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Isomorplism of regular Morse dynamical systems

by
J. KWIATKOWSEKI (Torud)

Abstract. A necossary and sufficient condition for two Morse dynamical systems
satisfying some propertios to be metrically isomorphic is given. The main result is
the following:if & = b® xblx...,y = O x f1 ..., are continuous Morse sequences such
that | = | = A;, 4 <r,4> 0 and @,y are regular sequences, then the shift dy-
namical systems induced by @ and y are metrically isomorphic iff b* = g% for sufficiently
laxge 4.

Introduction. First we introduce notions, definitions and notations
used in the paper. A sequence B= (b,...b,) of zeros and ones is called
a blook. We put |B| =k and call it the length of B. For ¢, j such that
1<i<j<k we put B[4, 4] = (b;... b). We shall write B[:] instead
of B[i,4]. Let us denote by B the block (b, ... B,), where b; = 1—b,,

i=1,...,k If 0 = (6 ...0,) is another block, then BC means the block
(5 ... b,cc1 «v+ 6y). Further, we define
(1) Bx( = B*B*... B™,

where B® = B and B' = B. T |B| < |0, then fr(B, ¢) will denote the
frequency B in €, i.e.

fr(B, 0) = eard {1 <j < |0|—|B|+1, 0[],j+|B|-1] = B}.

Now we recall the definition of a generalized continuous Morse sequence
introduced by Keane in [4]. Let b°, 8%, ... be finite blocks of 0’s and 1’s
with. the length at least two starting with 0 and let

(2) @ o= b0 X DX ...
Next, lot

1 .
7, = min L fr(0, bi),};fr(l, b‘)}, A= b,i=0

14
The seq‘uenco o iy called 2 generalized Morse sequence (or shortly a Morse

sequence) if Z 7, == oo and if an infinity of the b are different from 00...0,

and an mhm‘ry are different from 0101 ... 010.
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Keane [4] has shown that if 2 is a continuous Morse sequence, then
each block B has the average relative frequency

Uy (B) = lim%fr((B, #)[1,n]) in @,

/‘z(o) =.uz(1) =1/2 and ,“z(B) = .ua:(-é)'

Obviously, Ha is an invariant measure with respect to the shift 7' on the
gpace X = H {0,1}. We shall say that u, is & Morse measure defined by

o and (X, p,, T) = 0(x) is a Morse dynamioal system tnduced by w. It
turns out in [4] that 6(x) possesses partly continuous and partly diserete
spectrum, and the group of eigenvalues of 6(») conincides with the group
A of all myroots of unity, where #; = Ay*4y... 4, ¢ > 0. The maximal
spectral type of 6(wx) has been calculated in [5].

Kakutani in [3] considered the problem of the spectral isomorphism
in the class of Morse gystems 6(z), where » is a sequence constructed from
blocks b* = 00 or b° = 01,4 > 0. He has shown that such systems 6(w)
and 6(y), » =B XWX ..., y = XX ..., are spectrally isomorphic
iff g* = b* for suffmlenﬂy large i.

Now, lebw = b° x b* X ... beaMorse sequence and leb m, = b* x b*"' x .

=>0. We denote by u tha Morgse measure defined by ;,%> 0. The

sequence % is said to be a regular Morse sequence if there exists a number
o > 0 such that

<Py G<12-0

where o

Py = (00) = p,(11), = (10), 1=0.

In this paper we study the problem of the metric isomorphism in the
class of regular Morse systems. In order to obtain our main results we
prove at first that every Morse system is metrically isomorphic to a skew
product automorphism, for which the base automorphism is an automor-
phism with discrete spectrum with A as the group of eigenvalues, and the
fiber automorphisms are permutations of {0, 1}.

Now, let us suppose 6(») and 6(y) are regular Morge systems, where
=X X,y =X, = |8 =4, 0. Let u and
denote the Morse measures defined by @, and y,, respectively and lot
d(m, #;) mean the Ornstein distance between u, and f&,t>0. It 6(v)
and 6(y) are metrically isomorphic, then Nmd(u, 7)—0. I 6(x) and

. t~ro0

9 = m(01)

0(y) satisty in addition the property supi; << oo, then they are metrically
isomorphic iff b = g for sufficiently large i. The above theorem easily
implies that in the class of Morse systems considered by Kakutani the
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metric and the spectral isomorphisms coincide. In the fortheoming paper
[6] we show that this assertion is false in the class of all regular Morse
gystems.

§1. Invariant measures induced by Morse sequences. In this section
we establish exactly formulas on u,(B), which will be needed in the sequel.
Firgt, we caleulate u,(B), where |B| = 2.

Let us denote ¢ = BOxbix ... xb,m =g Ay ... 4, 20, It is
clear that n, == o). T y = {y;}y € X, then y[i, ¥] will denote the block
(Yg oo Yi)y t5 k. Further, leob

(tr),(00, 11) = fr(00, ¢,)+£r (11, ¢),
(£r),(01, 10) = fr (01, ¢)) (10, ¢,),
hy(00, 11) = fr(00, b +1r(11, bY),
he (01, 10) = fr(01, b*)+1£r(10, b¥).

Using the obvious equalities fr(00, ¢;) = fr(11, §), fr(11, ¢) = fr(00, &),
fr(01, ¢) = fr(10, é), fr(10, ¢,) = f2(01, §,) it is easy to obtain

; hy1(00, 11) tel

£r),,.1 (00, 11) = (fr),(00, 11)-1 1A S5 ’

. ()41 (00, 11) = (£x),(00, >,+1+{h‘+l(01’m)’ n
hig(01,10), tel

tr);.,.1 (01, 10 1),(01, 10) - Ty S !
(tr)y1 (01, 10) = (£x),(01, )z,+1+{h‘+1(00’11)’ en

where I = {t >0, o,['n‘] =0}, Il = {t >0, ¢[n] = 1}. If we pub

) . 1
(00, 11) = = -(£),(00, 11), ji(01,10) =~ -(fr)(01, 10),
(]

then (3) i mplles

- By (00, 11) gy, tel,
B (00, 11) = 7,(00 11)+{ b
" (00, 10) = (00, D F o1, 100y, te,
N N hy1, (01, 10) 2, tel
Ol . = 0 1 ] t4-1) H
iaa (01, 10) = fu( 1,10)+{,M00 D jatl
Bince  1,(00) = y(L1) = $-Hma (00, 11), py01) = po(10) =

ilun,u,(Ol 10), from (4) follows =
s (00) == iy (LL)
= 3+ [1(00, 11) A0+ D) (00, W)+ 3 Bu(0L, 10)/m),

(8) Rt

Ha(01) = 1,(10) 3 )
= }{ho(01, 10) 2o+ 3] hy(0L, 10)/m,+ D 1(00, 11)/my].

4unl
i—1ell

=]
4—-1€eI1

qual
i—lel
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Observe that the series in (5) are convergent, because
(00, 11) jn; < (A —1) /(A t0y_y) < 1/25
and similarly
B (01, 10) fny < 1/2°77,
1. Thus, we have established formulas on u,(B) for |B| = 2.

In order to establish formulas on u,(B), where B is an arbitrary
block, we use graphs ¥,,?>> 0. First, for each # > 1 we define a graph
Y, as follows: the vertices of ¥, are all blocks 4, [4]| = n, and two blocks
Ay = (i385 ... 3y), Ay = (Jufs...Jy) are joined by the oriented arrow
(Ay, A,) HE (8y...9,) = (Jy .. Ju—1). We remark that the srrows of ¥,
may be identified with blocks of the length % 41, namely the arrow (4,, 4,)
determines the block (795 ... %,7,)-

Now, we describe closed paths of ¥, which will be uged below. Let
A Dbe a vertice of Y,. Then, the successive arrows (blocks of the length
n+1) appearing in A4 form a closed path y(44) in ¥,. The number
of all pairwise different arrows of y will be called the length of y and denoted
by |y|. Tt is easy to verify that |y (44)]is the smallest period of the one-sided
sequence AA4 ... (or shortly the smallest period od A4). In the same way
we can define Lhe path y(AA). Tt is clear that |y(4.4)] = [y(A4)|. Further,
denote by y(A4A4AA4) a path formed by the successive arrows appearing
in the block A 4A. Now, we can prove

LeMMA 1. If A is a block of the length n, then

(@) & = |y(44)| = [p(AA)| divides n,

(b) either y(AA) = y(A4A) or y(4A)ny(A4) =

(¢) y(44) = y(d4) iff A has a form A = BB ... BB with |B| = }-F,

(

(

for i =

a) |y(AAA)| is an even number, say 2-m and m|n,

e) m 1s the smallest number such that there ewists a block B with |B|
=m and A = BBBE ... BBB,

(f) (AAA)n[y(AA)Uy (44 )] =, i.c. there ewists no arrow appear-
ing in p(AAA) and in y(4dA)uy(d4),

() y(44), y(A4) and y(ALA) are paths not having any loops.

