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A caleulus of symbols and convolution semigroups
on the Heisenberg group

by
PAWEL GLOWACKI (Wroclaw)

Abstract. The main result of this paper is the following:
Tanorom. Let ae 0% (RN x RN) be a function of polynomial growth satisfying
18%08a (2, &) < Oa,p(1+1a)) =211 + &1} —0lfl|a (z, &)]
and
la(w, £ > O +|o)E1 418"
for some K, k, 8, o > 0. Then the spectrum of the operator
Au(w) = [ o*ia(a, &) 0 (§)dE
s either the whole plane C or it is discrete and
S M?P< oo
03%A&Sp.A
for p> 1 and p > max(1/K, 1/k).
As an application we obtain that the semigroup of measures generated by the

operator X () X on the Heisenberg group consists of absolutely continuous
meagures with square integrable densities.

Introduction. Let G be the 3-dimensional Heisenberg group and
{X, Y, 7} a basis of its right-invariant Lie algebra such that [X, Y] =2
and Z ig central. Let (i), and (»)~, be the semigroups of measures
generated by X* and ¥?% respectively. Consider a sublaplacian

& =X 1

and (m)o, the semigroup of measures generated by £ . By the Hor-
muander theorem ([8]), & —8/0t is hypoelliptic and this implies that m,
s pda, where p, & 0°(6) for ¢> 0 and thus p, € L&) (see [B], 3.1,
Theorem). In this paper we consider the following generalization of £:
For real mumbers 0< 7, 8 <2, let us write

XOf = [ 47" (unf —f) dt,
[

YOf = ft""'/’(v,*f——f)dt
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for compactly supported fe (% (¢). Now set

Ly = X + e,

Note that &, is no longer a differential operator unless 7 = s =2 and
%, =% . However, £,, is an infinitesimal generator of a semigroup
of measures (M}*)ise. The operator &,,, 0<s$<<2, was investigated
by A. Hulanicki in [11] and it was announced there that mi® = pj¥dy,
where p}® e L*(GYnL (). We extend this result to the case of arbitrary
0< 7 8<2. As a consequence one obtains that the spectra of 2, , on
different L?(@), 1 < p < oo, coincide. Another corollury due to A. Hula-
nicki is that the semigroup gemerated by £, , on I* (@) is holomorphic,
but this is beyond the scope of the present paper. The main tool wo use
is a kind of caleulus of symbols for certain classes of operators on. & (RY).
We consider a class of symbols which are different from “pseudodiffer-
ential symbols” of c.g. [1]. Namely, we treat variables «, & separately
and symmetrically as our symbols satisty

10508 (@, §)| < O gl@<T10CEY1Pe, 0< 8, o<1,
.

In a sense the most similar (but more restrictive than ours) i a elass of
pseudodifferential operators with symbols satisfying (ef. [67, [17]):

|z0%a (@, &) < 0<0<1,
where w = (2, &). Nevertheless the dependence of our caleulus on the
existent ones is apparent.
The main result of this paper, which enables us to prove the above
statements, is the following:

TEROREM. Let a € O°(RY x (RV)*) be a function of polynomial growth
satisfying

ga'ﬁ<w>m—(lul+lﬂl)ﬂ ,

105080 (@, &) < 0, o)~ (&P a(w, )]
and
la(@, &) = O@d¥o(EHk
Jor some K, ky, 8, 0 > 0. Then the spectrum of the operator
o) = [éa(w, EYi(£)aE, we P(X),
is either the whole plame C or it is discrele and
D W< oo
OAeSp.d
for p =1 and p > max(1/K,, 1/k,).
This paper i§ substantially influenced by [6]. Wo adopt from [6] the
point of view on operators on & (RY) as coming from the Heisenberg group.
Also the idea of the proof of Theorem 3.1 is essentially presented in [6].
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Notation. In this paper we apply the following notation. By (,

R and Z we denote complex, real and integer numbers, respectively.

Let NeZ, N>=1. For a vector & = (@, ..., oy)e RY, let us denote:

jw| == Buclidean norm of X, <& = (|z]2+1)"3,

@t = wy for = (g, ..., ay) € 2V,
We shall consider the following funetion and distribution spaces on RY

(or on a group):

A (R¥) = continnous functions with compact support;

%o(RY) = continuous functions vanishing at infinity;

%> (RY) = infinitely differentiable functions;

P(RY) = infinitely differentiable functions with compact support;

& (RY) = Schwartz functions;

IP(RY) = meagurable functions integrable with pth power with
respect to Lebesgue measure 1< p < oo

L= (BY) = meagurable, essentially bounded functions;

M(RY) = Cj(RY) = bounded measures;

&* (RY) = termperate distributions.

All these spaces are Banach (or Fréchet) spaces with usual norms
(or locally convex topolog:es)

For # e RY, ¢ e (BY)* denote by &» the action of £ on @. Next, denote
by dz » Lebesgue measure on RY, which is self-dual with respect to group
duality (o, &) — ¢, The Fourier transforms for f e & (R") are denoted

" FF(&) =H&) = [ (@)dn, &e(RY),
Ff(&) =f&) = [Ffw)dw, £e(BY),
Fif(8) = [ rif @) dny, & = (&, ..., &) e (BT,
Fuf(8) = [ @)y, & = (&, ey bx) e (B

The Fourvier Lranstorms extend by duality to the whole &*(RY).

Lot B, I' be loeally convex. topological vector spaces. The space
of all econtinuous lincar operators from B to F iy denoted by £ (H, F).
M H - B, wo shall write £ (B, B) = £ (I). Suppose now ¥ o be 2 Banach
space and L« densely defined, closeable operator on E. Then by Dy (L)
= @(L), SpL =8pyl and (L) = gp(L) we denote a domain of L,
its spectrum and its resolvent set, respectively. For 1 e o(L) by R(L, 2)
we denote the bounded inverse of A —L.
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We shall use multi-indices, i.e. N-tuples of mon-negative integers
4By, .- I a=(a,...,ay) and B = (f1,..., fy) are multi-indices,

then

N N o N

=S @ =[lat (5 =TT(3),
=1 el 2
a<<p H o<p, J=1,..,7,
a—ﬂ=(a1—513---de“ﬁN)7 f<ey Jj=1,..,N.
Differentiations will be denoted by:
B0Uf = &2 ... OOl L. OINS,  f[B = (—ib,)0lf

for multi-indices o, § and f € O°(RY x (R")*). It P= }¢0"is a polynomial
in N variables, then P(D) denotes the differential operator: P(D)f
= 3 ¢,(—i9,)f. We ghall refer to the Leibniz formula

(703 7%;; (5)(E)7(2) o=

for f,g € O°(RYN x(R¥)*).

1. The Heisenberg group and operators on ¥(RM). In this section
we give a review of some bagic facts concerning the Heisenberg group.
If there is no explicit reference the reader is referred to [6] for the details.

