )
Denote Z; = {2 Lfi; 3 fF < oo}. Then Z; is & Hilbert subspace of X
(meaning that Z; is a Hilbert space in the norm it inherits from X) and
{fisiellisa Hilbert basis of X. If f, g er(P)X are linearly independent,
then ZnZ, = {0}.

Proof. Remember that P VP = V; and V;V; =0 for ¢ # k. Con-
sequently »(P,)f; = *(P;V.)f =f;. Let t,e C be such that 1 = 3 [t;],
(i el). If J is a finite subset of I and T; = 3 §,V; (ied), ay = ) |t*
(i ed), then T3T; = a,P. It follows that D ¢tV (i eI) converges to
some T € #(X) and that T*T = P. So T is a partial isometry. Since r
is -isometrie, r(T) = }) £ (V,) (¢ € I). Now

1= |fll =r@)fl = Ir(T*r(DFI< I (T (S|
=" (DFL = I (DI < I (DI = 1.
But #(T)f = 3 t;0(V)f = X tf;. It follows that ) t.f; converges and that

I3 4fll =1 = IR So Z, = {3 t:fi; 3 f* < oo} is isometwically iso-
morphic to the space I* over 1.

Let f, g er(P)X be linearly independent. If # e Z,nZ,, then @ =
Dafs = D hg;andsor (P)X = s,f; = t,9; = s,0(V)f =4,#(V;)g. We apply
r(V};) on both sides to find s,f = ¢,9. Hence s; = #; = 0 for all { and 2 = 0.

1.2. ProposIrIoN. Let {P;; i eI} be a family of mutually orthogonal
one-dimensional projections in £ (K) with Ix = 3 P; (i € I). Suppose that
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7(P;) 18 & one-dimensional: projection for each i € I and that = > r(P;)w
(¢ €I) for all weX (unordered comvergence).” Then X ‘is & Hilbert space,
isometrically isomorphic to K, and r is umtamly equwalem to the @dentzty
representation.

Proof. Letb ¢ ;€ K be such that P.e; = ¢, and || =1, so that {el,
4.e I}t is a Hilbert basis.of K. Now let §, f, f;, V;, Z;be asin Lemmia 1.1.
If » € X, then r(P)@ = 1,f; (; € O). It follows that @ = 3 r(P)2 = 3 t,f;
(¢ € I). Since Z; is. complete, # € Z;. So X = Z; is a Hilbert space and
{fy; eI} is a Hilbert basis of X.

Let U: E—~X be the isometric 1somorph151n defined by Ue cm= fi
Now #(P;) Ue, = r(P)fy = 04f; = 6 Ue;, hence U 'r(P,) Ue, = dy.¢;.
It follows that U 'r(P,)U =P;, or equivalently :

r(P) = UP,U.

Denote ¢; = e.. ' We may assume that V,e = ¢; (4 #J). (V, was any
partial isometry giving the equivalence between P and P;.) Now V,((PK )l)
= 0, hence V, P, = 0 for k + j. It follows that r(V,)r(P;) = #(V,) UP, U
=0 and" so (U r(V)U)Pk—O for i,k #j. Also #(V,)Ue = #(V,)f
= f; = Ue¢,;; hence U~ 17*(17')17@ = ¢;. This implies that U'»(V,)U = V,,
or equivalently, '

r(V) = TV, 07,
In the same faghion we can prove that
r(VE = UV U

Let A € & (K). Since P,V,P = V, for all V;, it follows that Vi4V;
= PV;AV,P. Now, P being one-dimengional, we see that for some #,;'e C

ViAV; =t P

and r(Vir(d)r(V,) = tyur(P). Thus TV;T 'r(4) UV, U™ =14, UPT,

hence
ViU 'r(4)U)V; = t;,P

But V3.AV,e = Vide, = te. Thus Ppde, = V, VidVie = 4,; Ve = tyze,.
Therefore the numbers {ty; ¢, ke l} dctermme A completely. Com-
sequently U™'r(4)U = 4 or

r(A) = UAT™?

and U gives us the desired equivalence. ‘

1.3. TaEorEM. Let {P;; icI} be a family of mutually orthogonal
equivalent one-dimensional projections in Z(K) with Iy = 3 P; (i e I).
Let Ix = 3 ¢(P;) (i € I) in the strong operator topology. If P e {P;; i I}
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and {f,; ¢ € O} is any algebraic basis of the space r(P)X, then there ewisis
a family {Z,; ¢ € 0} of Hilbert subspaces of X, all isometrically isomorphic
to K and imvariant for v, so that their algebraic direct sum is dense in X.
For each o, r|Z, is unitarily equivalent to the identity representation of the
algebra & (K).