Proof. (a): Observe that » iz a period. of the sequence 4.4..
k is the smallest period of this sequence. Thus &|n.

(b): First remark that if B = (b,b, ... b,) is & vertice of ¥ (4.4), then
y(44) is exactly determined by B. In fact, B is preceded by two arrows
0B and 1B, but y(44) contains only one of them, namely b,B. Similarly,
y(4A4) containg only Bb, from among two arrows B0 and Bl following
after B. It is obvious that the path y(44) has the same property. Thus,
if & Dlock € == (0,05 ... 6,6,41) i5 & common sarow of y(4.4) and y(44),
then B = (6,0, ... ¢,) is & common vertice of those paths. It follows from
the above remarks that either y(4.4) = y(A4d) or y(44)ny(dd) =

., and
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(c): It is casy bo see that y(44) = y(A4) iff there -exists a number
I, with 1 <1< |y(44)|, such that 4 = AA[l,l4-n~1]. In this way
2-1—2 ig a period of A. Therefore, |y(44)| = k|2 (I—1) and from the
inequality 2 (! —1) < 2k follows 2:(2 —1)k. Fence  is an even number and

= §-k+1. Thus, if 4 = 0C...¢, where |0} = k, then ¢ = BB with
1B = }.

(d): It is not ditficult to verify that the length of y(A44) is the smal-
lest period of the one-sided sequence 44 AA... Let us observe that if
y(A4 A) containg an arrow 0, then ¥ containg G Hence |y(4AA4)| is an
even number. Putting 2.m = |y(444)] we have 2 ‘m|2-n because 2-n
is 2 period of 4444 ... 80 we obtain m |n.

(6): Lot us wuppose A has the form

® 0 A= = BBBB ... BBB,

Then 2-m’ is & pexviod of A4AA4A ... Hence m' > m because 2-m|2-m'.
Thus it remaing to show that A has the form (6) with |B| = m. If m =n,
then putting B = 4 we obtain (6). Suppose m < n. Since m|n, then
A == BBB...BB or 4 = BE ... BB, with |B| =m. It A =DBB... BB,
then we Hh()'llld have A4 = BB BBBB . BB, what is a contradiction
to the faet that 2-m i a poriod of 4444 .. Thus A has the form (6).

(£): It O = (6105 ... 6,6,4,) I8 an arrow appearing in y(AAA), then
cither (0,6,,,) = 01 or 10. If ¢ appears in y(AA YU ( AA )y then(e;c,.,,;)
= 00 or 11. Thus y(4A4)N{y(44) Yuy(d4)] =

(g): It B = (bydy... b,) is a vertice of y(AAA) then y contains only
Bb, from among two arrows B0 and Bl following after B, and y(AAA)
containg only b, B from among two arrows 0B, 1B preceding B. Therefore,

y(A4AA) has not any loops. Since the paths y(4.4) and y(4A4) have the
above property, y(44) and y(Al have not any loops.

DeriNrrioN 1. A number m will be called a mirror period of the block
A iff 2-m is a period of one-sided sequence AAAA ... A numer m will
be called the smallest mirror period of A iff 2-m is the smwllest period of
AdAA..

Now, we can give formulas on u,(B), if |B| = n,+1,1{> 0. For the
remaining blocks B, u,(B) may be caleulated by using the condition of
the congistency: if [B] =, n., < n < n-+1, then

|B| = m'.

M (B) = #(BO).
)| BO|=tig+1

Let us denote @, = b*x ¥ x ..., ¢ 0. Observe that @ = ¢, x ,,,
what meang that » iy constructed from the blocks ¢, and &. Therefore,
it B is a block having the length n,+1 and B appears in 2, then B appears
in one of the four blocks ¢,¢;, 6,6, 80,y 6,6, Thus the measure p, is con-
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centrated on those blocks B, |B| = m,+1, which appear in the blocks 'Rem%urk L Tt is possible that (00)U7,(11) may have common
0,0y Ciyy §,;y G0- We use the following notations: vertices with ,(01)Uy,(10) (see Figure 3 with b = 01, 5* = 00L).
7;(00) — the path y(ecr),
7,(11) — the path y(§8), '
,(01) — the set of those arrows ¢ e y(¢,6,9,) which have the form

»(10)

0 = qg[l+1, T4m], 1=1,2,.., Y iviage)l,

7,(10) — the second half of y(ege), ie. ¥(10) = v (€60) Ny (01),
B = [p(00)] = Iy, (1)1, my = ly(OL)] = I, (10)],

T, = ,(00) Uy, (11) Uy, (01) Uy, (10). o

Thus ¥, is a subgraph of X, By Lemma 1 (b) we heyve P_WO pf)ss1b111-
ties: p,(00) Ny (1) = Gor 7,(00) = y,(11). We may imagine Y, as follows:

y:(10)

0

110101 o)

Figure 3

Let u; be a Morse measure on X defined by the sequence x;, ¢ > 0.
Put

Dy = w(00) = w,(11), g = u(01) = 1 (10).
It is clear that p,+¢, = §.
TaroreM 1. If ¢ is an arrow of ¥,, then

Figure 1 : Qo1 if 0 ey (01)Uy, (10},
#:(0) =1 Depa /[l if 0 ep(00)Uy(11) and y,(00Ny,(11) =B,
2.0l if 0 ey(00)Uy(ll) and y,(00) = p(11).

Proof. Suppose 9,(00)Ny,(11) =@ and let O e y,(00). By Lemma
1((b), (f)) it follows that O is a gubblock of ¢, and O does not appear
in ¢, 8;, 6,0, 6,6,- Further, it is clear that the frequency of the occurrence
0 in oy0, i8 nyfly.

#(00) = p(11) Take a pogitive integer # and consider the block »[1, n-n,]. Then we
have

y:(10)

(0, 0[1, non]) = 2£-£2(00, 43 [1, m),
t

what gives

1 1 L
P (0, a1, n-n]) = -£2(00, ;. [1, ’"’])'E'

6 — Studla Mathematica 72. 1
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Since

fr(00, o, [1, %

tim 00 ety 2] Pisa
N=>00 n

and

fr(0, o[1,nn

fim 0ol o)

n—c0 L (7}
we obtain u,(0) = p,,,/k,. Using the same argnments we have
Uol0) = Drsafle it O ep(il).

Now suppose ¥;(00) = y,(11) and let ¢ & y,(00). U:si~ng Lemma 1((b),
(0), (f)) we conclude that ¢ is a subblock of ¢¢, and 6,0 but ¢ does not
appear in ¢, and é,¢,. Then we have

n N
fr(0, w[1, n-n)) =fr(00,w¢+1[1,'n])-7af +fr(1l,wt+x[1,%1)-ﬁ.
i

Fuarther,
1
——— -fr(0, w1, n-n])
N1y
1 1 1 1
= 1x(00, @y [1, 0])- % o A (11, 4, [L, ”])'75,'
Taking the limit as » tends to infinity we obtain
2:Piy1
L(0) ==
Let € € v,(01). In this case ¢ may to appear only in ¢, and ée;. Assuming
that ¢, = BBB...BBB, |B| = m, and using Lemma 1(e) we obtain ¢ = g4
[T, T+4mn,] with 1 < 1< m,. Hence it is clear that
i(C, ) = % (myfm,+1),  Ex(0, o) = %+ (ny/m—1),
and so
(0, 2[1, nny]) = - (v /my+1) -0 (01, @, [1, n]) +
+¥ny fmy —1)-fr (10, w4, [1, 0]).
Thus
4 (0) = (1/(2'mt))'Qt+1 F e (2 1) e (2 M) — Gy [(201) = Gy 0y
Finally, if O ey,(10), then
fr (0, a[1, n-n]) = $(nyfmy—1)-fr (01, @, [1, n]) -+
+ - (myfmy +-1) 12 (10, @1 [1, ).

©
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In thig case we obtain also

the(0) = g1 fmy,
what completes the proof.
We shall assume in the sequel of this paper that » is a continuous
Morse sequence.

§ 2. Period and mirror period of ¢,. i-sectors. Now, we establish
u connection between the numbers &, m,, &, My, For given two blocks
B = (by...b,), 0 =(¢,...0,), n>1, we define
&(B, 0) = (Lfn)eard {1 <j<< n, b; # o).