Let X be N-dimensional real vector space and X* its dunal. Then
X x X"x R may be considered as an underlying manifold of (2N +1)-
dimengional Heisenberg group @. Liet us choose coordinates in @ in such
a way that the group law iy given by
(1.1) (@, &, 0)(y, n,8) = (@+y, E+n, t-+8—n),
wherex, y e X; £, n e X*; 1, s e R. The choice of coordinates automatically
gives us a standard basis in &, a right invariant Lie algebra of @. Set

2
7,

for f € 0°(G). Then the differential operators {L;r L, Ly, where Ly
denotes the operator of left convolution with T, form a basis for & and the
rules of commutation are

0
(A Tf=gof0), 5f =5 f0), B=gf0), i=1,..¥,

[I'xp ij] = Oyliy, [in: Lyl = [Ls,: Lg] =0,

where 1 <4, j< N and §; denotes the Kromecker delta. G is a 2-step

G
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nilpotent, connected, sinply connected Lie group. It iy amenable and its
group algebra L'(@) is symmetric ([18], Satz 5), which implies

(1.3) v(f) = loflepre for fell(®,

where »(f) i8 @ spectral radius of f in a Banach algebra L'(G) and o is
the left regular representation of @ on L*(@) (see [16]). The Hilbert space
I*(@) admits the decomposition

e =@ [ MWy,
B0}
whare W, = W == X x X* for 1 e R\{0}. We have also
o= @f i

where o* acts on L*(W,) by

(1.4) Ty (@) &) = MM (w—y, £ —1)

for f e I}(W,) == L*(W). For each 1eRN\{0} we have a natural “projec-
tion” of &(G) onto & (W):

§(f) (@, &) = Fax (@, £, 1),
As ¢ maps & (@) onto & (W) it transports the convolution and the invol-

A Ao .
ution from & (@) to &(W). Denote by f 4t g and f¥ this new “convolution”
and new “involution” in & (W). It is not hard to find explieit formulas:

(1.5) fe s (@-

FA (@, & = [ [ gl@—y, E=nfty, ey
= [[fl@—y, E—n)g(y, n) e Idydy,

(1..6)

(1.7) @, 8 = = —a, =B,

tor f, g e #(W). Of course, formulas (1.5), (1.6), (1.7) apply to much
more general classes of functions and distributions. For example, we may
convolve Lfunetions with L?-functions (the result being an I#-function)

2
for 1= p < co. In particular, I'(W) is an algebra with respect to k.

A
What is more interegting also L*(W) is closed under the convolution .
Morcover, we may convolve temperate distributions with Schwartz func-
tions and with compactly supported distributions, and so on. Also (1.7)
extends by duality to all temperate distributions on W.From (1.5) and (1.7)
we obtain

(1.8) g =)y

7 — Studia Math. 72.3

for feI!(®), geL(W).


GUEST


296 P. Glowacki

Trreducible unitary representations of G are either one-dimensional or,
in coordinates (1.1), have the form:
(1.9) e P () = g™y (4 — ),

where ¢ € I?(X) is the Hilbert space of «* and 1 € R\{0}. Integrating (1.9),
we obtain for f e L' (&)
=JIsu

and thus a} = nf if s*(f) = s*(g). Mence the following diagram is com-
mutative:

whegp(u) = (, &) ™ (u—u)dwdé

MG —’f; 2 (L} X))

A

w)
) = [ flm, &) (u x)dwdé. Note that =, is u rep-

resentation of the algebra (LI(W ) As (1.8) shows, s* is clogely related
to o*, which itself is related to a* by

(1.10)

where =, (f) @

(111) = @ o,

Nl
that is to say, ¢! is a direct sum of a countable many copies of n*.
It f e I} (W), then a direct computation shows that a,(f) is an oper-
ator on I*(X) with an integral kernel. More exactly:
= [ k()@ —y, Do) dy,

()
where ¢ e I?(X) and

(112) b (f) (@, 9) = Zf(@, ).

By application of the Plancherel theorem wo deduce from (1.12) the fol-
lowing important facts:

(1.13) & (W) is isomorphic by m; to the space of all integral operators
on X, which have kernels in &£ (X xX). (We shall call such
operators smoothing.)

(1.14) IL*(W) is isometric by an extension of @, to the space of Iilboert—

Schmidt operators on IL*(X).

(118) &*(W) is isomorphic by an extengion of =, to the space of all
the operators on X, which have kernels in &*(X x X), that is
(in view of the Schwartz kernel theorem [14]), with all the eon-

tinuous linear operators from & (X) to *(X).
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Let us return to L‘(W) For A e R\{O} it is a Banach *-algebra with

respect to convolution f :ﬁ: g, invoultion f# and L'-norm. Sometimes it is

called & Weyl algebra. By [12], Proposition 2, L' (W) is simple and sym-
metric. Tts only irreducible unitary representation is s, (see (1.10)). Let us
denote by 7; its left regular representation on I*(W):

w(f)g =fdg, FeIMW), geI@).

Then
o0
Ty = @ omy,
Nem=]

and hence by [16] and (1.14)
(1.16) »(f)

for f e L'(W). Here »(f) denotes the spectral radius of f in the Banach
algebra I*(W). ‘

There is one more structure on W, which will be useful for our pur-
poses. Namely, W has a natural symplectic form:

{1.17) WXWa (@, &), (¥, n) >, &), ¥,n)> =&y —ne.

Using this form, wo detine a “symplectic Fourier transform” on & (W)
by
(1.18)

= |l (f )”.Q’(Lz(X)) = |r:(f )“.Q(LZ(W))

1" w) = [fo)d .
w

Tt is evidently a topological linear isomorphism of & (W) and it extends
by duality to a topological isomorphism of &*(W). Let us remark that the
transform “”* is “compound?” of usual N-dimensional Fourjer transforms
a8 it can easily be seen for simple tensors f®g. In this case

(f®9)" (@, &) = g (2)-F(&).

Thercfore the propertics of “”” are similar to those of 2N- dimensional
Fourier transform. For exaniple, it we denote by * an abelian convolution
on W, then

(1.19) (f+q)" =19, f,9el}(W).

Moreover, the map f —f" is an isometry of L*(W). But, on the other
hand, “"7” ig of order two:

(1.20) (f")" =f
If 6, denotes a Dirac delta at w, we have

(a1

for fe S*(W).

5,; (’U) o 6i(u,w>_
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We also have

OV i ()=ta
(1.22) (5;) =ity \5g) =5

whore /8w, 0/0&; are regarded as distributions supported at origin.

2. A caleulus of symbols. Let ug first bricfly summarizo the results

of the first section. For a given finite-dimensional real vector space X

we form a phase space W = X @X* of even dimension. On W we consider

the space &*(W) of all temperate distributions and its gubspaces & (W),

IMW), LP (W), etc. An involution D — D¥in &*(W) and a convolution
A

i

in L'(W) were defined. (Wo shall use i and ¥ only for A =1, 80 we
denote them simply by # and *.) Of course, in L*(W) there is also a usual
abelian convolution which will be denoted by *. Then the representation =
(we again set m, = = for 2 = 1) was introduced. It establishes an isomor-
phism between &*(W) and & (& (X), &*(X)) and maps I*(W) isometri-
cally onto HS(L*(X)), the space of Hilbert—Schmidt operators on I} (X).
Moreover, there is a natural symplectic form (-, on W, which defines
“y, symplectic Fourier transform” on &*(W).

By (1.14) for a given operator T e#(&(X), y*(X)) there exists a
unigue distribution D on W such that T = = (D). It is convenient and useful
sometimes to investigate operators T by means of symplectic transforms
of corresponding distributions on W. Thig leads to & peeudodifferential
caleulus as presented, e.g., in [6], [1]. A basic notion is the following:

2.1. DepiNmioN. Let T e 2(&#(X), £*(X)). I De g*(W) is such
that x(D") = T, then it is called a symbol of T

2.2. Remark. Various kinds of “symbols” are being used in the
theory of pseudodifferential operators (¢f. [17]). The one we have defined
above could be called a “left polarized symbol” ([17], [6]).

Motivated by Definition 2.1, we shall sometimes call temperate distri-
butions on W just symbols. If a gymbol & is a locally integrable function
of polynomial growth, then the operator T = m(a™) (for which & is a symbol)
iy given by the formula

(2.1) Tu(s) = [a(w, HU(EdE;  ue P (X).