Proof. Once more we use Lemma 1. If ¢, k € I, then clearly r(P;,).X
and r(P,) X are isometrically isomorphic. First we prove that the spaces
Z, are r-invariant. In fact it suffices to prove that, for any A e 2(K),
r(A)f; e Z, for each i€ I. Since for ¢ #j, f; = r(V,)f, it is even enough
to prove that & = r(4)feZ,.

Since V,P =V, r(Vi)a = r(PV})r(A)r(P)f = r(PV;AP)f; P being
one-dimensional, PV} AP = t,P for some t; € C. Hence r(V})w = t,r(P)f.
Now r(Py)» = r(V V‘)m =r(Vor(VHe =tr(V,.P)f = tr(V)f = tf e Z,.
Since # = ) r(P;)# and . Z, is complete, zeZ,. We observe that
the action of r on Z, is such as in 1.2. Herce, on A,, r is equivalent to
the identity representation.

Suppose {f,; ¢ €0} is a Hamel basis of the space r(P)JX. Denote
Z, = Z,,. From 1.2 we learn that for ¢ # d, Z,nZ; = 0. Since for each
tel, r(V,) maps »(P)X isometrically onto r(P;)X, {r(V,)f,; c€C} is
a Hamel basis for r(P,)X. Thus if zeX, r(P)e = ) 8,7 (V,)f,. Bub
r(V)f. € 2Z,, hence r(P)ze @ Y Z,. e

2. wW* -algebras on certain Banach spaces. Let A be a W*algebra.
Then there exists & Banach space A, (called the predual of A and uniquely
determined wp to isometric isomorphism) such that 4% = 4. We will
make no difference between 4, and its canonical image in Ay* = A4*.
By ¢ we will denote the weak *-topology on 4. Let T denote the set of
all normal positive functionals on 4. For fe T define a,(x) = f(a*z)"
Then the seminorms {a;; f € T} define a locally convex topology on A4,
called the s-topology. The properties of the o-topology (also called weak
topology) and the s-topology are presented in [8].

‘We will need some facts on hermitian operators. The reference is [1].

. If X is a complex Banach space and T € £ (X), then the spatial numerical
range of T is denoted by V(T) and defined as

V(T) = {f(T); fe X", w e X, |fl| = o]l = fla) =1}.

An operator H € #(X) is hermitian if and only it V(H) = R. Also V(H)
= {0} implies H = 0. If P is a hermitian projection (i.e., a non-zero
hermitian idempotent), then ||P|| = 1. We call an operator A e #(X)
positive if V(4) = R* ‘or, equivalently, if o(4) < R*. Clearly #(X)
and the set of all positive operators are closed in the weak operator top-
ology.

2.1. TEEOREM. Let X be a complew Banach space and {P.; iel}
an increasing net of hermitian projections on X such that x = 3 P, (i € I)
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for all € X. For each i € I let #(P;X)-+1is# (P;X) be a finite dimensional
algebra. Denote of = # (X)+i# (X). Then the following are true:

(a) o is a type T W*-algebra. On the unit ball of sf the strong operator
topology (s.o. topology) and the s-topology coincide.

(b) (Decomposition of «£.) There ewists a family {G,; 2 €Z} of mu-
tually orthogonal central projections in o such that G, G, is a type I factor
for each z and such that of is a 1®°-direct sum of the ideals G, G,.

(c) If Ge{Q,; 2€Z} and 8,8 € GG are minimal projections, then
the spaces SX, 8'X are isometrically isomorphic. If n is the dimension
of the vector space SX, then. there ewists a family {Z,; ¢ € C} of Hilbert sub-
spaces of @X such that n = cardC, Z,NZ; = {0} for ¢ + d, the algebraic
direct sum @ > 7 is dense in GX, and such that each Z, is invariant for
G, A6, and AA|Z, is a *-isomorphism of G, G, onto ¥ (Z,).

d) If V: X—>X is a surjective linear isometry, then V permules the
subspaces G, X = X_. In case VX, = X, we can write V| X, = UW, where
U is a unitary element of G,#@Q,| X, and W commutes with every element
of G, #G,| X,. (Thus W is completely determined by W |QX where Q is any
minimal projection in G,G,.)