THBOREM 2. Let myy My, by, be the smallest mirror periods of (.

11 : Cit1s
b, respectively. Then we have

. {m, if ¥ = 0101...010,
T Gy otherwise.

Proof, Let us observe that the number ., m, is a mirror period
of ¢;,.,. Then by Definition 1 we have
(7 My < lpg My

In order to establish the converse inequality we shall show that Ny [ My g
whenever b = 0101...010. i

Let my,, = s-m+r with 0 <r<n,. Using Lemma 1(d) we obtain
Myyy [N, What implies s << A,,,. Pub b 0+ [s+1, 8+2] = 4j and next
suppose that » > 0. Then s < 4,,,. From Lemma 1 (e) follows

(8) O aCor [Mypy +1y Mgy +0,] = G440

The last equation implies

BB (s by 84w +1] = i
whenever V'] =0, u=1,...,4,,
® »
PR e, s u 1] =15
whenever B"[u] =1, uw=1,...,4,.
Let us remark that (9) implies § = ¢. Indeed, if we suppose j = ¢, then from
(9) follows
BB 8 b1y Ay 48 +1] =4 ... d
, [
Ayt

and b+ = 00...0 what is contradiction. It is easy to see that for j =37
we have 5! = 0101...010.
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Thus we obtain my,, = &-%;. The last equality and (8) imply that ¢ is
a mirror period of b*+' and g0 s = Tq. Therefore My, = b1 n- In view
of (7) we have myy; = lyy;*n, Whenever Bt =2 0101...010. One can eagsy
to check that in the case b*! = 01010...010 the equality my., =m,
holds. This remark completes the proof.

THROREM 3. If &y, Fopyry Siya are the smallest periods of the bloocks
¢4y Cryyy DY, respeotively, then

ky if B = 00...0,
Ty =12-my if b+ = 0101...01,
841Ny Otherwise.

Proof. The proof of this theorem is similar to the proof of Theorem
2. First we have

(10) By < 811ty
Further we may establish in the same way as in the proof of the Theorem
2 that |k, whenever b**! 5£00...0 and b“*' #010L...01. If k.,
= s-m,, then s is a period of b*** what gives s > ¢,,, and by (10) we obtain
by = 84171

I B+ = 00...0, then obviously k., = k. Now, suppose that b*"!
= 0101...01. In this case 2-m, is a period of ¢, so that Kk ,|2-m,. T
Foppy < 2°Mm, then Iy, <y, By the condition Cppr Cgr oy 1y Topyy -+ ]
= ¢y, it follows ¢ ks +1, -+ K] = €, 1.0 %ok 15 o mirror period
of ¢, (see Def. 1 and Lemma 1(d)). On the other hand, if m i3 a mirror
period of ¢, then 2-m is a period of ¢, = ¢,x(0101...01). Therefore
my = %k, 1. By = 2-my. Thus Theorem 3 is proved.

Now, we can describe mappings from Y, , to ¥, for any ¢ =0,1,...
and s =1,2,... First we take s = 1. Let 0 = (61 ... 65, 41) be an. arrow
of ¥;.,. We put

(11) Fe(0) = ey .o. Gyppa)

Remark that if ¢ e ¥,,,, then there exists &, with 1<k < nyy,, such
that € = o}, 6l [k, b+my,], where i,J =0,1. I ko= (g—1) mylr,
1<0< by, LSr<my, then fi(0) = of ot [ry r--ny), where (iytg,) 18
a pair appearing in the block ((b*+*))j on the ¢ th place. Thus f,(0) = ¥,
and so (11) defines a mapping from ¥, to ¥,. Further, the image of
§, congigts of those axrrows of ¥, which appear in of¢f, where (if) runs over
all pairs of b*+10, B+11, b#+10, b+ 1. Since the blocks 00, 01, 10, 11 appear
in B+, i1, B0, B'L, we have f(¥,,,) = ¥,. Therefore (11)
defines a mapping onto Y.
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As a consequence of above considerations we obtain a sequence of
graphs ¥, and mappings f;, t> 0,

Iy

= o
Y, < Y,<¥,< ..

Put
Joo = Fifiqn v fipamy 120,08
Thus £, is & wapping from ¥, onto 7.

Now, we mark out subsets of ¥;,, which we shall call ¢-sectors. Bach
t-sector will be a subset of one of the four paths y,.,(00), y.,(01),
yH,,(l()),‘ 'y,ul,s.(ll). Take a path y,.,(4) = ¥,,, and suppose that |y,.,|
=Ty (i), With Ty = I,(ij) > 1. Let 0y, Cy, ..., Oy, be the successive
axrows of y,.,(4).

DurNrrioN 2. Bach group of arrows of y,,,(4f) having the form Oyt
Cpmprrr oy Oganymy 0 < @< L (3), will be called & i-sector.

THEOREM 4. For any t = 0 there ewists s > 1 such that

(a) 6ach of the Paths 9,4(00), Yess(01); 7e4a(10), 71sa(11) may be
divided on t-sectors, ‘

(b) if 8 = (C1, Cyy ..., Cy,) is & t-sector of Vy,s, then § = (Cy, 0, ...

vy Opy) @8 @ t-secior of this graph,

(c) there emists a pasr (w,v), u,» = 0,1, such that

Jus(0y) = {6 [G; 5 +mg],

Proof. (a): Take ¢ 0 and put 8, =¥+ x ...x b"*, s> 1. The
definition of operation (1) immediately implies the following facts:

1,2,...

j=1, 2,..-,%;.

(®) &, =010...10 iff B+ =010...10,..., 8" =010...10,

(B) 6y, =000...00 iff B+ =00...0,...,0" =00...0,
Foridirs 1 T

(v) &, = 0101..01 iff

et
Me1oodds

cither B! = 01...01, b ** = 00...0, ..., b = 00...0,
Y1 Augn M+e
or b+l = 01...010, ..., bt~ = 01...010, b'** = 0L.. .01,
L [O— [
M1 Ay g—1 Mg
Bt = 00...0, ..., b4 = 00...0.
el Hte

Using (a), (8), (y) and the fact that  is a continuous Morse sequence, we
conclude that there exists s > 1 such that &, # 010...10, &, # 00...0,
8,, # 0101,..01. Further, applying Lemma 1(e) we see that the smallest
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mirror period of &, is equal fo 1 iff 6, = 010...10 a.nld the smallest pgriod
of 8,, is equal to 1 iff §,, = 00...0. Denoting by m, 13116’8111&11681} mirror
period of &, ,and by k; the smallest period of 8, we have m, > 1 andk, > 1.
Next, we can apply Theorems 2 and 3 to the Dlocks 0, and ¢y, = €, X8;,.
As a consequence we obtain my,, = n;-m, and Ky, = n,k,. The last
equalities imply (a).

: (e): Fmﬁmy Temms 1(e) it follows that B, = A, A4, ... 4,4,
where |4,] = m,. Then we have

GH_E(?,,H = (0, X .A.a) (Gi X .ﬁg) (Gt X 'AG) “ns
v (o X A (0 A (0% Aoy x A) ... (0% A,)

and |o, X A,] = my,,. Thus t-sectors of y,,(01) may be identified with
the successive pairs (4, v) appearing in 4,1. In a similar way all -sectors
of y,;,(10) may be identified with the pairs appearing in 4,0. Next,
representing fi,, a8 B, B,... B,, where |B,| = ¥, we see that all i-sectors
of 9,,4(00) (94,(11)) may be identified with the blocks 00, 01, 10, 11
appearing in B,0 (B,1). The above assertions imply (e).

