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related to, but simpler than the problem above, which we feel are interesting
even without their relation to Ulam’s conjecture.

4.1. Appromimate isometries and measure. We move the problem of
§3 to a more amenable environment, hoping that a solution to the new
problem would help in the old situation.

CoNJECTURE. There is a constant ¢ > 1 such that if § is a subset
of some B", g: §—~R" is a &-isometry, and T = [v e R*| dlw, 9(8)) < o8},
then 2,(T) = 4,(8).

4.2. Neighborhoods in bricks. Let B be a brick (rectangular paral-
lelepiped) in R", § and T isometric subsets of B. It would seem that not
too much more of § than of 7' can be near the boundary of B. Precisely:

CoNJEcTURE. There is a ¢, > 0 depending only on % such that for
any 6 > 0

If{re Bl d(z, S)< &) < A,({zeB| dle, T)< ¢, 8}).

In fact we guess that the best value for ¢, is 1+y/n, corresponding to
8 a small corner of the brick B.

To see the connection between this conjecture and the problem de-
seribed at the beginning of the section, let 8’ be a subset of the brick Band
g: 8'—B an approximate isometry. Let f: §'—R" be an isometry within,
say, 6 of g. Set T = f(8')nB and § = f~(T). Then the above conjecture
implies that the (1+¢,)d neighborhood. of g(8') in B has measure at least
equal to the meagure of §'.
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A characterization of BMO and BMO,
_ by
CARL MUELLER (Berkeley, Cal.)

Abstract. The purpose of this paper is to use probabilistic characterizations
of BMO and BMO, fo solve two probloms. Our first result is a characterization of
BMO, in terms of Carleson measures when ¢ is regular. This result was conjectured
by Sarason [9], and is similar to Fefterman and Stein’s characterization of BMO [2].
Secondly, we give a probabilistic proof of a criterion for BMO due to Hayman and
Pommerenke [4].

1. Introduction. Probability has recently become an important
tool in complex analysis. Using Brownian motion, Burkholder, Gundy,
and Silverstein have characterized the HP spaces in terms of maximal
functions, thereby solving & longstanding problem of Hardy and Little-
wood.

OCurrently, the BMO functions are receiving attention. Fefferman
and Stein [2] have shown that BMO is the dual of H'. An important
gtep in their proof was the characterization of BMO in terms of Carleson
measures, The BMO, spaces were introduced by Spanne [10] as generaliz-
ations of BMO. Thege have also aroused interest (see Sarason [97).

The purpose of this paper is to use probabilistic eharacterizations
of BMO and BMO, to solve two problems. Our first result is a characteri-
zation of BMO, in terms of Carleson measures when. g is regular. This
result was conjectured by Sarason [9], and is similar to, Fefferman and
Stein’s characterization of BMO [2]. Secondly, we give a probabilistic
proof of a eriterion for BMO due to Hayman and Pommerenke [4].

Let D be the unit dise in the complex plane, and let I be a subare
of 8D, We will consider holomorphic functions f in H*, which are the Pois-
son integrals of their boundary values. Let

1
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The space BMO consigts of all functions f for which the BMO norm
Il = sup I(If = I(£))
I56D
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ig finite. If () is an increasing function satisfying ¢(0) = 0, then the
space BMO, consists of all functions f for which

I(If—I(H)1) = o(e(iI)).

Spanne [107 has shown that if o(z) = 4°, 0 < a <1, then BMO, coincides
with the space of functions which are Llpschltz continuous o‘x‘ order a.

Let f be holomorphic in D. Let B(t) be Brownian motion in .D, and
let o be the first exit time of B(¢) from D. A theorem of Paul Lévy states

that f(B )] a.

Let f?(t) be the motion obtained from thiy time change, and let ¢ be the
image of ¢. That iy, ¢ = T,. By an abuse of notation, 776 will mean that
B(0) = @ (so B(0) = f()).

o(®) is said to be regular if

i
(#)) is Brownian motion with a new time scale T, = [|f'(B
]

efm () /1)@t = 0(e(6)).
[

For example, ¢(w) = 4", 0 < a< 1 is regular.
The following two theorems are not too difficult, and their proofs
will be omitted.