Proof. Our first step will be to prove that o is an algebra. Let
A e # (X). We choose arbitrary ¢ e R, # € X and claim that |lexp (it4?)a|
= |jzf. First we must see that 4; = P, AP;|P; X € #(P;X). In fact

Mpx+itd,l| = P+ it AP, = |[Py(I+itA)P,)
< |T+itd] =1+o(t) (ieR,t—~0).

Since # (P, X)+i# (P, X) is an algebra, it is a 0*-algebra (Vidav—Palmer)
and thus A4} e #(P,X). The fact that [Pl =1 for all 7+ implies that
exp (it(P,-AP,.)”) converges to exp (it4?) in the strong operator (s.0.) top-
ology. But

|lexp (it (P AP )| - = [lexp (it( PiAlﬁ) *)Pyw+ (I —Py)al|
= |lexp(itA;) Pyo+ (I —Py)a| < [P+ (T —Py) @]
< lell + llw —Pyall.

Hence |exp (itA?)o] < |lz|| for all ¢t e R which implies that A? e #(X).
As we remarked in the introduction this suffices to prove that o is
an algebra and thus a (*-algebra by the Vidav-Palmer theorem. We
also observe that B—B|P,X defines a* -isomorphism of the O*-algebra
P,soAP; into # (P;X)+i# (P;X). Since the latter algebra is finite dimen-
gional, P;«/P; is a finite dimensional W*-algebra.
SuBLEMMA 1. Every increasing bounded net {A (b);
elements in of converges in the s.0. topology to its lLu.b.

Proof. We may assume that A (b) < Ix for all b € B. Since for b’ > b

b e B} of positive
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Py(A (1) —A(B)P; = (Py(A(b') —A(B)) (Py(A(B) —AB))")",

{P,A(b)P;; b e B} is an increasing net bounded by P;. But this net is
contained in the finite dimensional algebra P, «/P;. Hence its l.u.b. exists
and is equal to the weak limit and also to the norm limit.

Since 4 (b")-A ()| < A} < 1, it follows that

l(40) -4 @ <.
‘Now observe that
I1P;A (') P; —P; A (B)P;]| =||(A(b")—A4 (B))"P
The inequality k

|(40) 402 < (40— @ [l )42

<
<A@ —4@) Py,

therefore shows that {4 (b)P;; b € B} is a Cauchy net in & and ag such
convergent. Since {P;x; i eI,z € X} iy dense in X and {4 (b)P,»; b € B}
converges, it follows from the Banach—~Steinhaus theorem that lim A (b)a
exigts for every 2 € X. Denote this limit by Ax. Then 4 is a bounded
linear operator. Since the cone /™ of positive elements of o is closed
in the weak operator topology, 4 e . It remains to show that 4 = Lu.b.
{A(b); b e B}

Clearly P;A(b)P; 3> P;AP; in the s.0. topology, which implies that

P;AP; =lub.{P;A(b)P,; b e B}.

Thus P;(4 —A(b))P; = P,AP,—P,A(b)P, e o/* for all i eI. Since the
strong Limit of the net {P;(4—A(b))P;; iel} is equal to A —A(b), 4
is an upper bound for {4(b); beB}. If A(b)< De o* for all beB,
then for each eI, P,A(b)P, <P, DP,. It follows that P;DP,>= P,AP,
and, as before, D> 4. n

Now we are ready to prove that « is a W*-algebra. Denote

I(X) = {(@,f) e X xX*; |oll = If]| = flo) =1}.

For o = (w,f) eII(X) let g,e & bo defined by g,(4) = f(Aw). Since
{92(4); a e I(X)} = V(4), the spatial numerical range of a, cach g, is
& positive linear functional on & If V(4) = {0}, then 4 = 0. Hence
{9.; @ e II(X)} is a total family on .

Suppose now that {4 (b); b e B} is an increasing bonded net of positive
elements in o and 4 its Lwb. Let o = (o, f) e II(X) and g =g, By
Sublemma 1, 4z = lim A (b)». Hence

9(4) = f(42) = limg(A (D)) = Lwb. lg(4®)}.

We conclude that on o7 every inereasing hounded net of positive elements
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has the L.u.b. and that there exists a total family of positive linear func-
tionals on o which “preserve” such suprema. By a theorem of Kadison [6]
o is a W¥*-algebra. .

As we remarked, P,o/P; is a finite dimensional algebra for each
i e I. We choose a family 8;,, ..., 8;,; of minimal mutually orthogonal
projections in P;/P; such that 8;;+...4+8; . =P;. Let {8,; tel}
be the set of all 8;, (¢el,k =1,...,n(i)). Clearly each §, is & minimal
projection in & and thus S,#8; is a one-dimensional. algebra. Also,
# =) 8z (tel) for all e X.