(b): Firgt assume 3,.,(00)Nyy,(11) =@. Using some arguments
from (c) we may easy check that an arrow ¢ appears in 9,.,(00) (v, (o1y)
ift 0 appears in y,.(11) (y14,(10))-

Now let 9;,,(00) = y,,,(11) and let 8 be a t-sector of y,,.,(00). Lemma
1(c) implies ¢, = BB ... BB with |B| = 4Ty, If 0 = 04,014 [F,h-+myy,]
is an arrow of y,,,(00) with 1< B < &y, then O = 6,0, (k43 Fyys,
b+ 3T+ My .1 i8 a0 arrow of yy,, (00). It remains to ghow that a4 %;,.,-
Tn order to do this we choose a number ¢ in the same manner as in (a)
and such that b s 00...0, % |m ;. It follows from Lemma 1(c)
thait

3k, =min{l<I< ¥ Mypgr CrrsOtts [B1, T myge] = Gy} -
Reasoning as in the proof of Theorems 2 and 3, we can establish
p+s = 0101..,01,
Bt £ 0101 ... 01,

Mgy g1 if

12 .
(12) Mpygmr Upps I

%'kt%s = {
where
Uyyy = MI{L VK §rAypgy 450 = BHEOFO[T4L, 1 Ay, T}
Therefore (12) implies that ny |} k,,.,, what completes the proof.
§3. Standard representation of Morse dynamical systems. In this
section we construct special dynamical systems, which will be isomorphic

to Morse dynamical systems. - _
Let Z,, = {0,1,..., 4—1},i>0,Z = 2 4, and let # e the o-field

0
of all borelian subsets of Z. Let p; be the measure on Z;, defined by 24(2,)
=1k, 2 €2Z,, 1> 0. The triple (Z, F,7P) is a measure space, where
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P is the product measure of p,, p,, ... We denote by 4 the group of all
n;-ro0ts of the unity, Then Z may be identified with the dual group of 4,
where the addition in Z iy defined in a similar way as in the set of p-adic
numbers. Let Z be the subset of Z consisting of z = (%0 #1y -..) € Z with
the property: an infinity of the 2, are different from 0 and an infinity
different from A,—1. It iy clear that B(Z) = 1. We define a transformation
8: Z—Z, defined by the formula

g(zoy 21y .0.) = (0, --~" 0,241, 2541y .-.),

where 4 is the smallest number for which #; < A;—1. Tt is easy to check
that (Z, #, P, 8) is a dynamical system with discrete spectrum and the
point gpectrum of thig system is 4. Observe that Z\7Z is the trajectory
of zero in Z.

Oonsider two copies of Z, namely M; = (Z,0) and M, = (Z,1).
Pqu_J}I = MyVM,. Denote by # the natural o-field of subsets of M defined
by # on M, and M;. Let p* be a measure on & given by p*(F) = }-B(F),
FaoMyorFc M. Now, we nay define a transformation 8* on M. Take
Z = (2,%,...) €Z. Let j be the smallest number such that # < 4—1.
Define

8*(2,4) = (8(2), 84, 7)),
where ¢ == 0, 1 and

6(i, B) = e(i)

i it j=o0,
=14 it >0 and p(b*[A]... b7 Ay 167 e F1 1[5 +2]) = 0,
1—-i #  j<0 and p(®[A]... V1[4 160 e +1107[24+2]) =1,

where p(e; ... &,) = 0if the number of 1's in s, ... e, it even and p(s... g,)
= 1 otherwise.

It is easy to show that §* is measurable and preserves the measure
p*. The dynamical system 6*(w) = (M, &, p*, 8%) will be called a standard
dynamiocal system for the Morse dynamical system 6(s). Now, we ghall
show that the systems 0(w) and 6*(») are isomorphic. First we define
a mapping ffrom M to X and next we shall show that f is an isomorphism
botween 0% (w) and (). Take & = (2, %1, ...) € Z and seb

dy = Gy (B) = BgtRy et o F Ry, 1> 0, 4 =2

We have 4, < n,—L, Put j; = n—4,—1. It is obvious that ZeZ implies

(13) By 28y Ja 20 B0, jy-co as t->oo,

Now, wo define a two-sided sequence y = f(Z, 0) as follows:

(14) YL 1%, Jol =1,
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T
and in general

- b[e+1] =0,
yL—4: 31 ==

ble41] =1,

y[wit—lljt—l]xét it
Y[ —ipery Ja X' i

t=1,2,... It is not difficult to verity that (14) and (16) well define
a two-sided sequence y. Next, wo define y = f(z,1) a8

(15)

(16) Y[ 10y Jol '""50:

and y[—i;, 4,1 a8 in (18), £ =1,2, ...

TerorEM 5. The mapping f defined by (14), (18) and (16) is an iso-
morphism between the dynamioal systems 6% (w) and 0().

Proof. We shall show the following facts:

(a) f is one-to-one mapping,

(b) f is measurable and u, = p*o F

(o) fo8* = Tof.

We prove the points (a), (b), (¢) successively.

(a): From the definition of y = f(Z, 1) it follows that

yL—t+1my jo+l-m] = ¢ or §
for 1=0,%1, £2,..., t=0,1,...
Therefore, for any ?3> 0 there exists a pair (r,8),7,8 =0,1, with

an y[0, m] = 60 [iy+1, m+ig+1].
This means that ¥[0, »,] is an arrow of ¥,. Take W €Z,®W = (Wq, Wy, ...)
with @ = 2. We shall show that f(Z,4) s f(®,j) for any 4,j =0, L.

Let 4, = 4,(®), j; = m,—i;—1, t > 0. The condition % + Z implies that
there exists a number ¢, with i, i,'o. We chooge & number § satisfying
(a), (b) and (c) of Theorem 4, with ¢ = t,. If f(Z, 4) [0, ny,] and f(@, j)
[0, ny4,] ave contained in different f,-sectors, then obviously f(7, 1)
[0, 09y © 5 F(, )0, ypiels L0 F(Z, 1) # Flaw, §). T F(Z, 9) [0, gy and
F(@, ) [0, nyy4s) aTe contained in the same f,-sector §, then f(Z, ¢) [0, %y,)
is (4, --1)th arrow of § (see (c) of Theorem 4 and (17)) and f(@, §) [0, %44,]
is the (iz -+1)th arrow of 8. So 4, # i, implies f(Z, )[0, ny,.,] 5 (@, §)
[0, 7y,4,] that is f(z, iLﬂ(w,j). In order to finigh the proof of (a) we
remark that f(z, 0) = f(8, 1) for any ZeZ.

(b): Denote by X, a subset of X consisting of those two-sided sequencos,
which are constructed from the blocks B, |B| = n, -1, appearing in ¥y, t=0.
X, is an intersection of countable many cylinders and so X, is a closed
subset of X. It is clear that u,(X,) = 1. Now, we define a subset X, of
X, such that u,(X,) = 0.
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Applying Theorem 4 we may choose a sequence of numbers i, < 1,

< lyeeny such.‘thm; the paths of T 1, Iay be divided on j-sectors, j = 0, 1,

9, ... Bach j-sector §=(Cy,0,, ...,Onj) may be divided on 4; of (j—1)-
gectors in the following way:

S{‘L = (01 Oy oo

We write § == [§%, 8571, ..., Sﬁ;‘]. Further, we put

—1 .
? G’Lj-—l)’ AR/ Si{ = (0(/1;—1)n-__1+1'! R/ C'nj)'

X(j) = {y € Xuy 910, m] 87, 8 is any jusector of ¥y},

) = O XW, X6 =X, Xo=U XGv UX6).
Rowaf 2 el J=0 J=0

= J4l =
We shall show p,(X,) = 0. Infact,let X(j,1) = (Y X(k), j = 0,1,..,
k=5

1=1,2,... Bach (j+1)-sector of ?tm may be divided on Ay ... 4y
j-sectors. It is casy to verify that

E{(j, ) ={yeXy, 40, ny, ] belongs to the last j-sector from
among Ay ... Agyy j-sectors of any (j+1)-sector of X, +z}'

IE Ty = Mgy 81y My = ny,p 8y and iy, (00)0yy (1) = O (v, (00)
== y,jﬂ(].l)), then 25, (or &) is the number of all (j+I)-sectors of y,m(OO)
Uy, (11). Similarly 28, is the namber of all (j+1)-sectors of y, ,(01)
Uy {10 Using Theorem 1 and the equality », ,+¢,,, = }+ we have
A Z (G, 1) = 2Dy Ty )50y 2 Gy g )80,
e (271 87)) - 8y (274 (g §7)) 8p iy = 1/(Asy -+ Apa)-

The last oquality implies u,(X (§)) = 0. In the same Wway we obtain 4 X ()
=0, §=1,2,.., what implies x,(X,) =0.

In order to prove (b) we show the following facts:

(b1) F(M VM) iy & measurable set and pol F(MUIM,)) = 1,

(b2) f is measurable mapping,

(b8) f trangports the measuro p* o0 k. .