TeHEOREM 1. f € BMO iff

sup E% < o
xeD

and this supremum is comparable to |f|.
THBEOREM 2. Let o(x) be regular. f € BMO, iff

— o))’

These theorems were motivated by a theorem of Burkholder [1]
stating that fe H* iff

s =0(e(1

B%P? < o,

For I < 8D let R(I) be a square in polar coordinates with one edge
coineiding with I. Thus,

(I) = {(r, 6): eI, 1—I|2n<r< 1)
A measure p on D is said to be a Carleson measure if
HER()) = o(I)).
Fefferman [2] showed that feBMO iff du = |f'(2)*(L— |2|)dedy

is a Qarleson measure. In Section 2, we prove the following

icm°®
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THEOREM 3. Let o(w) be regular.
Then f € BMO iff du = |f' (2)]* (1 —

1
77 HED

|2]) dedy satisfies
) = 0(e(iI])?).

This theorem was conjectured by Sarason [9].

Probability often clarifies potential theory. In Section 3, we prove
the following potential theoretic criterion for BMO, due to Hayman and
Pommerenke [4].

THEOREM 4. The domain & < O has the property that every fumction
f(») analytic ¢ n D with values in @ belongs to BMO, iff there ewist constants
R, & > 0 such that for all w, @,

cap (N {|w— w,| < R}) > 8.

2. Proof of Theorem 3. Let G(x,y) be the Green’s function for the
disc. From potential theory [5], we know that G(z, y)dy is the expected
amount of time that Brownian motion starting at o spends in dy. Since

B(t) is obtained from f(B(?)) by the time change T, = f If (s)]*ds, we can
write ¢

B = [ |f' ()G (z,y)dy.
D

Therefore, by Theorem 2, it suffices to show:

Lisvya., Let ¢ be regular. Then

[1f @6 (@, y)dy = 0(e(L— |al))
D

L [ @ra
R(I)
Proof of (1)=(2). This part of the lemma is true even without the
agsumption of regularity. The result is known (Sarason [9]), and we will
omit the proof.
Proot of (2)=(1). There will be two steps. In Step 1, we will modify
the Green’s function @ (@, ¥). In Step 2, we will approximate the modified
Green’s function by the function (1 — [y|) on & union of Carleson rectangles.

Step 1. Note that for » close to 1,
G(w, ré®) ~ 2 (w, 6*)(1—1)

where 2 is the Poisson kernel. Here “~” means “comparable to”. With
each point # € D\{0} we will associate an interval I, = dD. Let I be the
interval centered at »/j»| with length |I,| = 2m(L— |@). Let & = (1/2}|Z,],

1)
iff

@) — |2lydz = O(a((I])?}).

I

4 — Studla Mathematica 72, 1
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and agsume without loss that I, is centered at 1. Let N be the largest
integer such that 2% —é < w. Define the intervals I,, 0 <n < N+1 by

I,=1, I,=[-2"§,2"8], n<JH, Iy =aD.
In their proof of duality for BMO, Fefferman and Stein approximated
P (, ) by the indicator functions of the intervals I,,. We intend to appro-
ximate G(@,y) by (1—7) times the indicator funetions of R(I,). This

procedure will give the desired result, near the edge of D. In this step,
we will “hollow out the center” of G(z, y) using the following idea. Note

that
I @)F =1 [(f ij
a0

(4)
So, in the integralg If' ()G (&, y)dy we can “project” |f'(y)IG(x,¥)

onto a region near the boundary.

Let m be a measure with support @ contained in a dise .D(c, r) with
center ¢ and radius . Let 2,,(#, ),y € 8D(¢,r) be the Poisson kernel
with respect to 8D(c¢,r). The “projection” of m onto 8D(e, r) will mean
the measure u on 0D (¢, r) defined by

pldy) = dy [ P, (@, y)m(do).
Q

@) P (@, y)dy| < PP (@, y)dy.