It follows directly from (1.12), (1.18) (cf. [6]). For such a symbol a we
shall sometimes denote 7' by & (@, D). Our aim in this section is to develop
(by modification of standard cases) a kind of caleulus for a certain class
of smooth symbols of polynomial growth. As usually such a calculus
may be applied to symbols with singularities in a compact set. In our

case we arc able to treat also some symbols with nnbounded sets of singu-
larities.
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2.3. DEFINITION. Let K, & e Rand 0 < 4, ¢ < 1. By HEP we denote
the space of all smooth complex functions a on W such that

(2.2) ol < O gy 00y,
all a, B. Moreover, seb

HEY U Hiﬁ')c) - Hffaﬁ", H = U &R,
[ 28 K, keR
0ol

Noto that each of the spaces H{Y is a Fréchet space with a family
of geminorms defined by:

@l = Int{C0yp: O,,p satisties (2.2)}.

92.4. Remark. It follows directly from the definition that

(i) ifae Hiﬁa;ﬁ)’ be Hgf;ik')’ then a-b & Hﬁf;}x""“") and a-+b e ng'giko),
where K, = max (K, K'), k, = max(k, k');

(i) it @ e HED, then af} e HESA —a,

In what follows we shall make use of the following simple facts:

9.5. ProposrioN. If aeHEM® then A =m(a) is a continuous
endomorphism of & (X). More exactly: for amy seminorm -] n LX)
thera ewists a seminorm |-|" in & (X) such that

[Aul < Oli’y, we#(X)
and the constant O depends only on seminorms of a in HM ([1], Proposition
3.1, [2], Lemma 1).

2.6, OOROLLARY. Let (a,) be a bounded sequence in H'¥ converging
pointwise to a € HEM . Then (w(%,)) converges to w(a”) strongly on & (X).
([2], Oorollary to Lemma 1).

o.7. Proposrrion. Let (a,) be a bounded sequence in H'¥ and let
A, = m(a,) convergeto A strongly on & (X). Then A has a symbol a € HE®

Proot follows immediately from the Ascolli theorem.

9.8. Romark. For any a € HE® there evists a sequence a, € D(W)
bounded in HE® such that (a,){f converges pointwise to aff) for every a, p.

Proof. Let fe2(W) be such that flw) =1 for |w]< 1. Set a,(w)
= f (—:«[ w) a(w).

Let a, b be symbols of class H. Then. by Proposition 2.5 a composition
of the operators a(w, D) and b(x, D) is a continuous endomorphism of

& (X), so it has a symbol which is @ priori o temperate distribution. Denote
it by acb. For a, b € Z(W) we may write down aob explicitely:

(2.3) aob(w, §) = ffh(m,"hy, &a(w, n)bly, &dydn,
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where h(wm, &, ,n) = @079 (see [2]). For a,b e H, let us define

1
(2.4) r, (a, b) = aoh— Z—a-'a(“)b(a), n=0,1,2,...

lal<n

Then for a, b € (W) and n > 1 we have an cxplicit formula:

1
@5) rala, 00, 8 = ) [ [ [ 10, n-+1(E—n)bly, & dyinds,

laj=n 0

where b ig as defined in (2.3). By an application of the Leibniz formula
and integration by parts we get from (2.3)
(2.6) (aob)f) — 0 Z;(Z)(f) o) b{E=),
e
for a,b e 2(W). Hence by (2.4)
27) o, 0 = 3 (¢)(0) ratalre=)

i
ISP

for a,b e 2(W).

Now, we are ready to prove the formulas for composition and taking
adjoint in the class of operators with symbols in H. We obtain them,
adopting a lemma of R. Beals and C. Fefferman ([2], Lemma 2),

2.9. LeMMA. Let b € 0% (R*Y), Denote the variables in RY by (@, 1, ¥, £)
and assume that b has a compact support in (v, y) independent of (x, £).
Let b satisfy )

150581 < Co,p<y — @Y (e~
for some K, k e R and all a, B. Set
a(@, &) = [[bl@, n,y, &N aydy.
Then there ewists a constant C depending only on (5 such that
laz, £ < 0.

Proof. Let g(e, 9,9, §) = o —yd+E—nd? and Lp = (2~ 4,-
—4,) for ¢ € 0% (R, For h defined in (2.3) wo have Lk == g+h. Write

by = (g Lyb, §=0,1,2,...
Then the following estimates hold: l

Tyl < Oj<y —ayEACE—myEd,  j=0,1,2,...,

icm
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where ¢} depend only on 0, 5. It ig immediate by induction and the Leib-
niz formula for differentiation of product. Thus for j, > max (K -+ N 41,
b+ N-1) we geb

la(a, &)1 = |[[b-d@, n,y, Hdydn| = |[ g LYoh-b| = |[ [2-b,]
< O, [ [y =y gy~ Diydy = 0< oo
The lemma is proved.
9.10. ProposrrioN. Let a e HP, b e HE ). Then
7, (a0, b) @ HELE ~Imktt—am g = 0,1, 2, ...
Proof. Supposo first that 4 and b have compact supports and fix

gome 7 = 0. Set
K, mK#—If'-—-M, ky =k+% —on,

L[y EoEy e e, n+t(E— )by, &) =1,
G = oy ocey0a @, 1)y, & i =0,
and

(@, & = [[b-0f(@,n,y, &)dydn.

Since ¢ satistios the assumptions of Lemma 2.9 (independently of 0 <t<1),
we obtain
|af (@, &) <0,

where ¢ depends ouly on seminorms of & and b in 8 and H{ESY,
respoctively. Notice that

1
O 1 .
ra(a,B) = @RCeR Y [ aie, at.
laj=n 0 :
Hence ' .
(2.8) 1 (@, D) < OC@YETEon(EFFR=em,
bi : K.k} By Remark 2.8
Now, consider arbitrary aeHE and beHEH. By R :
thore oxist bounded sequences (a) in HE and (b)) in HEG®) such that
a;, by & D(W) and
(2.9) (@)@ ol ©) >3
pointwise for all o, f. Thus, by Oorollary 2.6 and Proposition 2.5,z (a; ) (b, )

converges strongly on & (X) to w(a")w(d"). In view of (2.9) and (2.4)
this implies that

"((,,.n(“j’ b,))") - n((r”(a, b)}") strongly on &#(X).
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Hence by Proposition 2.7 and (2.8) r,, € HE+E~tnk+k'~en) gnq gatisfios the
estimate (2.8). We need yet the cstimates for derivatives of 7,(a, b).
To obtain them it is sufficient to apply (2.7) to (2.8) (which we just have
proved to be valid for all a € H{;Y and b e H ).

211. COROLLARY. Let e H{GY, beH . Then ach e H{EFE #+¥)
and the following composition formula holds

1
(2.10) aob = sz-a(“’b(u)ﬁ-r,,(a, b, n=1,2,..,
fal<n

AR 30,
where 1,(a, b) & HEGE —Imktt—en),

Now, let A e.2(%(X)). We call a formal adjoint to 4 thoe operator 4+
defined by

(2.11) {Atu, vy = (u, Av> for u,ve & (X),

where (u, ) = [ u(@)o(z)de. Bvidently, A* e (%, ¥*), so it has a
symbol. If a is a symbol we denote by a* the symbol of m(a”)*. If moreover
@ € 9(W), then

(212) a* (@, &) = [[h-a(y, n)dydn,

where % is as in (2.3) (see [2]). For a e H lot wus write

(213) 8,(a) = at — Z —-afy

Again, for a € (W) we have the explicit formula:

(2.14) 8, (a) = E%fffkﬁ{g(y,n+t(5—n))dydndt
0

Jal=n

(see [2]). From (2.13) we get immediately that for a e D(W)

(2.15) Su(af) = Su(a)f).
2.12. PROPOSITION. Let a € HGGY. Then o e HIGH and

1
at = Z—Ea&HS”(a), n=1,2,..,

jal<n
where 8, (a) e H{; ke,

Proof uses Lemma 2.9 and formula,k;s (2.12)~(2.18). Si it i i
-12)~(2.156). Since it is quite
parallel to the proof of Proposition 2.10, we omit it. ¢
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2.18. DEFINITION. A function f e 0 (R™) is said to satisty the Hér-
mander condition with a constant 0 < 6 <1 if

(2.16) |0ef (@) < Ouda)™ " If(@)], all a,

for all @ outside a compact subset of R™.