(b1):Wo show that X,\X, = f(M, VM) < X,. Take ye X \X,.
For any j = 0,1, ..., y[0,m]is an arrow of ¥,. Then there exists
oxactly one j-soctor S such that y[0,m,]e 81" Writting 87 = [8§,
831 ..., 8171, where 817, ..., 87 are (j—1)-sectors, we choose & number
#, 1< 2 < & such that y[0, m,]'e 8. Put 4 = 2j—1. In this way we
obtain & sequence of unmbers @, &, 2s, .. The condition y ¢ X, implies
that an infiniby of ¢ is different from 0 and an infinity of 2; is different
from A —1. Hence 7 = (2, #,...) € Z. Aspreviously, we put i; =+
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+2 R+ ... 250y, . By the definition of the numbers 2o, 2y, ..., it follows
that y[0, n,] is (4;,+1)th arrow of &

Assume that 87 is contained in a path y, (k). Then the arrow y[0, ntj]
is preceded by at least i; of arrows of Yy (k1) If

Y10, m] = of o [q-ns+4;4+1, g'my+ig+L+m],  0< g < [y (k) /ny,

then 4; arrows immediately preceding the arvow y[0, ’”'z,] have the form

oi;ofj[g-n,-{—r, gy +r+md,  where 7 =1,2,...,4.

Thus y[—d;, ny—i—1] = oﬂ‘jcfj[q-n, +1,(qt+1)-n,]. Taking into congider-
ation the equality ¢, = o X (B x ... xbY) we obtain y[—iy, ny—i;—1]
=g or & for j = 0,1, ...
We put
(o i
YTl i

Now, we may show f(Z,¢) = y. The block y[—4.1, By —i5 —1] may
be divided on 4, equal parts and the equality 4;,; == ¢;--#;,.;°%; implies
the (g, -+1)th part of y[—d;.1, My —Gpa—1] is y[—4, ny—i;—1]
In order to show f(Z,4) =y it remains to verify that y satisfies (14),
(15) and (16).

Oongider the following possibilities:

Y[ —doy No—1—1] = ",

18 , . 2
18) Y[ —do, Ny—iy—1] = .

(%) Yl—dgpiy My — b =11 = 641, Yl—iy my—i—1] = o,
® YL —Fygns Mg =y =11 = ¢y, Y[ —iy, my—i;—1] = &,
) YL =ty Mypr — by —1] = 800y Y[ —%, m—4;—1] = ¢,
(3) Yl—=tpr1s My = —1] = G40y Y=ty my—iy—1] = G,

If («) holds, then b*'[z,,+1] =0 and
YLty My — by —1] == 054, = 0; X b7
= y[—ty, ny—d;—1] x b1,
Incage () wehave b [g,,+1] = L. Further, we have
YL —tppay pn —pqn =11 = 014y = 6, X B! = § xBI+!
= y [ — iy, y—1;—1] x b,
In case () b7 [¢,,+1] = 1 and therefore
YL—dpn Mygy =gy ~11 = Gy = oy x B
=y [ —d;, ny—i; —1] x b+,
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In case (8) we have ¥/*1[z,, +1] = 0 and
YL =ty By —bja —1] = Gy = G x b
=y [ —;, m;—1] x b+,

The above consideration, (14), (16), (16) and (18) imply f(Z, 4) = y.

In this way we have proved X,N\X,c f(M,UM,). It is proved in
part () that f(M,VM,) = X; what implics f(M,UM,) is & measurable
set and w(f(MoVM,)) == L.

(b2): In ordoer to prove f iy a measurable mapping we take a cylinder
in M,UM,, say M (%, 2y, ...,%) corresponding to the 2,2,...,%,
0Sry o Ag—~L,0 =1, ...,5. Let 8, 8, ..., 8, be all j-sectors of 74;(00)
and let 87, 83, ..., Sy Do all j-sectors of 7,(01). Applying Theorem 4(b)
we seo that §;, S, ..., &, are all j-sectors of 7y, (11) and 8,8, ..., 8
are all j-sectors of 7, (10) (if 7,(00) = 7;(11), then ' is an even number
and Syp+1 = 8, i=1,2,...,k[2). Further we denote by C(S) the
cylinder set corresponding to (4;--1)-axrrow of j-sector §. Thus the defini-
tion of the mapping f and f(M,VM,) « X, imply

m’

& K . m' "
(19)  f(M (2 ..y %)) = H (7(5’¢)U{L_=J1 G(Sf)UiL_)x o)V U1 0(8;)

= X2y 00ey %)
if 7,{00) N ¥y (11) = & and

I3 m’ m’ .
(20)  f(M (2, ..., ) = UJOo(8)v HO(S;)UHO(S;) =X (2, .5 %),

iml
i 7, (00) = y,(11).

Now the properties:

(1) f is ome-to-one,

(2) U Mz ... %) = M; U Xz,

Bgenrslf Byaerer®y )

(8) the sots M (2g,...,#) are pairwise digjoint,

(4) tho sets X (2, ..., #) aro pairwise disjoins,

(5) Mol (Mg L)) = 1.,
iply f(M (205 . .+12)) == X (20, ..., 7). It isnot difficult to sce that f(M(zor ..
vy %) N M) consists of those 0(S) in (19) and (20) that the corresponding
(4 +1)-arvow define b® between the places — i, and Mg~ 14y —1. This implies
thawt £ (2, .+, 25) VM) and (M (20, ... #)NM,) are measurable subsets
of X,. ;

(b8): since 8%, 85, ..., Sy 815 85, ...y Sy ave all j-seotors of ,(01)
Uy, (10), then exactly m’ of them define b° on the plgmes YHetween —4,
and, ny—14;~1 and m’ detine b% The same property have the segtors 84,
Say ey Sy Buyoery B it 71,(00) Ny (11) =@ and 8y, 8y, ..y S I ,4(00)

~”7zj) =X,
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=Yy (1L
(21) el F(M (205 -

). This implies
o G)NM)) = w(f(M (20, ..y 27) N M)
= '%/"m(f(M(zo: ey By ))) .

It remains to calculate ,uz(f(M C
then by Theorem 1 we have

/‘:p(o(si)) = /“x(o(s"t)) “Pt,/kt,s P=1,2,..., K,
ME(O(S;)) = ﬂw(U(ﬁé)) = Qtj/'”"tj’ i=1,2,...,m
Further the equality f(M (2, ..., %)) = X (%, ..., %) implies
Nan(f(M(zoy veny z]))) = 25" (Pz,/kej) +2-m' (Qtj/’mtj) = 1/m
= ?*(J'[(zm seey zj))’

because k,, = k' -n; and m;, = m'-n,.
If y,j(OO) =¥y (11), then by the same arguments we obtain

B f( M (20, -, #))) = Lin; = p¥(M (20, ...y 2))).
In view of (21) we obtain

Pl f(H (20, - ) Vo)) = i{F( M (2o, ..., ) NIY)) = 1/(2 )
) p*(M(zc” eey zd') ﬂ]l.’l'n)
e p"‘(M(zo, ceey zd)mllf[]).

The last equalities mean that g, = p*of~.

(c): Take y =f(Z,4), 2e4, ¢ = 0,1. We shall show that there
exists a number { such that
(22) Ty[—i,—1,4,~1]

= f(E+1, e(@) [ —i,—1,5,—1] for s3>1.

FiJ:‘S'b suppose 2 < 4—1. In this case Z+1 = (2o+1, 2y, 2y, ...) and
s(z). = 4. Putting 4, =i, (Z2+1), s =0,1,..., we obtain 4 = i,+1, 4
=1;-1, ... and so on. It is easy to remark the following fact:

(23)  f(Z,4) =y
. - .
i y[—iy ] = {3’ o p@latll. Vi 1] = 0,
6 i p(ib[e41]... 8°[z,1]) =1,
§ =0,1,... Applying (28) for f(Z4-1, 1) we obtain (22) with ¢ = 0
Next suppose #, = 4,—1. We choose the first number #, ¢ > 1, such
that 2, < 4, —1 and 7, = 1,—1, 0 < s < t. Then we have

Z4+1=(0,...,0,7+L,2y,...) and § =q,4+1,4 = jg—1

for s>t

v T ,(00) Ny, (11) = 0,
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Using (23) we find

¢ it p(ib'[A]...
6  otherwise.

o bi—l i —
Ty[—4, 1] =__{ [A-1 10" [2+1])
Similarly using (23) for § = f{Z+1, £(4)) we obtain

e i p(s(8)0. Ob’[z, +2]) =0,
gl—in il ={. T
bt & i 0...06' [z+2]) =1

-1

2le(d)

From the definition of the function p it follows that

P[] V7 201V [o+1]) = (4O ... 08 [5,+2])

-1

iff j =4 whenever p(b*[A,]... 6 [4_,1b' [ +1]b'[2,+2]) = 0 and § =
1 —4 otherwise, iff j = &(4). This remark implies Ty [ —iy, j;]1 = L1, fi]-
We may repeat the above congiderations for any s>, so we obtain
Ty[ —iyy o] = J[ —1y, ;1. Therefore (22) is true. But (22) means Tof=
fo8*. Thus (c) holds and the theorem is proved.