“Hollowing out” @ means replacing m by its “projection”. Often, we shall
speak of “projecting” a function f(#) and “hollowing out” its domain.
In these cases, we are referring to the measure f(»)dw. Also, the ‘“mass”
of a function is its Lebesgue integral.

Let p(de, dr) be a probability measure with support on the set

{le;7): @ = D(¢, )}

Let g, be the “projection” of m onto &D(e, r). The “projection” of m with
respect to p will mean the measure u satisfying

= [ [ e (do, ar).

Most of the timie, both m and g will have continuous densitios f(») and
h(z), respectively. Then we ghall speak of h(x) as the “projection™ of
f(@). As in the previous part of the proof, assume that @ lies on the positive

real axis, and
10

o =R, gy =ré.
Let m,(y) be as before. Now
/] 1 0 1 1— mw
—G(z = ———— M, (Y)| <
o 8O = g o ™ S gy e = T e

1—R?
V(#* + R*—2rRcos 6)(L+ 7 R* —2rRcos B)
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When r = 1, equality holds in the above formula. Fix K > 1. We wish
to find a region in D for which

0
< —K—
= or

That is, the radial derivative of & should be bounded by K times its value
on the boundary. We will compare each of the expressions

(a) 1+#2R*—2rReos 6,
(o) 7?4+ R*—2rRcos 6
with its value on the boundary. First, expression (a):
1+ R —2rReos O = 14 R* —2Rcos 6 + R(1L—7)(2¢08 6 — R (1L +7))
< [(L—Ry+2B(1—cos0)]+
+e(L—r) (A ~R)+ey(1—7) + 03 (1 ~7)(1~—cos 6)].

The order of magnitude of the second term is bounded by the order of
magnitude of the first term if

@—=n'<

4 6
’370(:11‘,7'6 )

Gz, re')
=1

omax(1—cos6,(1—R)?).
That is,

(%)
The argument for expression (b) is similar:
i+ R —2rRcos 6 = 1+ R*—2Rcos 0 (1L —r)(2Bcos 6 —
< [(L—R)+2R(1—cos0)]+
o [0y (L —#) (1 — R) + 03 (1 — #)* + 6, (1 —#) (1 — cos 6)].

This again leads to (x). Let @ be the region determined by (x). Next,
we will find the regions @, = mi%{#: |#{<1—2""}. The boundary of
@, is a circle, one of whose diameters has endpoints 2, , p,, on the real
axis, We will estimate the location of these points, Let y be real, and

1—7r < Cmax(6,1—R).

(1+1)

1—y =¢, 1—w=4.
Then
my(y) = (y ~0)[(1—yo) = (A ~e)/(A+e—de)
‘ [1—(e[d)(2— A)+0(e[4) i e< 4,
B { ~L+4(4]6)(2 —8)+O(A[e)} i  e> 4.

So, the endpoints in question are
Py = 127V 0(27" 8(8+27")),
Ppy = 1—2"F1540(2%8(5+27")).
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Let 8, be the circle with center 1 —2" 8 and radius 2’”“l 6. Then, for » large
enough 8, = @,,. Note that for ¢ large enough, US covery R® = {re”:

> Omax(1—R, 6)}. Let M be a constant to be gpecified later. Now,
for w (7

G(@,9) <Ky D 27"y €Qu).
=M
Since the S, cover @, by changing Ky, we find, for y ¢ Sy,
G, y) <Ky D 27Uy eBf,NR).
n==

We wigh to use inequality (A) to “project” 27 "1l(y € 8,) onto D\S,,.
Let s, be the center of §,. Now, 27"I(y € §,) has mass (2" 8. We claim
that the projection of 27"1(y € 8,) is the same as if the mass were concen-
trated at s,.