2.14. DEFINITION. A symbol ¢ e 0°(W) is said to satisfy the weak
Hormander condition if there exist K, &, Ky, kq, 6, 0 > 0 such that

(2:17) a3 (@, &)l < Opp<@d 1<~ a(w, £)I, all g, B,
(218) 01 @Y (HM < la(@, £)] < Oh(mY< (8

for (@, £) outside a compact subset of W.

Bstimates of type (2.16)—(2.18) are frequently being used in the theory
of differential and pseudodifferential operators (ef. [11, [61, [71, [17D.

2.18. Remarks. (i) If f is a polynomial in m variables, then the
differential operator f(D) is hypoelliptic if and only if f satisfies (2.16)
for some 0<< 61 ([7]).

(i) ¥ ae0®(W) (feC®(R™) satisfies (2.17) and (2.18) ((2.16))
outside a compact seb, then there exists a, e C°(W) (f, e 0°(R™)) such
that a, (f,) satisties (2.17) and (2.18) ((2.16)) everywhere and a —a; € 2 (W)
(f —f1 € 2(R™)).

(iil) Tt @ € 0°(W) satisfies the weak Hoérmander eondition, then it
belongs to H{GH.

(iv) I @ e0°(W) satisfies (2.17), (2.18) for all (s, ) e W, then
1/a € HzKo~%), This can directly be checked by differentiation.

(v) If f is o polynomial in 2N variables of degree n satisfying the
Hoérmander condition with a constant 6 (Def. 2.13), then it satisties the
weak Iormander condition with constants K =mn, k =n, K, = }dn,
ko = }om, 8, g = 6 (Def. 2.14).

2.16. LuMMa. Let o satisfy the weak Hormander condition with con-
stants K, k, Ko, ko, 8, 0. Then there emists b, & H{z 5§50~ such that for n>1

7, (@, by) € Hiza»=om),

Proof. By Remarks 2.15 (il)—~(iv) we may assume without loss of
generality that a e H{;) and 1o e H§e™™ for the constants (K, k)
and (K, k,) oceurring in (2.18). Henece, by Proposition 2.10, 7;(a, 1/a)
e HE}), where K, k; tend to —co. Choose m such that ky, < — b,
k, < —on. We have

1 L 1
nfod) = 2 (e )

n<lal<m
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By direct differentiation and application of (2.17) we eheck that the first
term on the right-hand side is in Hf;,';?'“"‘). Since we know that r,,(a, 1/a)
& Hi;2wen), our proof is complete.

2.17. PROPOSITION . Let K, Ty —oco and let a; e HiL™ for some
0< 8, o< 1. Then there ewists a symbol a € HFY such that

n
a— Yo e Hfginsd, n>0.
j=0

Ld
To denote that (2.19) holds we shall write a ~ 3’ a;.
J

o ()

(2.19)

Proof (cf. [1], Theorem 4.13). We may assume that Ky, < K
and k., <%. (If not, we sum up suitable groups of terms.) Let
h e 0°(R) be such that h(t) = 0 for t< 1 and h(?) =1 for ¢ 2. Set

by(w, &) = h{e;<ay IR (EI-171) 0y (3, £),

First notice that (5,8 = (4,)f) except where (@) i-1~Si(EYi-174 < 2/e;,
that is, outside a compact set. Hence

(2.20) by — iy € 2(W)

and in particular b; e H{4".

where 0<¢ e R.

Now we show that the series ]Z b; is convergent in H}{gi’“n)_ In fact,
=N
b)), =0 outside the set where @YSICEYH < gy (adi-1{ Y1, §o
DAL | < O3 Gy i1l (& lamahl g 05P {ay Ka=1=001 (g yla-1-0ll
< ejO‘j"ﬁ(m>Kn‘““'<§>"n—elﬂl for § >n.

-]
Thus we have to choose g in such a way that for cach a, 8 3 0P < oo,
f==0
where 03 are seminorms of b; in H{}4%. This can be done by selecting ¢
00
inductively for j = n and |a|+ |6l < #. Write a = Yb; ¢ Hf% . By tho
J=0 !

above and (2.20) & satisfies (2.19), so the proof iy completed.
‘We uge Lemma 2.16 and Proposition 2.17 to construet for a symbol
satisfying the weak Hormander condition a substitute of the parametrix.
2.18. THEOREM. Let a be o symbol satisfying the weal Hormander

condition with constanis 68, o, K, &, K,, ky. Then there emists a symbol
b e HizEe~") such that ‘

(2.21) bou—1le (W) and acb—le F(W).

Proof. By Lemma 2.16 there exist b, EH&gO""”ﬂ) :Ln.d T EH[; o
such that ’

©bgos =1 —r.
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Set

b, w1

n where

o D' by, P =10 ... 0F.

[
o=i<n m times

By induction wo check that

(j' b,)oa, =1 —r",

Je=0

Nofe that, by Proposition 2.10, #** € Hz44~2" ‘and b, ¢ HjKo=""% ~ho=2"

for m > 1. Then b ~ 3 b (seo Proposition 2.17) satisfies
Jed

boa—1 e F(W).

By the same argument there exists b'e Hi; Ko %) guch that ach’ —1 e & (W).
But then b—bd' e (W), and henee b satisfies (2.21).
We end this section with
9.19. Bxamerus. (i) Let P, @ be polynomials in N variables of degrees
ny, m. Assumo that P(u) 54 0 % Q(w) for u e RY. Set
a(@, & = [P(@)P+1Q(5F, b@,§) = P@)F Q&I

for some p, ¢ > 0. Then a,be Hf{;‘)rﬂm),

(ii) T, moreover, P, @ satisty the Hoérmander condition (Def. 2.13)
with constants 6, ¢, them a, b satisfy the weak Hormander condition
(Def. 2.14) with constants &, ¢ K =pn, k = gm, K, =dn, &y = em
for b and K, = }dn, k, = fem for a.

(iii) Our class H contains the symbols which are ecalled pseudo-
Toeplite symbols in [6], 4.2.16, or symbols of I'™ type in [17], def. 23.1.
These symbols are required to satisfy the estimates

1a{f)] < O, p Copp™ =+, w = (w, §).

Of course, such symbols belong to H{Tom.

where

3. Operators om L*(X). The purpose of this section i8 to investigate
oporators on. LA (X) using the caleulus developped in Section 2.