In the sequel we denote X (v) = f(M,UM,).

DrrINITION 3. A two-sided sequence y is called a generio sequence
for u, iff for any block B we have

fo(B) = lim (1/n)fr (B, y[1, n]).

Remark 2. The automorphism §*isa skew product of the automor-
phism § with a family §(z) of permutations of the two points sets {0, 1},
each with mags 4. If (¢, ) = i, then 8(Z) is the identity of {0, 1} and
it &(¢, 8) = 1—1, then 8(%) is:.the permutation of {0,1} changing zero
to one and vice-versa.

TegornM 6. Bach y € X(x) is a generic sequence for the measure u.

Proof. In order to prove the theorem we shall show that 6%(w)
is uniquely ergodie system. In real, suppose that » is an ergodic measure
on M and » 5% p* Thon there exist S*-invariant sets 4, B < M such
that p*(A4) =1, »(B) =1 and ANB =@. Put 4, = M,y nA Ay = M,
4. Bach of the sets Ao, .4, has a form 4= (C, 0), 4,= (D 1), where
0,D = Z. By the definition of the measure p* it follows that B(C) =1,
whew 0 = 0nD. We may assume that O is an S-invariant set. Further,
tho measure » may be transferred by the natural projection to Z.

Thug it is clear that »(Z\0) =1 and » is an S-invariant ergodic
measare on. Z. Since S is a translation on Z, the system (Z,7, , §) (and
50 6* () is wniquely ergodic. Therefore (X (@), #, g, T} is uniquely ergodic.
Proposition (5.15) from [2] implies that every y € X () is generic.
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§4. Isomorphism theorems. In this scction we give sufficient and
necessary conditions for two regular Morse dynamical systems to he
isomorphic.

Let @ = b®x b X...,y = f°x X ... be continuous Morse sequences,
We assume |7 = b'| = 4, ¢ = 0,1, ... Let @ = b'x b x ..., 9, = ' x
x g+ x ..., and let w, u, be measuves defined by , and y,, respectively
(we will write u, and u, instead of fi, and u,, respectively). Further, let P, and
P, be the partitions of X (») and X (y), obtained as the restrictions of the
gtandard partition P to X (») and X (y), respectively. Denote by Y,(y),
t >0, the graphs defined by y in the same way as ¥, was defin%l by .

Tirst we describe two-element partitions @ such that @ = V TP,
for fixed ¢ > 0. 0
Suppose that @ = (@,, @) i8 a measurable partition of X(y) such
ng e
that @ = \/ T7'P,. Then @ define a partition of all atoms of \/ TP,
0 0
on two parts: one part is designed by 0 and the other by 1. In this way
g
we obtain a code of atoms of \/ TP, ie. a code of arrows of Y,(y).
0

Thus we obtain four blocks 4'(@), B'(@), '), D'(Q), where A'(Q) is
a block obtained by the coding of 7,(00) (we write y,(00) ~.4'(Q)) and
B'(Q) ~7,(01), 0'(Q) ~7(10),D'(Q) ~(Ll). In the case 7,(00)
= 9,(11) k; is an even number and then

D(Q) = BB,

with |B,| = |B,| = $-¥%. Put

A(Q) =A"(Q)A'(Q) ... 4(Q)
mylky

B(@) =B'(@)B'(@)... B'(Q)

nyfmy

0(Q) =0'(9)0'(Q)... 0'(9)

nyfmy

D(@) =D'(@)D'(Q) ... D'(Q).
thyfke
It iy obvious that if blocks 4, B, 0, D satisty (24) and (25), then they
i

determine a partition of \/ IT-*P,.
0

(24) whenever 4'(Q) = E, H,

Now, we define a distance between two measnrable partitions of
X (y). Suppose @ = (Qy, @,) and B = (R,, R,) be such partitions. Detine

19 —R| = p,(QNRy) +u,(@iNERy).
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-— — ﬂt
Fix 12> 0 and take two partitions @, @ such thatQ, § = \/ T'P,. Applying
Theorem 1L to u, and. ¥,(y) it is easy to verify ¢
(26)  19—Q| = P d(4(Q), A@) + 7.4, d(BQ), BD)+
—I*Eu-l'd(O(Q), O(Q)) + @H'ﬂ(D(Q): D(Q));
where
Pr = @(00), g = j,(01)
and
Al B) = (Lin)eard{l < ¢ < ny, D[] B,

B, B are Mocks of the length n,.

Wo shall use in the sequel the definition of the Ornstein distance
d of invariant measures (see for example [1]).

Take two invariant ergodic measures g, v on X and denote by X,
X, the set of all generic sequences for p and ¢, respectively. Define

: . e o—1N
(27) Up,v) = it Tm> M o@lil, gliD,
yex,,,,w'/&x,, n =0
whore
[0, (ww) =00 or 11,
o, ?) = {1, (w0) = 01 or 10.

DEPINITTON 4. We say that 2 = b x bl ... is a regular Morse sequence
if there exigts o > 0 such that o <py, ¢, <t—0,t =0,1, ...

Further wo assume that # and y are regular Morse sequences with
the game ¢. Now, we may prove the following

Tumorem 7. If the Morse dynamical systems 0(z) and 6(y) are isomor-
phie, then d(u,, f,)~>0 as t->co.

Proof. Suppose that h: X(v)-X(y) is an isomorphism between
B(x) and 0(y). Then @ = h(P,) = (Q,, @1) 18 & measurable partition of
X (y). The partition P, is a strong generator because f(y) is a dynamical
systom with zero entropy (see [4] and [8]). Thus there exists a sequence
Q== (Qf, @) of partitions of X (y) such that

"
(28) Q-0 snd @ eVITP,
Lot A(Q) = A, B(§') = B,, 0(¢") = 0,, D(¢") = D; be the codes of
@', ¢ = 0. Wo shall show (Lemma 2 below) that ‘

(29) a( 4y, B;),::;,O, (0, Dy)52,0-

f—>o0
At progent we assume that the sequence @ satisfies (29).
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Consider the stationary processes (T, @, u,) and (T, Q, p,) on X (y).
As a simple consequence of the definition of the Ornstein distance d [7]

we obtain the following inequality

(30) ar, Q‘,ﬂ,, (T, 9, m) < 1@ - Q.

The processes (T, €', u,), t > 0, determine invariant measures », on X as
follows: if € ={weX, w[0] =¢p...,w[n] =9}, nx1l, then

7,(0) —,u,,(ﬂT"fQ,l), ¢ =0,1, j =0,...,n. The process (T,Q,u,)

deterlnlnes the measure u, since (I', @, p,) is equivalent to the process
(T, P,y u;) on X (x). Thus (28) and (30) give

(31) oy b0

Observe that the dynamical systems (X, T,w), ¢ = 0, are homomorphic

images of (X (y), T, 4,). In fact, the partitions @ define homomorphisms
¢, 120, from (X(9), T, ,) to (X, T, ») in the following way:
Gul0) [ — g+ ooy - o]
4, it wl—dFkny, —44(k42)n—1] = d,dt,
B, it w[—g+keny, —i+(+2) W't'“l] = dtdu
O it w[—dytlomy —ipt (b+2)-m—1] = ddy,
D, it w[—d4Fkeny, —b4(k+2)n—1] = dd,,

where % =0,1,2,..., % =f(Z4)eX(y) and d = xpx ... xp,
> 0. It is not difficult to check that u, g;* = ». Putting W, = g(X ()
we have »(W;) = 1. Further we observe that g, g, t> 0, are ergodic
measures because they are continuous Morse measures [4] and », are
ergodic measures because v are homomorphic images of u,. Now, take
£> 0, ¢ < 0% & < 1/9, and choose t, such that for { > ¢,

(32) d(vy, p) < &, d(At,B,)<1/E, d(ot’])t)<l/§-

Fix t > ?,. Then (32) and (27) imply that there exist sequences v e X (w),
¢,(u) e W, (u € X(y)) which are generic for u, and », and such that

(33) hm(l/'n)e&rd{@, Ko<y v[4] 5 g (u) 1]} < e.

