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Representation of continuous linear functionals on a subspace of
a countable Cartesian product of Banach spaces*

by
A. TAKIMOVS8KI (Tel-Aviv) and D. C. RUSSELL (Toronto)

Abstract, Tn o wide variety of applicationg (e.g. to harmonie analysis, almost
periodic functions, ergodic theory, approximation theory, summability) spaces of
the following kind occur. We are given a sequence # := (By) of Banach spaces and
a golid Banach sequence space B with a Schauder basis, and we consider elements
from tho Cartesian product of the By, namely sequences % : = (wy) such that xye By
for cach %, such that the sequence of norms (|wyliz,) lies in the given space E. The
“composed” sot B of such sequences # i a subset of the Cartesian product and may
be given the obvious norm topology. It is then of considerable interest to be able to
determine tho form of the general continuous linear funetional on the space E#,
namely to identify the functional dual (H4)*, and that is the objeot of this paper.
Somo relaxations are possible (e.g. we may take p-norms or semi-norms instead of
norms in some places). Several examples from widely different sources are given in the
final part of the paper.

We ghall suppose in our theorems that the index %k of our spaces By
ranges over Z*, the set of non-negative integers; we could equally well
take the set Z of all integers, but we choose the former as yielding slightly
simpler notation.

Given a SOQUENCe ®: == (@)gez+ With @, € By (k = 0,1, ...), we shall
denote the n-th section of @ Ly

o 2 () o= (B cvny By Opgas Ongay o)y
where 0, is the zoro clement of B, (ke Z%). Similarly, for a sequence
Wi (Up)peg+ € @, Whore o s tho space of all complex-valued sequences,
ity mwih seotion i
n
— V
() 2= (g oy Uy 0,0, 00) = )y,
k=20
whore 6* ;== (0, ..., 0,1, 0, 0, ...), with L in the kth place. A sequence space
is @ linear subspaco of w.

wt™

* Wo ackuowledge support from the Israel Commission for Basic Regoarch,
and the Natural Sciences and Engineering Research Council Canada, during prep-
aration of this paper. .
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We begin by stating our first theorem, which concerns only the
elementary algebraic and topological properties of our composcd space.

THEOREM 1. Lét & := (B)ez+ be a sequence of complete linear p-nor-
med spaces, with the p-norms ||*llg, (where 0 < p < 1). Let B be a sequence
space, complete with respect to the g-nmorm ||z (where 0<< ¢<<1), with
continuous coordinate projections, and such that

(1) {hezt < B aond Vuel, lim |ju—u)y = 0;
n-+00

(2) whenever u € B and v € w, with |v,| < |u,| (VEk e Z%), we have
i) veB, (i) olg< ol

Define the composed space

(3) Bg := {2 = (@ez+| 3, € B, (Vhe2?), (i) eez+ € B}

and
(4) Vo eB%  denote |@llpg 2= I(I0elp,)rez+ ]z
Then B is a linear space, complete with respect to the pg-norm |- ||pg, and
(8) Ve cE#, lim |p—a™|ge =0.
00

It is easy to restate and prove Theorem 1 in the case where B has
a family of g-semi-norms (|-{;) in place of a single g-norm |-|l;. With
the obvious modifications in hypothesis and notation, B4 is then a comp-
lete linear space with respect to a family of pg-semi-norms (I, pa)+

We remark that property (1) says that (6%),,+ is a Schauder basis

for B, or that B has the AK-property; while property (2) (i) says that
E is solid. An obvious consequence of (2) is

(6) VueB, (u)iez+lg = lullg.

DErINITION. Let (H, ||*|z), B < w, be u g-normed sequence space
(0<g<1), and let 0 < p < 1. Define the ap-dual of B to be

B® . = {v € wl [0 gep : = sUP 2 (14,42 )0,) < +oo}.
g

For p =1 we get the well-known a-dual of ; it follows by elomeﬁtmvry
arguments (ag for the a-dual) that:

If B is a g-normed sequence space (0 < ¢ < 1), and 0 < p < 1, then H*®
is a normed linear space and

(1) Vuel, Voei*, 3 [ lo <o), 05
kezt

8) if {hez+ = B then E® is a Banach space.