By G, we {denote the central support of §,. Tf G e {G;; teT}, we
claim that GG is a type I factor. Indeed, let @ be a non-zero central
projection in @«/@. Then @ is central in o, too. Now there exists t ¢ T'
such that @8, 0. Since §; is minimal, @8, = 8;. But @ <@, hence
Q=6 \

If 4G, # 0, we can find weT such that @, 8, # 0. As before,
@,8, = 8, and &8, =8, hence G, = 6;. Let {G,; # € Z} be a subset
of {Gy; ¢t €T} such that

G.d,=0 (y #2; y,2€Z),

=G5 (2¢Z) (zeX).

SUBLEMMA 2. For each z € Z let A, € G, G,. IfLwb. {||4,ll; 2 € Z} < oo,
there ewists one and only one A e o such that G, 4G, = A, for all zeZ.
In this case |A| = Lub. {|4,l; 2 €Z} and A is hermitian if and only if
all of A, are hermitian. : . 5

Proof. Let K = {#,...,2,} be a finite subset of Z. We denote
G, =6 and A, =4, Ag = DAy G =36; 1 =1,...,m). Since
AYA; =0 for i 5§,

. n
Idgl? = |4k Al = [ ) A7 4,

=1
Let M =1luwb. {|4,]; z€Z} and Qg = AxAx. For any m e N

n
Qp =D (ATA)"
i=1
and therefore |QZ| < nM2™. Hence |Q%| < M?n'™ and it follows that
gl < M.
For each ¢z € Z let 4, = B,+iC, where B,, €, are hermitian elements
of G,s#G,. Moreover, let

B, ZB;‘_——-B; (B;,B;}O,B; +B; = 1Bl

Clearly {Bf; zeZ} satisties the requirements of the Sublemma. For
every finite subset K of Z let Bf: = 3 BF (2 € K) as before. If we order
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the finite subsets of Z by inclusion, {B%} becomes an increasing bounded
net. By Sublemma 1 there exists B* e & such that BT = Lu.b. Bf.
Algo, B*x = limBE2 (# € X), in particular
B*@,x =limBfG,x (v X).
K
If ze K, then B*@,z = B} . Therefore B*G, = B} .

Let 4 = lim A4y in the s.0. topology (or equivalently, in the o-top-
ology). Then AG, = 4, (¢€Z). It A’ e o and A'G, = AQ, for all zcZ,
then clearly B = A. Also the facts that [Ag||< M for all X and that
the unit ball of o is closed in the o-topology imply that |4| < M. It
follows that |4 = M. As for the last statement, obgerve that #(X)
is closed in the s.0. topology. This completes the proof of (b).

We proceed with the proof of the theorem. Choose an arbitrary
G e{@,; 2 eZ}). Let 8, 8 €@ HG be any minimal projections. Since G #G
is a type I factor, 8 and § are equivalent, i.e., there exists V e GG
such that V*V =§ and VV* = §. It is easy to see that V maps 8X
isometrically onto §'X.

Let J ={teT; 8, <@} Then & = 3 §;» (j eJ) for all # € GX. We
can apply Theorem 1.3 to end the proof of (c).

Now let us return to (a) and prove that on the unit ball of & the
8.0. topology and the s-topology coincide. Let {4,; & € B} be a bounded
net in &, converging to 0 in the s-topology. Then {P,4;4,P;; acB}
also converges to 0 in the s-topology. Since P, #/P; is a finite dimensional
algebra, this amounts to the fact that P, A% 4, P, - 0 in the norm topology,
or equivalently, that 4,P;~>0 in the norm topology It follows that
A .20 for every ¢ e X.

Conversely, suppose that {A,; @ € B} is a bounded net in o, con-
verging to 0 in the s.0. topology. Let f & «* be a normal positive functional.
We are to show that f(A} A,)—0. First we observe that f € «7,, the predual
of o But o, is the I'-direct sum of the spaces (@, #@,),. Thus we have
a decomposition

f = (fs)zez
in the senge that
flA) = D' 1,(6,46,) (ze2)

for all A e o, where f, e (GG, )y and ||f| = 3 ||f,| (¢ €Z). Apparently
it suffices to prove that f,(G,4;4,4,)—~0 for every z e Z. Let Z,=@qX
be as in statement (¢) of the theorem Since f, is 2 normal positive funcmonal
on @, @, there exist vectors @; € Z, (i e N) with 3 |lo|f < oo and such

that
= Dl .

i=1

- (@, A5 4,6,)
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Since A,4->0 for every » € X, this concludes the proof of our statement
and thus the proof of (a).