Since v € X (@) and w e X(y),v = f(%,14), w = f*(@, §), where Z,weZ,
i,j = 0,1 and f* is a function defined by y in the same way ag f by a.
Next, we define two sequences 7 and @ as follows:

it ef—tAbony, f+ ko] =g,
B o[ty ke, ot Fomg] =G,
it wl—d+ ko, ji+kon) =d,
B ul—dy+ by, i+ Eom] = dy

3[k] = {2

ap = {°
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where &k = 0, 31, £2, ..., ¢ = i(%), i} = 4,(w). It follows from the
construction oi the sets X (@), X(y), X (#,4,), X (¥py,) that 7eX(2,,),
@ € X (Y41)- Therefore Theorem 6 implies that %, 7 are generic sequences
for By 1 and p,.,, respectively. We shall show that if v* =% or 77 or

7or Tv, then

(34) hm(lln card{i, 0 i< n, W] % v* [1,]} < Y.

We may assume 4, = 0 because in the contrary case we may shift the
gequences v and w. Pub

(38) Zy = {j =0, dgy(w)[j-m, (j+1) mp—1, v[j-ny, (§+1)- m—1)<ye}.
Turther we have

1
—card{j, 0 <j < lm—~1,.q¢(u)m # v[j1}

Lemy
191
m;-._Zo;;taewd{j, 8 << (941) m—1, gy(w) ] # o[}
13, |
=T+ (oo, a'mytmy—11, 0lo 641 m 1],
geal

Using the above cquality and (33) we obtain
(36) lim (1/7) caxd{j, 0 < j <1,j €Zy} > 1—ye.

I—»00

Next, we remark that for arbltramy j=0,0[fny (§4+1)n,—1] is one
of the four blocks

L =oli+l,dtn],  Ih = ofli+1, b +nl,
01, = G006+, é+nd, -~ IV, = 6818 +1, 4 +n).
Further the definition of the distance d (see § 2) gives
(ﬂg(x‘, IT) = a0, IV,) = ipfny, 6T, TIL) = d(IL, IV) = 1—dy/m,

(87

a(L,, IV)) = a(IL;, TIL,) =1
Now we put

Z) = {j Lo, go(uw)lf -ty (j+1)-n—1] = 4, or B}
= {j e Z,, [j] = 0}, ,

Z,gl) = {j € Zy, ge(w) [j-myy (§+1) 1 —1] = C, or D}
= {j € Z,, B[j] = 1}.

6 — Stndia Mathematica 72, 1


GUEST


89 - F. Kwiatkowski

‘Then the conditions
3im’('1 eard {0 <j <1, B[JT = 0} = iy, (0) = 4,
Lim(1/7) card {0 < j <1, B[§] = 1} = (1) = 1§,
l-r00
and (36) imply ‘ o
Hm(1/feard {0 <j <1, j € 20} > }—y/5,
T—>00
(39)
lim(1/1)card {0 < j <1, j e Z{}>}—yE.

100

Observe that the equality v[fy m, (J1+1) 1 —~1] = v[ja-ny, (fo+1)n—1]
is not true for arbitrary j,, j, € 20 (Z9), j1 5 j2, becanse in tho contrary
case (39) and (37) imply either g, >%—ye>$—p0 or g, >%—o, ie.
2 does not satisfy the condition of Definition 4. Further the equalities

V(1 By (j1+1)'”‘l —1] = Il; (IL) . and .
0 [Jy m; (Ja+1)-m—1]= IV, (IIL)

are not true for some ji, j» € Z0 (Z{Y), because by (37) and (32) in the
contrary case we should obtain S

1=a,IV,)< d(Iu 9e(w) (1 gy (Jy +1)'”:“1]) + ‘
+d(£h(’“') [jv ey (1)1 —11, g,(%) [ty (5o +1) - —1]) -+
+d(.‘h(’"') [ gy (Ja+1)me—1], Wz)< 3 }/E

what is contradiction with ¢ < 1/9.
In this way the following cases are possible:

o[-y, (§4+1)n—1] =T, or II, j ez,

@ o[f:ny, (§+1) m—1] =IIL oxr IV, jeZ,
o) o[ my, (j+1)m—1] =T, or IIL, jeZ,
v[f g, (+1) m—1] =1L or IV,, jeZf),
© oLy (§+1) 1 ~1] —‘—?It or IYH jeap,
offemy, (j+1)m—1] =1, or I1Y,, jezZ®,
@ o[f my, (§+1)m—1] = HT, or IV;, je2Z,

o[jomy, (j+L) m—1] =1, or I, ' jeZP.

) If (a) holds, then o[—d;4j-my, ~i,+(j-+1)-m—1] = ¢, whenever
jeZ{) and o[ —i;+j-ny—i,+(j+1) - —1] = §, whenever j € Z®. This

©
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means that 5[] =0 if j e 2 and 5[j] =1 if j e ZP. Thus we obtain
#[§] = w[j] whenever j € Z, what implies (34) with »* = 3.
If (b) holds, then by the same arguments we obtain 5[j+1] = @[§]
for each § € Z,. Thus we have (34) with v* = T%.
In case (c) we have B[j+1] = %[j] whenever j e Z, what implies
(34) with v* = Tv.
Finally, (d) implies #[§] = #[j] for each j € Z,. Therefore we obtain
(34) with o* = v. o
Now, since each of the sequences B, 7%, v, T is a generic sequence
for py., and % is o generic sequence for &, (34) and (27) imply
FFrprs prgn) <ye  for 12t
The last inequality finishes the proof of the theorem.
LemMA 2. Let @'t 0, be a sequence of partitions of X (y) such that
ny
10 —Q1.0,¢ = V TP, and let A(Q"), B(Q"), C(@"), D(Q') be the codes
0 .
of @,t>0. Then

limd(4(¢"), B(@)) =0, lLmd(0(g", D(@Y) =o.
¢+ t-ro0

Proof. Take a positive number ¢ > 0, s < ¢ and choose a number
t, such that :

(40) @ —@ <ot i s>tx>t,.

Next, we choose a number s, > ?, in such way that n, /n,, < &. Let t = t,+s
ny :

with 8> s,. Since Q¥ < \/ T-*P,, Q® determines the blocks A{, B,
[

O, DM ag the code of successive arrows appearing in d,d;, dﬁ;, dyd,, dyd,.
It is not difficult to see that

AP = (B x .. X0k {4y, By, Oy Dy}

B = (6% x ... xBVLx{dy, By, Oy D}
0P = (T .. B0 {4y, By Oy Dy}
DI = (B x .. X B)Lw{Ay, By Orps Dighy

where Bx{d,, By, 0y, D} (B i8 a block) denoties & block obtained w.ith
B by the substitution 00 ~ Ay, 01 ~By,10 ~C, 11 ~ D,,. Using
(26), we have

Q% —@'|
= d(4,, A?))‘ﬂ +d(B;, BS”)‘?IH“Z(Cu G?))ﬁ,-}-d(l)‘, DS‘))-@.
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inequalities 7, istios the condition of Defini- .
Further, the inequalities F;, g, > ¢ > ¢ (y satisfies the condition el ueX(y), veX(a) satisfying (33). Further, define the sets Z,, 2 , Z{.

tion 4) and (40) imply - In each case (a), (b), (¢), (d) considered in the proof of Theorem 7 there
(AP, 4) <YB Q0 -Q <s, ABP, B)<LE Q0 - <e exist j; €20, ja€ 2 such that
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(41) o (L) 1
aop, ) <e, A, DY) <e. PLith Gty m=1] = T or I

It is obvious that
(42) A(AP, BP) < my fny < myy g, < & and. P, D)y < .
Finally (41) and (42) imply
A(Ay, By) < @4y, AP)+a(AP, BP)+d(BY, B) <3,
A(04, Dy) < a0y, OF) +d(0P), DP)+a(DP, Dy) < 3¢,

whenever £ > t,-+8,. Thus the above inequalities imply the thesis of the

and
oo n, (Ja+1) 1y —1] = IV, (or IIL,)
or vice versa. Then ‘
1 = a(L, IVy) < d(Iu Oe(w) Ly gy (J14+1)-my "’1]) + a4y, 0?) +

+ d(gy(w) ig*my, (o +1) 1 —1], IV,)
< A4y, OF) +2+yE.

Hence wo obtain d(A}, 0f) > 12/ whenever ¢ > f,. In this way (45)

lemma. . - s i i , is established.