Lot @ bo a symbol of class H (Def. 2.3). Consider 4 = =(a”) & 22 (X))
A has o natural and unique extension to a continuous operator on F*(X),
which wo denote also by A. It is given by
(3.1) (AU, vy = U, A*v); wve P (X), UeI"(X),
where A is o formal adjoint to A4 (see (2.11)). We may also regard A
as an operator on LP(X)forl<p< with a dense domain D, (4) = & (X)
< IP(X). Since 4" acting on I?'(X) (L/p+1/p' =1) contains A*, its
domain is dense. This implies that A ig closeable on L?(X). We are going
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now to study certain properties of operators 4 on a Hilbert space I7(X).
First let us recall the definition of J, classes of operators on a Hilbert
gpace # . For 0 < T e £ () let us denote by Tr(T') the trace of T, which ig
either a non-negative number or infinity. For arbitrary T e Z(s#), sct

(Tr (TP for 1< p< oo,

3.2 T, =
(52) s, 1T 2oy for p = oo,

Tor every 1< p < oo the gpace
Ip(#) = {T e L (#): |Tl,p< oo}
is a Banach space with the norm |-|; . In particular, J,(#’) equals the
space of trace clags operators, J,(3f) = HS(s#) and J (o) = & ().
If T e J, (o) for some p < oo, then it is compact and ( 3 A7) < |T| 7y
Ae8p

Qur first theorem shows the relation between L®-properties of symbols
and J,-properties of corresponding operators on I*(X).

3.1. TarOREM. Lot a € 0°(W) and lot 1<p< co. If offf e LP(W)

for la|+ 18l < 2(N +1), then m(a") ewtends to an operator from J,(L*(X))
and the following estimate holds:

(33) lm(@ )y, <Op  max  |laflzem-
R PR o,

3.2. Remarks, In the cage p = oo this i a version of the Oulderén—
Vaillencourt (0, 0) boundedness theorem. The case p ==1 was proved
in [17] for symbols of Iy type, m << 2N. Note that for p =2 we have
much more better result, see (1.14).

Since our proof uses an interpolation method, let us consider first
the extreme cases, i.e. p =1, p = oo.

3.3, LEMMA. If ¢ € (W), then =(p) is of trace olass and the map

9(W)3 ¢ — n(p) € J,(L*(X))
8 conlinuous.
Proof. Let
a(@, §) = @+ &+,

ais a symbol of HEY™ class and satisties the Hormander condition
(Def. 2.13) with 6 =1 and so, by Theorem 2.18,

aob =1—d,
where b e I*(W) and d e (W) c« L*(W). Hence
= (p3a")3d" +o$d"
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80 that by Covollary 2.11, the Plancherel theorem (see Sec. 1) and (1.14),
@ (p) is of trace clags. The linear map

F(W)s ¢ »a(p) e £ (I}X))

is continuous. Thus by the above and the closed graph theorem it is also
continuouy as a mwap into J(L*(X)).

3.4. Remark. Let pe (W) and 1 < p < oo. Sebt ¢, (0) = @(v—w)
for », w e W, Then

e (@u)ls, = (@),
for any w € W. In fact, let w = (v, £). Then
7 (Pu) = a0 () (0,4 -
Sinco m, i8 unitary for any v € W, the inequality
@alls, < (@),

is obvious. Hence, by ay'mmet;ry we obtain the required equality.

3.5. LmmmA. Let f e 0°(W) be supported in a compact K. Then the
Jfollowing estimate holds:

17‘(f)1.7l < Olc"fh ”Ll(w)v

where (,, depends only on K.
Proof. Fix U, s neighbourhood of K with compact closure and
@ e & (W) such that p(w) = 0 for we U. Then

a(gf) = [ f(w)p(w)m,dw
= [ ()] E"Pp(w)m,dwdv = [§" (v)7(p,) do-

The J,(L*(X))-valued function v —m(g,) is continuous and bounded
(Lemma 3.3, Remark 3.4) and f is integrable so

(s, < [ 1F O] I (go)lrdo = 2@ 1f Iz, (Remark 3.4).
Since f is supported in K and g is invertible on U, we finally get

[ (), € Ol lzron -

3.6. LmmmA. Let f e C®(W) be supported in a compact I. Then the
Sollowing estimate holds:

v ()l zeizy) < Celf™ N g

where (), depends only on K.
Thig is exactly Theorem 3.1.1 from [6] and the proof goes as follows:
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For f e I} W) and T e HS(L*(X)) set
(») 2 ()T = [ f(w)m, Ty dw,
w

where n,, == w(8,) (¢f. 1.15). This formula defines a *-representation of
the algebra L' (W) on a Hilbert space HS(L*(X)). By (1.14) we can realize
this representation on I*(W) with = being the intertwining operator.
It follows from () and (1.8) that =°(f) acts on I*(W) by

n°(f)g =1"g, geI(W),
80 we get an estimation
(x%) Il (Pl gme < ”f“ Nzooirmy -

Now, let w(z) = gl (w is an element of LI*(X) of norm one). Moreover,
let @, (w) = {w, m,-u). Define the maps:

o, (X) - H:S(Lz (X)).,
Bu: HS(I}(X)) - L*(X)
by
o, (v) 2 =<2, upv, velr(X), zelF(X),
BulT) = Tu, T eHSLX)).

Note that both the maps a,, 8, are contractions.
We claim that for o ¢ Z*(X) and f e L}(W)

(#%x) ”(‘pu f)’l) = ﬂu (nc(f) au(v))'
In fact,
@y (D) it = vy, UDV = @ (W) Ty, -0

80 by (%) (see also See. 1)
ﬂu(ﬂo(f)au('u)) =2 ”o(f)au('”)"”’ = ff(w)”wau(q])m;l “udw

= [ fw)g,(0)m, v = n (@) .
By an application of (x%) and (x*x) wo get
e (f ) - 0llz2exy < lloe (@) 0 (0) (22 xy)
< e N llzegm oz (note that @, (w) = 0, w e W).
Therefore it suppf < K, where K i3 a compact subset of W and A, & 9 (W)
equals 1 in a neighbourhood of XK then f = h,f and so
e (F) Ollz2cg < @™ ) lzagmy 1F ™ ooy 10 2 ey -

Since €, = |](qo;;‘"lb,c)||L1(,m does not depend on f, our lemma is proved.
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Now, by interpolation we extend the results of Lemma 3.5 and Lemma
3.6 to other p.

8.7. LEMMA. Lot K < W be compact and 1< p< co. Then there
awisls @ constant Oy such that

e (), < CiIF "z

for feC®(W) supported in K.
Proof. Choose a neighbourhood U of K with compact closure and
sot
V = {fe &(W): suppf < U}.

In the vector spuce V wo introduce the following norms: ||-|@ = |- lz1mys
11 == Iz - Similarly in S§(X), the space of smoothing operators
which is contained in Jlng(X)) (see (1.13) and Lemma 3.3), we shall
consider two norms: [+ [© = ||z, | = |-|s_. The norms ||, i@
in V (and algo in §(X) ) are consistent (see e.g. [157]) and the interpolation
norms are equal:

1O = I leoyry 1m0 W,
[ 175, in §(X),
where p, = 1/(1—1%) und 0<t<1 ([15]).
Now, copsider the map

Vaf->n(f)elX).
In virtue of Lemma 3.5, Lemma 3.6, and application of the interpolation
theorem ([15], Theorem IX.20) yields:

|7 (" N, S O lf " lzegr)

for f e V and the constant 0, depends only on K. )

Following [6], wo introduce a partition of unity on W. To do this
choose o lattico W, in. W, which contains the points (v, £) with integral
coordinatos :

(3.4) Wo = {(, &) e W: @y, & eZ}.

Let K - {(a, e W: |z, 1§1<1; =1, .oy N} and leb we.@(W)_ 1{9
positive and such that [ p(w)dw = 1. If 1?5 denotes a characteristic
function of K and ¢ = yxlg, then the family

(3.5) {V’w}WEWM Pw (”) = (0 —a) for veW

forms the partition of unity on W which congists of functions of class
D(W).
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3.8. LummA (cf. [6], Lemma 3.1.2). Let ¢ € D(W) and fe &(W).
Then for every =0 and 1 < p < oo the following estimate holds

M@ l) Nzogr < € 2 [|(f")§£3”m(m<w>—zlc, weW,
tal 4 1P| <2k

where O depends only on ¢ and & (and not on w).
Proof. Since g, (v) = ¢"¢" (v), we have

()" (0) = guxf" (0) = [ (0 —1)p" () 6 dlu.