We pass to (4). Let V: X—X be a surjective linear isometry. If 4
is a hermitian operator on X, then VAV~! is hermitian, too. Thus
A-VAV™ is a *-automorphism on . Let G € {G,; # €Z}. It is easy to
see that V@V~ =@ where @ €{@,; ze%}. Thus V(4X) =G (VX) =G X.

Suppose now that ¢ =@, ie. V@ = @GV. Then A—-VAV™' is a
*.automorphism of G's#/@, which is a type I factor. Hence this is an inner
automorphism and there exists a unitary operator U in G«/G|GX such
that VAV™! = UAU for all 4 e GG |GX. Let W = U*(V|GX). Then
WA = AW for all A e G~G|GX, as required.

It Q e 3@ is a minimal projection, there exists a family {@;; jeJ}
of mutually orthogonal equivalent projections in G#@, with @, = @ for
some k €J, and such that ¢ = 3’ Q; (j € J). By Sublemma 1, Gz = 2‘ Q
fOJ all ©eGX. Let V; GG be such that ViV, =@ and Vj Vi =,

j k). B 2e@,X, then Wo = WQ0 = WV, Vo = V,WV;z. Since
V}‘ 2 eQX, we see that W is completely determined by W|QX. m
Let {e;; 4 e N} be a hyperorthogonal basis of a complex Banach

had L4
space X (i.e., {¢;} is a Schauder basis of X and |3 aze;| =| 3 biei|
i=1 f=1
it &y = [b for all ¢ eN). Define E;e#(X) in the following way:
it o= 3 ae, then Bz = a;6;. Clearly H;

i=1

tion on X. The space Y = (B,+...+E,)X is a finite dimensional
gubspace with a hyperorthogonal basis. It follows from [9] or ([10],
Theorem 9) that #(Y)+is#(X) is an algebra. Therefore Theorem
2.1 applies. In fact (since H,; are one-dimensional) we can improve the

results as follows:

2.2. TEEOREM. Let X be a complex Banach space with a hyperorthogonal
basis. Denote of = # (X)+i# (X). Then

(a) o is a type I W*-algebra and on the unit ball of of the s-topology
and the strong operator topology coincide.

(b) There exists a family {@,; = €Z} of mutually orthogonal ceniral
projections in of such that G, X = X, is a Hilbert space for each » € Z and
such that A {G,AG,|X,; 2 eZ} is a *-isomorphism of of onto the direct
swm of the algebras & (X,).

(e) If V: X->X is a surjective linear isometry, then V permutes the
subspaces X, (¢ eZ) If V preserves Xz, then V| X, = Uwhere U is a uni-
tary element of £ (X,).

(1) The group ¢ of all isometries in GL(X) 4s a real Banach—Lie
subgroup of GL(X). The principal component ¥, of 4 is ezactly the unitary
group of .

is a hermitian projec-
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Proof. (d): Denote by % the unitary group of . Let V €% and
suppose that VX, = X, for all z € Z. Then V| X, = V, is a unitary element
in #(GX). There exists a selfadjoint operator 4, € #(X,) such that ||4,|

icm®

< 2nand exp(i4,) = V,. Now there exists 4 € # (X) such that 4| X, = 4,

for all 4. Thus exp(id) = V. But V lies on the one-parameter group
{exp(itd); ¢ e R} = %,. This implies that % is connected and thus # < ¥,.

Suppose now that Ve# and W e ¥—%. Then there exist y,2¢Z
such that y #2 and WX, = X,. If v € X, then

G, (V—-W)al = |&,Vs~G,¢,Wa| = |6,Va| = |Va|| = |u.
This implies that [V —Wi >1 and proves that % = ,. If
0 = {4 eGL(X); |4-I|<1},
then eclearly 0n% < %. Let
A ={Ae2?(X); (G, 4G, X, e #(X,) forall z € Z}.

Clearly o is a real linear subspace of .2 (X). Since # (X,) are closed sub-
spaces, %" is a (norm-) closed subspace in £ (X). The rcal subspace
¥ =i (X) is also cloged in £(X) and apparently £(X) = H#PL.

Since (0, log, (X)) is a chart for GL(X) at the identity and exp (%)
=4 > 0n% as we have seen above,

log|0n%g: ONFG->log(O)nL

is & homeomorphism. Hence 0N is a submanifold in GL(X). By ([3],
p. 101) ¢ is a Lie subgroup in GL(X).
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