By symmetry, both 27"I(y € §,) and the mass concentrated at s,
have the same projection onto 8S,. The projection onto a larger circle
is the same if we first project onto 48, . This fact holds because a projection
is the hitting density of Brownian motion. If 7, is the first hitting time
of 88, and 7, is the first hitting time of the larger circle,

P{B(r) ede} = [ P{B(mw) e dn}P*{B(r,) € de}.
#e08,

Let s > 0 be a small constant which we will specify later. For 0 < u <
g, let D, = {j#| = 1—wu}, and “ploject” (2/e®)udw of the mass onto the
circles m‘l(l),) t & (u, u - du). Since m,n is & conformal Lransformamion,
the densmy of mags will be, for u < &, comparable to (u/e*)| My, (W)° 2" &
Now, in the region

Qs, = {re”: 1—r < Cmax(1—|s,|, 6)}

we have seen that lmn(re“’)} and |} ( %) are eompfxmblo Since the
latter equals #(s,, ¢°), the density of mass is comparable to (1-—1r) X
XP(3,, 6°)°2" 8 for 16° ¢Q, .

Note that “hollowing out” 8, puts some mass onto 8,4, m > 1.
We will show that this fact is of no congequency. - .

Let y = 1—r = 4. We know that 1 —s, = 2"4, Now

1—R2

(L—7R,)* +2rR, (1 —cos 6)
Now, it ¥y € 8,4, then 4 ~ 2§ and

limg,, (9)] < O[2*7 6.

[y, ()| = < (278/4%)(1+0(278/4)).
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Therefore, the density of mass in 8, ,,,, for m large, is less than
Cu[223m+n,
{We must use a uniform bound in §,,,,,, so that the mass can be concen-
trated at 8,,y.)Since 8,,,, has area (2¥"+™ §* the total mass transfer-
red 10 Sy i8 less than
Cu2" 8 [22™,
Now for large m, iy comparable to 2°™. If & ~ 0272, then no mass will
be transferred to 8., for m << M. So, the above quantity is less than

(027™) (23 20) (gnim §) — K23~ (magy of &)

Choose M so large that (27°%/K)/¥ < 1/2 and K < ¢~ ", Suppose that
(r—1)M <m <rM. We wish to estimate the total mass added to 8,
from &8,. Such mass could reach 8, ., directly, or after first landing in

J intermediate circles. The mass arising from the latter case is less than
(=DM [y — )M K270~ (mags of 8,,,).

Summing over j, the above is bounded by

02M B M exp (m (273 [K)™M) (mass of 8, ,.,) < O (KeMi2ymH (massofﬁ,,+,,;)

When summed over m, the above converges. This establishes the claim

that “hollowing out” 8, does not put too much mass on the larger circles.

Step 2. We will now show that the “hollowed out” Green’s funetion
is bounded by

1=
(®) oS! 5 'i”” R(In))
Ne=1 "

where I, = {#: —2"6 < 0/2x < 2"6}, as in Section 3.
Note that for m = n, there exists a constant K such that

Qs N{re: ¢ e K.} = R(L,).

For each interval I, all the cireles 8, with m > » will contribute to the
modified Green’s function on I,. It suffices to consider the endpoints
—~2"8/27, 2"3/2m. Using the approximation of (B) by £(@, ¢)(1—
we need to show that if 0, == 2"4/2n, then

Z‘y(s M2k 8 < 2@, ).

ke
Now ) ‘
2 (o, e“’n ~ B)(8 4 62),

P (8, 6'%n) ~ 2¥8/(2% 8+ 62) < 2%P (w, 6n).
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Also
P (s, 67) < (27 6/27 8 = 2F[2*" 6.
So,
n
2 g, ( )2k 6 < 02 (3, o w) 31 2% (24 2 0224 8 < 02 (@, o).
k=0 k=0

Thus, we have shown that

[ rwre@ nay Orﬂ =i
D

This proves the lemma, and thus BStcLblIBhOS the theorem.

3. Proof of Theorem 4. Given a. kernel K(w,y), the equilibrium
measure of a region @ is the measure m(ds), supported on ¢, which has
the greatest mass subject to the condition

fK(w,y)m(dy)<1, all we@.
2 ,

Let D(w,, B) be the disc of radius B with center w,, and let B = ¢°n
ND(w,, R). Let m(dx) be the equlhbrium meagure of F with respect to the
logarithmic kernel log |1 /(x— )|, and let # (dy) be the equilibrium measure
of E with respect to

G(w, y) = (1/2n)log|(2R 7y 2R) [(® —y)|.
G(z,y) is the Green’s function of the region D(w,, R). Note that for
&, Y € D(ww R), . .
() (1/2m)log((3/2)B) < G (@, y) —(1/2m)log |1 /(@ —y)| < (1/2n)log2ER.
Recall that T ’
cap (B) = exp(—m(H)).
Suppose that f(D) = @ and that for all w, €@,
cap (E) > 4.