Using the fact that (1—A4,)*é<*% = (w)* ¢ and then, integrating
by parts and applying the Leibniz formula, we obtain
(@) () = > [ (1= 45" (v ~w)op” (w) 6 i

=@ 3 (-0 PRD) (e,
lal +1Bi<2k

where P(u) = (1+ |u|%)*. Hence

pad) Naon < 37 31— 6 Blisom PRl
lal-FiBl<ak T
<Oy D' IF") Blne -
lef+ Bl <2k

The lemma is proved.

Now we are ready to give the proof of Theorem 3.1. In fact, it is cnough
to show that (3.3) holds for a ¢ & (W). Let f = a",1 < p < oo and K, Wo, ¢
beas in (3.4), (3.5). Since supp¢f,, < sup g, there exists by Temma 3.7 and
Remark 3.4 a constant ¢ such that

!n(‘Pw ‘f)IJp < OH‘PJ;*fA ”14“(”")

for all fe (W) and weW. By an application of Xiemama 3.8 with
k =N-+1 we obtain

(3.6) I (@0 )l < O )" Bllpppcaoy =2+
la|+ 181 =2(N+1)
50 the series
2, #(euf)
wel¥
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is absolutely convergent in J,. But on the other hand, f = > @,f with
I'-norm convergence, 8o wEW,

w(f) = > algnf).

wWeWy
Thus by (3.6) our assertion follows.

Using Theorem 3.1, we now prove the following:

3.9. PROPOSITION. Lot a be a symbol of type HEM with K, k> 0
satigfying the weak Hérmander condition with Ky, k> 0. Consider A = n(a”)
as an operator on I*(X) with a domain D(A) = & (X). Denote by A the
closure of A. Then

4 = (-A+).7
where A is a formal adjoint to A.

Proof. We need only to show that @((4*)*) = 2(d). Let b be a
“parametrix” for e (Theorem 2.18) and B = x(b"). Thus § = AB -1,
T = BA —1I are smoothing operators and by Theorem 3.1 B is a bounded
operator on I*(X).

Lot we?((4%)) < I*(X) and o° = Auw eL*(X) (here A is con-
sidered as an operator on $*(X); see (8.1)). Take u sequence 4, & & (X)
such that w, - in L*(X) and set u, = Bul ¢ & (X). Then

3.7) Au, = ABub, = ul + Sul, D, 40 1 gu0.

Ag 8 is smoothing Su’ € #(X). On the other hand, since B is bounded
on IA(X),
(3.8) Uy = Bud 22, By — BAu = u-t Tu,
where Twu e &(X). (8.7) and (3.8) imply v e 2(4).
Now, we are going to prove our main result. First let us state a lemma,.

3.10. Lmmma. Let L be o densely defined closed operator in a Hilbers
space # amd let 1< p < oo. Assume that there exist @, 8 eJ, such that

(3.9) LQ =I+48.
Then for Aeo(l) B(L, ) ed,.
we got

—Q+2Q = R-+ES.

Hence
R = (A—1)@ —RS.

Bince J, iy an ideal in & (), our lemma is proved.

8 ~ Studia Math. 72. 3
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3.11, TanorEM. Let a e C°(W) be a symbol of polynomial growth
satisfying the weak Hormander condition with constamis K, oy 8, ¢ > 0.
Then the spectrum of A = w(a”) on L*(X) is either the whole plane C or
it is discrete and

R N N
(3.10) Z AP < 0o for p>max (E’E)’ p=1.
0s£AeSpd .

Proof. Let b be a “parametrix”’ for o (Theorem 2.18). Then b
€ HiEv=) and thus b e L? for p satistying our assumptions and all a, f.
By Theorem 3.1a(b") eJ,. On the other hand, by (2.21) w(a")m(b") —I
is a smoothing operator, so by Theorem 3.1 it ig also in J,,. Set @ == a(d”)
and 8 = x(a")w(d")—I. Then

4Q =I+8

and if 4 eg(4), then by Lemma 3.10 R(4, 1) eJ,. Our assertion follows
immediately.

3.12. OOROLLARY. Let P and Q be polynomials in N variables of degrees
n, m, respectively. Suppose they satisfy the Hormander condition (Def. 2.13)

with constamis 6, o > 0 and P (u) > 0, @{(u) > 0 for u € RY . Then the differ-
ential operators

4 =P@)Q(D), B =P@)+¢(D)

are essentially self-adjoint. Moreover, they have discrete spectra and

N N
AP < o0 for _'p>m£bx(~—— ),p;zl,

b
AeSpd né me
C 2N 2N
M M?< o0  for p>max|—,—|, p=21
ALJ nd ' mo
€SpB

Proof. Since the symbol of A i8 a(z, §) =P(x)Q (&) and the symbol
of B is b(w, &) = P(x)+Q (&), the corollary follows from Theorem 3.11,
Proposition 3.9, Examples 2.19 (ii), and the fact that 0 iy an eigenvalue
neither for 4 mor for B.

3.13. CororLARY. Under the same assumptions on a, Theorem 3.11 is
true also for the operator

4 = (@) +1,

where T is o bounded operator on I*(X).

Proof. Let @, 8 be the operators which appeared in the proof of
Theorem 3.11. We then have

AQ =I+84T9.

©
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As J, I8 an ideal in % (L*(X)), 8+1TQ eJ,. Therefore we may apply
Lemma 3.10. The rest of the proof is the same as that of Theorem 3.11.
For the further examples we shall use the following lemma.

3.14. LmvmA. Let h e 0™ (RY) fulfil the H srmander condition (Def. 2.13).
Then for every r> 0

[h ()" = a(x) +b(@)
where & & O () satisfies the Hormander condition (with the same 8) and
b e o (BY).
Proof. Take o natural n such that r2n< 1 and 0<fe 2(RY)
such that |[h(@)+Ff(@) > 1 (Remarks 2.15 (ii)). Set
a(@) = (@)™ +f(@))™
and
b(@) = (@) —a(x).
Then o € 0°(RY) and satisties the Hormander condition with the same &
a8 h, what can be checked directly. Moreover,
b (@)] = a(@)—Ih(@)" < fla)=.
The lemma is proved.
3.18. COROLLARY. Let A be an operator on L*(X) given by

Au(@) = [d#IQ(&)1D(£)aé + P (@)["u()

for u ¢ & (X), where P and Q are polynomials in N variables of degrees n, m
and satisfying the Hérmander condition with constants 6, o; and r, 8> 0.
Then A is essentially self-adjoint and has a discrete spectrum. The eigen-
values of A satisfy

2N

e 2N
\ M"’< oo, p>m,mandp>l.
Aepd,

Proof. By (2.1) the symbol of 4 cquals
a(@, §) == [P@)+1Q (5.
2K,Ic)

Applying Lemua 8.14 to both summands of o separately, wetind b e Hy o',
K == mr[2, b € me[2, and o bounded operator I on I2(X) such that

(8.11) A =n®")+T.

Since A iy symmetric by Proposition 3.9 it is gelf-adjoint. In particular,
SpA 5% € as it is real and so by (3.11) and Corollary 3.13 Sp4 is disercte
and satisties (3.10) for suitable p. To end the proof notice that 4 is a sum
of two strictly positive operators, so it is injective. Thus 0 ¢ Sp 4.
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4. Applications. Semigroups of measures, This section is devoted
to some propertics of semigroups of measures on the Heigenberg group.
The result of Sections 2, 3 will be applied. First, let us recall gome el-
ementary facts.