THROREM 8. Let & =b"XxXb" X ..., y=pFxpx..., be wo  reqular Purther, lot A, = 4, %+, t> 0. Next .
continuous Morse sequences with |b'| = || = A; satigfying A, <r, i =0, ’ fh X ext, we shall establish that
1, ... The dynamical systems §(x) and 8(y) are isomorphio iff there ewisis (46) d(4,, AP) 0.
iy such that b* = B for i > 4,. ‘ fvoo

Proof. Sufficiency. Putting (b°) = b0 ... xb'0, (80) = % ... Xf% For given s > 0 we choose ¢, such that for > t,
we have o e o
(43) @ = (B0) X B X ...,y o= (B0 XTI L (A7) Q@ <e, a(4yy B)<e,

! . »* id
Starting with (43) we may construct the standard representations 6*(w) 4(0p; D)) <&, -d(47, 0F)>1—e.
and 6*(y) of O(x) and 8(y), respectively. Further we observe that tlie Using (26) we have '
standard representation. 6*(#) is completely determined by [(8°)| and . L o
by the remaining blocks b%*?, ... Therefore we obtain 0"(2) = 6"(y) 48) 1@ Q' = Py d(Aysry AR +Tosr & (Byi, B +
what implies that the systems 6 () and 6(y) are isomorphie. L FT11 8 (Crpyy O +Trsr 4Dy iry D),
Necessity. As in the proof of Theorem 7 we construet & sequence where
nt
i ¢ : ¢ ~t {0 R
of partitions @*,t>0, such that @ c \O/T Py, 1@ ~Ql =0, where AP, = B10w{Ay, By, O,y D},  BI), = B'1{4,, By, Oy, Dy},
Q = h({P,) and h: X(z)-~>X(y) is an isomorphism between 6(») and 6(y). oY, = 5“”0»«{,.4 B, 0,, D} D, = 1x{4,, B,, 0, D;}.
Tet 4, = A(QY, B, = B(¢", 0, = 0(@"), D;=D(@") be the codes of 1:1 . 0 E T + {44, Biy Oy Di}
@', t> 0. We have shown that Now (47) implies
(44) limd(4,, B) =0 and limd(C,, D) = 0. aAl, D) <&, (A, O <6, . a(Al, D) <,
t-ro0 t-r00
(49)
Af Ajor B, 07 C,or D,. 11 gh ‘
Let A} denote A, or By, 0, (?note ':01* ;. We shall show (A, |»-u(71~1-1)<6y d(At+1y-ﬁt-¢-1)<5 for  t>1,.
(48) limd(4s, 0) = 1. Thus (49) implies

Let & be an arbitrary positive number. We choose a positive integer @(Byy.q, B < @(Byyyy Ay +3(Agpy, AR + (AR, BR)
t, such that (82) iy satisfied and mext for fixed ¢ > ¢, choose sequences < (Agyy, AP +2-5
1 .
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Similarly d(A.p;, %)) < @(Dyyry Bf)y) +2-5. Hence
(50) |#(4qy, AR — A(Byyy, B < 2-e.
In the same way we can.obtain - _

|d(Ag11y AR — @ (Crprs O < 275
(51) . o
[@( Ay s AFD) — (D, DY) < 206
Next, (48), (50) and (51) imply

(A, A — 104~ Q1< 25,
and by (47) :

(52)

Moreover, (47) implies

d(Ayy Af)) < 3-e

d(Ag—)u Aﬁ?l) <e.
By the above and by (52) we obtain
(A, Aﬁ)l) <4,

whenever 2= 1. So (46)
of the theorem.

Take ¢ > 0, 6 <1/49:7?%, ¢ < p, and choose #, such that for £ = ¥, (47)
holds and d(4,, AP) < e. Fix > 1, and consider the cases (a), (b), (¢)
and (d) of the proof of Theorem 7. Suppose the case (a) holds. Then there
exist jy,7, € 2" such that

is established. Now, we may prove the thesis

o[y ngy (J1+1) m—1) =T,  o[jgty, (fa+1) m—1] = II,.

Moreover,
iy = (T, IL) < d(1; g,(w) [y ey (Jo+1) m—1]) +
AgorBy . .
+ @(gy (W) [ mey (1) =11, go() [ myy (Jo-+1) -0y —11) +
Ay or By Ay or By
+ d{gy () [ g5 (Ja+1) 1y —1], TL) < 3+y/E.
Ay or By
Similarly, in the remaining cases (b), (¢), (d) we can establish
(83) dyjmy < 3+y/E,
or
(54) (=) Jy < 3+y/e.

icm
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Further (53) implies 4,/m,_; = (A4)/(Any_.) = (4,4 -
from (54) follows t-1 = (i) (A ) = (A4) m, < 3+r+y/5, amd

‘ (=) ny_y < 3-7+/z.

Now, we choose jeZ, such that g,(u)[j n, (j+1)-m—1] = 4,.
Then B = ’0[]""%;,.(} +1)+m1] is one of the four blocks L, 11, 111,
IV,. By the definition of Z, we have d(H,, 4,) < V¢ what implies
(85) (B, AP) < 2-y5

because d(4;, AP) < s First we regard the possibility (53). Tn this case
the sequences 2, and 4, have the following forms:

Aw  Awordu Avyor A1

A s Ay X Y

1
[N
]
1 E
L
i

[—

w1

Cu X blor Coy x B
Figure 4

Remark that B,[1, .., 1= ¢ e}, [4,41, 4+n,_,], where u,» =0, 1.
We shall show that

B[y +1, (§+1m_y] = o 07, [+1, 44m ] 8 B+1] = 0,

(66) Byl +1, (§+1)me,] = 8% 0F, [4,41, Gytme,] i
FLi+11 =1,

where 0 < j < 4,—1 and [J denotes 0 or 1. Using (55) we have

(67) A(dyys Bi(1,m]) < A d(Af), By) < 2075,

Now suppose f[j--11 =0 and By[j-m,+1, (F+1)n_y] = 6%, 02, [4,+
41, 4 +ny_,]. Then we should have

L—=3rey/E < Lomiyfry

e , - ) ,
a A0y Oy [ 1y dpbmy iy 82308 6 +L, d+m,,])
Hyll,ngq) Byl ng1+1(G+1) 1y 1)

K ALy wpy ]y Agy) FA(Ayy By myy +1, (1), ])
< a4, Et[j'”t-1+11 (F+L) m D +2:r/E,
and. therefore

a4 Gy 1y (F41) gy ]y Byl omy_y +1, (1) 1_1]) =1 =B ry/e.
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The last inequality gives

l .

a4P, B) > aAp [y 1, (1) 11 ]y B[ ey +1,y (1) 14 ])

o,

=

2
::— “(L—Bry/).

what is a contradiction to the inequalities (¥, A <2-/e and
&< 1/49-72. Thus we obtain the first part of (56). In the same way wo

can show the second part of (56) Further we observe that (56) means the
following U

Blil=0 it b[l=u (or B[jl=1u), 1<j<h.

The last assertion it possible iff B = £, in view of the equality A°[1]
=b[1] = 0. By the gimilarly reasoning we may obtain f' = b* if (54)
holds and £ > #,. This completes the proof of the theorem.

Remark 3. Let s;, ¢t = 0,1, ..., be the greatest number j > 0 such
that: either

B = 00...0, B =00...0,..., 5+ =00...0,
or L
B = 010 ... 10,..., B0 = 010 ... 10, B9¥F = 01... 01,5+ = 00.....0,
B <00...0, 0<s<j, |
or )
b =0L...01,b% =00...0,...,0" = 00...0.

IE B £ 00...0 and b 5 010...10 and b 5 01...01, then we put
8 = —1. The assumption » is a continuous Morse sequence implies that
8 is well-defined for every t> 0. Using remarks («), (B), (y) considered
in the proof of Theorem 4 we have

Opapy # 00,0,  Gpyyy #0101...010, 4,4y 0L ... 0L
Agsuming 4, < 7, 1> 0, and applying (5) for @, we obtain
Bor 03 112 By oo Hgya) > 12 1%,
and ‘
py<L/2tt or g <1/2%TL

The above inequalities imply that @ is a regular Morse sequence iff {8}
is a bounded sequence. )

icm
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KARUTANI'S BXAMPLES. Putting b = 00 or b* = 01, 13> 0, we obtain
a clags of Morse sequences described in [3]. The assumption # is a con-
tinuous Morse sequence is equivalent to the faet that an infiniby of such
b iy (01). Teb g = f'% ' x ..., f =00 or f' = 01, ¢ 0, and let

(58) v b X ORI,y =1 (P21,

fou0 f==20)
Kakutani has announced that Morse dynamieal systems 6 (x) and 6(y) are
gpectrally isomorphie if y, -y, is dyadic rational number. Since series
(88) have an infinity of positive moembers, y,—yp, is a dyadic rational
namber i b - g for suficiently Iarge . Now, using the sufficiency
of Theorem 8, we obtain that fhe spectrally isomorphism is equivalent
to metrically isomorphism in the clagy of Kakutani’s examples.
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