Set
(@) = m(de)/m(E),  a(dw) = o (do)/m ().

It is a standard fact that w and & are the measures for which

gup SuUp f K (#, y)v(dy) is smallest when K(w, y) is the appropriate kernel.
2eE o(I)m=1
Using this fact and inequality (),

—logd >1/m(B) = sup flog |L/(0—y)|u{dy)
> sup f(zna @ J)——log2R) (dy)
el §

>sup [2n6(a, y)i(dy)—log2R = (2n /ni(H))—log2R.
el §

° ©
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So,
m(B) > 27 [log(2R/[8).
From probabilistic potential theory (see Hunt [6]), we know that
P*{B(t) hits B before hitting 2D (w,, 2R)} = [ 6(wo, yyin(dy).
Therefore, it follows that K

P {B(t) hits ¢° before hitting 6D (w,, 2R)} > [ @ (w0, yyin(dy)
B

> (1/2m)log 2 (B) > log2 [log (2R/9).

Let 0, bo the minimum of the last quantity and 1. The expeeted exit
time from .[{(wn, R), for B(0) = w,, iy 0,R* for some constant 0, since
B(wt) and y# B (t) have the same digtribution.

Suppose that B(0) = a,. Let x, be the first exit point of B(f) from
D(my, 2R). Define #, by induction. That is, ,,, is the first exit point of
B(t) from D(x,, 2R). Then, if & is as before,

B < (expected exit time from D(z,, 2R)) x
X (expected number of points @, which are hit before o)

<R (3 (1-0)) = 0. B0,

w0

So, f e BMO. CUonversely, suppose that we can find sequences R, x oo,
0,0 and o, € @ such that

cap(@°ND(w,, R,)) = 6,.
We wish to find x, € 8D(w,, B,;,) such that for d,/R, sufficiently small,
(A) P ™ {hit G° before 8D(w,, 2R,)} < COflog(3R,[26,).

It suffices to show that if ¥ =@ nD(w,, R, and if x is uniform on
oD (wm(l/z)l"'n):

P*{hit Ehofore 8D (w,, 2B,)} < Olog (3R, /20,).

Let G(w, y) be the Green’s function for D(w,, 2K,). Let m and m be as
before, Also as before, we deduce from (%) that

1 (B) < 2nlog (3R, [26,).
Let » be uniform on 8D (w,, (3/2)R,). Then

P*{hit B before AD(w,, 2R,)} < (1/2m)log|1/4/(1— (1/2)-(1/4))|%(B)
< Oflog(3R,[26,) = &, say.
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Thug, if 7 is the first hitting time of D(w,, $R,), and if

then

— {B(t) hits B before d D{w,,, 2R,)},
H = {B(#) hits B or 8D (w,, 2k,) before 7},

> B [PPO@)I(H)] > B'[PPO(G)]— B [L(H)] = P*(6) —

Thus, inequality (A) is established and the reqmwd point -’”n exigts. Since

D(w,,

R,[2) = D(w,, B,),
P {hit G° before 8D (w,, B,[2)} < O/log(3K,[25,).

Let = be the first exit time of Brownian motion from D (s, R, /2) starting
from =, . Suppose that » is-so large that

O[log(3R,[26,) < 1/2.

Let F(x) be the cumulative distribution function for z. Let

k(n)

(1 —F(a))do.
F)<1/2}

By the scaling properties of Brownian motion, k(n) = ol/ﬁ;, ¢>0.
Now k(n) is the expectation of the smallest values of 7, so

B > B™1{hit 0D (w,, R, [2) before 6°} > k(R,) = oV E,.

Thus, E™F is not bounded. If F(z) maps D onto the covering space of
@, then F'(2) is not in BMO. . - : :
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