Let @ be a Lie group. A. family of measures on G (u),5, i8 said to be
a semigroup of type M(G) (cf. [3], p. 229; [4], Def. TIL 1) if the map [0, o)
5t—>peM(@ is *weakly continuous and such that |ull<1, p,,
= uyxu, for all ¢, 8 > 0 and u, = 4, the Dirac delta on @,

I (4)iz € M(@), then for every fe Z(EF) a limit

. ,
(4.1) i = (g — 6, £
140
exists and defines a distribution I' which is dissipative, i.e. it satisfies

Re<T,f)<0 for fed(@); [le) = flzeo)-

We shall call T an infinitesimal generator of (u;)-., -

Conversely, suppose that a dissipative distribution I' on @ is given.
Then there exists exactly one semigroup (s4)s0 of type M(G) such that
(4.1) holds. Thus every dissipative distribution is an infinitesimal generator
for a certain semigroup of type M(G). ([3], Prop. 3, Prop. 4.)

Now, let (i) be a semigroup of type M(), T its infinitesimal generator
and 1 < p < oo. (@) acts by left convolutions on LP(G) and in fact
it gives a rise to a strongly continuous semigroup of contractions ()
(cf. [3]). Moreover an infinitesimal generator of (P;) in a sense of Yosida~
Hille ([18]) is nothing else but a closure on. L (&) of the operator L, defined
on 2(G) by the convolutions with 7. Conversely, if 7 is a dissipative
distribution, then Ly i3 a closable operator on LP(@) and its closure is
an infinitesimal generator in the sense of Yosida—Hille. The gemigroup
generated by Ly consists of operators acting by convolutions with (),
where (p), 18 a semigroup of type M (F) generated by T (see [3], [19]).
For dissipative distributions 7' on G we have the following decomposition.
For every neighbourhood ¥V of thoe unit element of G

(4.2) T =8+4u

for some u € M (@) and 8 a distribution supported by V ([8], Lemma 1;
[4], Prop. II. 2). In particular, 7' is a sum of a moeasure and o distribution
with a compact support. Thus for every strongly continuous roepresen-
tation  of & on a Banach space, 7(T) is well defined on a space of 0% vectors
of =, Moreover, if (u), i8 a semigroup in IMM(G), generated by 7', thon
(n(,u,))tzo is a strongly continuous semigroup of contractions on tho space
of representation and its infinitesimal generator is the closure of = (T)
([31, §12, Théordme).
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Now, let us consider an operator 4 densely defined on a Banach space
B and assumo that 4 is an infinitesimal generator of a strongly continuous
gemigrowp of contractions (Pp)se. Then for 0 < s <1 the formula

1 1
(4.3) Ay (T f T ([ —Pjadt, oca(4),
0

defines the operator A® on I such that its elosure is an infinitesimal
generator of & semigroup of contractions on F ([18], IX 11. (B)).

Lel T be a dissipative distribution on RY. Then by (4.2) its Fourier
transforn i8 a continuous function. If (4,)., I8 . semigroup of measures
generated by I, then

W(g) = T for  £e (RN

Moreover, if wo denote by T® the distribution corresponding to (L,)®
(sec (4.3)), then :
(4.4) 70§ = —(—1 (&)
(see [47]). By the above and an argument of [3], § 7, Example, Lemoma 7
wo obtain the following:

4.1.. ProrosrrioN. Let T be a dissipative distribution on @, the (2N +1)-
dimensional Heisenberg group. Then

(i) T 8 am infinitesimal generator of a semigroup of measures (u)io
of type MG);

(i) (0% ())imo comsidered on LP(W), 1< p<< oo, or on Co(W) i3
a strongly continuous semigroup of contractions which are in fact the oper-
ators of left convolution with measures v, = 8'(g)e M(W). The infinditesimal
generator of this semigroup is the closwre of the operator o (T) with a domain
&(W); .

(if) (" (sy))emo 8 @ strongly continwous semigroup of contractions
on every IP(X), 1< p< oo, and Oy(X). The infinitesimal generator of this
semigroup 8 the closure of m(T) defined on & (X).

(iv) For 0 < ¢ <1 we have

at(T¥) e (nl(T)}(a)’ oI = (01(11))(?)‘

Trom now on we assume G to be the (2N +1)-dimensional Heisenberg
group. We fix an identifieation of ¢ with Buclidean space X x X*x R
a8 deseribed in Section 1 and a standard basis in 6. Let X, 5 be a8 in
(1.2). If .D and H ave temperate distributions on RY, they canbe _conmdel_ved
a8 distributions on @ through the above identification; the first acting
on X, the other on X*. More exactly:let D' = D® 65*® 6, B = a¢®1’«7® 6,,’
where 8y, d,, J; are Dirac deltas, respectively, on X‘, 'X, R Thus 2 +E
is o distribution on @ and if moreover D, ¥ are dissipative on R” it is
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dissipative on G. A question arises what could be said about the semigroup
of measures generated by D'+ B'. We are going to consider this question
for some rather special distributions D, B.
Namely, let P and @ be polynomials in N-variables satisfying:
(i) P and @ are of degree 2;
() Pw) <0, @u)<0 for uecRY;
(iil) P and @ satisfy the Hormander condition with constants 4, g.

(44)

Conditions (i) and (ii) imply that the digtributions PV, e F* (RN
are dissipative (by the Taylor formula). We set for 0 <7, 81

(4.6) D=P), B=(@Q® (sco (44).
Thus
(4.7) D) = P, Bu) = —Qu)’.

Note that if P(u) %= 0 = @(w) for w e R¥, then (ili) and (i) together
imply that a symbol

(4.8) a(w, &) = D(@)+H(E)
satisfies the weak Hérmander condition with constants K = 2r, b == 28,
K, = or; ko = g8, 0, 0.

It is quite easy to produce a lot of examples of distributions satisfying
(4.6). The simplest one iy the following:

N
Pa)=Qu) = — Yul, 0<r, s<1.
jual
Then
N N
o D e
Joal Faal

Our first and main application deals with the distribution (4.9).

4.2. THEOREM. Let T' be given by (4.9) and Tet 0<<7, 8 <KL salisfy
(N =N +1) < 7r[s< (N-+L)/N. Thon the semigroup (i), goenorated
by T consists of absolutely continuous measures. Their densities (f)mo e
square integrable on G and satisfy:

1fillz2e < €4~ WHnisa

for some constamt ¢ and d = 2rs/(r--3).

Proof. Using the Plancherel theorem for @, it is enough to show
that (1) (4 € RN{0}, ¢ 0) are of the Hilbert-Schmidt type and the

e ©

icm
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integral

(4.10) Il ) s A1V

is convergent and its value is less then a constant times ¢~®W+Di4,
First note that «*(T) is an operator on L*(X) whose symbol is

a;(z, &) = _123(2 mﬁ)s _(Zﬁ),_

Thus, by Corollary 3.15, o*(T) has a discrete spectrum {2} (4} = 0) and

C N N
Z]zﬁ,|“1’<oo for 9> max (7,—~)

(4.11) .

n=1

This jmplies that o*(x) is of HS type. It was proved earlier by J. Oygan -
and A. Hulanicki that (4.11) is sufficient for (4.10) to hold. Here is their
proof.

At first let us notice that the eigenvalues of o*(T) satisty

1

1 1
2 2

a

2k = |A%}, where =

In fuct, it is casy to check that if ¢ e I*(X) is an eigenvector for #=*(T)
corresponding to an eigenvalue 2, then % —@(|AI°w) i3 an eigenvector
for #*(T) corresponding to an eigenvalue |4%-z. Now, since

2

o0 o0
atz, d
I ) s = D6 ™ = D e
n=1

n=1
(we put 2} = 2,), it follows by (4¢.11) and (1.14) that a* () arve Hilbert—
Schmidt operators and (4.10) equals

o 00

f ) Ao AN G = 2 jw fomd“n =23 [ AN ),
0

00 peml pual n=10

By the change of variables: » = —2t1%, we get

o o o o
22f Oﬂm'ﬂr]MNdﬂ. x%Z(‘?tlznl)»—(Ni-l)/df JN+EDIE=1 =¥ Gy
=1 0

A=l 0

o

S
::G.r(l\w-l)/d 2 1znl—(N+1)/d’

poyonry
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2 [1\®FHE N 41
where ¢/ 27(5) I‘(-——g—) By assumptions on » and &
N+1~N+1}-N+l>mwx V N 1 N -1
d o 28 PR B R

Hence by (4.11) our proof is complete.
4.3. Remark. The assertion of Theorem 4.2 is valid in the following
two cases:

(i) N=1and 0<r,81,
(i) IV arbitrary and 7 == 8.
4.4. CorOLLARY. The operator L, with Dy = D(G) for its domain
considered on different L (@) (1< p < oo) has the same spectrum,.

Proof. By elementary properties of semigroups of measures und
their generators there exists a measure g such that

L, f = —Rao(a)(Lmy 1)-f, fEO.,(G),
and moreover

Lof= | ¢7'L, fat  (cf. [18]).
0

Hence
{u ) = f 6_t</~‘lyf>dt7 fe0y(@).

smcg leellag <‘1 and u arve absolutely continuous, the last formula
implies that so is u (cf. [10], Cor. 3.5). Conscquently by [9], Proposition
2.5, and the symmetry of L' (@) (sce (1.3)) we get

Sprell, = SProely,  1<p< oo,
and gsince 1 e eroen(Ly), this implies
SPLI(G)LT = SPLP(G)LQU 1 £ P =< o0,

The follov_ving' two theorems toll something aboul the operators of
type (4.5) acting in representations of G.
4.5. TaBoREM. Let P, @ satisfy (4.5) amd lot

o@; §) =D o, &) = —[P@)I ~IQ(E)F, 0<r, 8L,
Uonsider the operator Ly, defined on & (W) as an unbounded operator on

L(W) for 1<p<< oo and on 0,(W). Denote b ) (LY it alogmre 4
W) (OO(WT)‘ T o(W). Denote by LR (LY) its dlosure in
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(i) LY generates on L? (W) (or Co(W) for p = 0) a strongly continuous
semigroup of contractions (ng’)),;o such that, for each t>0, TV =1,
where py e M(W)

(i) For every t> 0, uy = f;dw, where f, e L*(W). Moreover, Ifilizacmy
< Opt™?" for p > wax (N [rd, N[sp) and some C, > 0.

(iil) R(LY, 1) = L,, where e L*(W).

(iv) The spectrum of Ly, on L*(W) is discrete and for every 1< p << oo
Sprognln = 8prawylp = Spoyenlo

(v) For every A €8ppypnLy, there evists ¢, such that for every 1< p
< 00, p =0 e I(LY) and IPp, = Ap;.

Proof. It follows from (4.8) and the remarks preceding (4.5) that
there exists a dissipative distribution F on G such that o*(F) = Lp.
Thus Proposition 4.1 (ii) implies (i). Now, Corollary 3.15 implies that
the operator A = n(D) has a discrete spectrum on L*(X) and

H?

N N
2 A?P<L0< 00 for p>max(—,_. .
1e5pd réd’ sg
Hence
_1 —,
”W(M)“i{s = 2 MM = Z (e~ 2HAIPYP
AeBpd AeBpA

p 1V p)” o (_N N)
< 7] <|5) o it > max|[=, ).
\1;194(2 W‘]) \(2 R rd’ s

This together with (1.14) implies (ii). By the same argument as in the proof
of Corollary 4.4 we show that (ii) implies (iii). Now, an application of
(1.11) with 4 = 1 yields that Ly acting on L*(W) is a direct sum of a coun-
table number of copies of 4 = n(D) acting on L*(X). Therefore,

Spregrylp = SI’z;ﬂ(x)A ’

and hence SpzzgnLp i8 & discrete subset of C. The equality of spectra
in (iv) follows by (iii) and the symmetry of L'(W) (see Sec. 1), so (iv) is
proved. At last, to prove (v) take A e SppumLp. By (iv) there exists
an eigenvector ¢ e I'(W) corresponding to & given ieSprignLp. Let
g, h e P(W). Then ¢, = p3g4kh satisties (v).

4.6. LemMA. Let D be a dissipative distribution on W and let p € [1, o)
U{0}. Denote by n(D)® the closure of (D) on L?(X) (or on 0y(X)if p = 0).
Then

(1) Sppecna (D) < 8prgnlo, SPoyx™ (D) = 8Py Lp.
(i) If 4 is an eigenvalue for LY then it is am eigenvalue for m(D)™.
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Proof. (i) Let A o(LP). Then there cxists a measure g, such that
(A—D)dp; = pa#H(A—D) = 8.

Suppose that (A —n(D)P)f = 0 for some fe P(w(D)?). Then fe D (m(u,
#D)™) and

f =l d (2= D))PF = 7(u;) (2 —D)f = 0

so that A —m=(D)® is injective. Now, for any feL?(X) (or f € 0,(X) for
P = 0) a(u,)f € D(n(D)P) and

(A—m(D)P) () f = o{ (A~ D )P = f.
This shows that 1 —x(D)® iy onto and ends the proof of (i).
(i) Let @, be an eigenvector of LY corresponding to A. Then for any
u e I?(X) (or u e C,y(X))
(D) () -u = a( D) P = de(py) V) -

Hence m(g;)® -u is an eigenvector for = (D)™ corresponding to A.
4.7, TacoreM. Let P, @ be polynomials satisfying (4.5) and let A
be an operator defined on & (X) by the symbol

:a'(wy f) == "‘IP(‘”)F‘_IQ(E)P; 0<713<1-
Denote by A% (resp. by A®) the dloswre of A on IP(X), 1 < p < oo (resp.
on Cy(X)). Then:
(i) For all pe[l, c0)U{0} A® s an infinitesimal generaior of
a strongly continuous semigroup of contractions (Bg”’),,o.
(iiy BP are of trace class and

Te|BP| < 0,7, 130,

for p >max (Nré, N/sg) and some 0, > 0.

(ili) SpA® = 8pA“ for all p,ge (L, co)U{0} and this common
spectrum s digerete.

(iv) Tor every A from the common specirum of AW (of. (iii)) there owists
a common eigemvector we () D(AD).

De[1,00)0{0}

Proof. Note that 4 == n(D), where D & £*(W) is as in Theorem 4.5.
By a shmilar argument as in the proof of Theorem 4.5 (i), (ii) we gob (i)
and (ii). Then, (iii) follows immediately by Theorem 4.5 (iv) and Lemma 4.6.
‘We have to prove (iv), yet. Let A & §p A, Then by Lemma 4.6 A e SpL{
and, by Theorem 4.5 (v) there exists ¢, € L'(W) which is an eigenvector

icm°
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for L§ corrckponding to i Now, take an arbitrary u e #(X) and scb
4y = gt{ps) 4. Then u; is a needed common eigenvector for all A® cor-
responding to A.
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