) ©
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THEOREM 2. Lot 0 <p <1, 0<q<1. For each keZ*, let B, be
o complate p-normed space with functional-dual space BY; write B: = (By)ez+
and B* 2 = (BE) ez - Let 1 be o complete g-normed sequence space with conti-
auous coordinate projections, satisfying (1) and (2). Then:

(a) For each @ :== (pp)raz+ € HPA" we have

(9) N wla) < 400 (Vo i = (@)ez+ € BF)
kazt
and the funolional F defined on HR by
(10) @)= 3 py(@) (VoeBa)
Lezit
satigfies
(11) e (Ba)*.

(b) To each I' e (HA)* corvesponds o unique sequence @ := (¢y)rez+
e I %" such that (10) holds; moreover,

(12) L = 1@l nge == |l iz e

Proof of Theorem 1. It is easy to prove by straightforward argu-
ments that B4 is o linear space and that || e (defined in (4)) is a pg-norm :
we simply use the facts that each B, is p-normed and that F is linear,
g-normed, and satistios (2). Property (1) is needed only to establish (5),
af Tollows: if » e N4 then, by (4) and (1),

llo — "™ gy === H(“wlanﬂk)keZ'F "'(“wk”Bk)[M”E -0 ay - oo.

We shall prove that E# is complete. Suppose that {#™}ez+:=
{(®") ez Imaz+ 18 & Cauchy sequence in B, so thatb

(13) V&> 0, AN = N(s) such that [p™—1"gg<e (Vm,n>=N).

Then for m, n > N and any j € Z™ we have, by (2), (4), and since ¥ is
g-normed,

e a1 el == || =t 0o < [V — 2|y e+

]g<8.

Henae, Lor each j, (@")yez+ 80 Ouuchy sequence in By; since B; is complete,
30" 1 (Wh)pay $uch that

o . *
(14) Viezt, ofeB;, and lim [ —2;lp, = 0.

M0
We now prove that o* e B4. For all r e Z* and all m> N, n> ¥,
wo have, by (4), (2), (13), and since {*hez+ < B,

(@™ — ™)y == || — il s < [l — 2Rl ez < €3
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and hence, Yr e Z*, Vin > ¥,
(18) (@™ —&*) g < (@™ — &™) lpq -+ i(a" — ") |p g
< e+ (2% — a3l " ||z
T
<st k},‘ Ny — 7 1%, le*
=0
->¢ a§ # —> oo by (14).
Since (@} !z, kez+ € B, we have, by (1), that Ve> 0, AM = M(s, m)
guch that
(16) [l lls,) ! — (s, ) e < & (Vr, 8> M).
Choose a fixed m in (15), say m = N, and any 7, 8 > M(e, N) in (16),
and we then get, using (2) and the triangle inequality in B, in the form
[ llafl — 11811 | < flo—Bll,
Nl iz ) = (il )
< || (e ) — (1o 5, ) ] (ol — i)l ] (h — 23],
< 8¢ by (16) and (15).
Thus {(le3ls,)Mrez+ is & Cauchy sequence in F. But B is complete and
has continuous coordinate projections, so the limit in B mustbe (llw;[[Bk) ety

that is, ¥* ¢ E#.
Finally, by (8) and (15),

o™ — ¥ lpg = lim @™ —a" g <e (Vm>N),
F-p00

80 (@™)pez+ 18 convergent to x* in |:|lgg, and B4Z is therefore complete.

Proof of Theorem 2. (a) Let ¢:= (@ )neg+ € BPH*. Then, for
each » € H#,

2 @< 3 il ol

rezt kez+

< H ("qJI,;“B;,)IcEZ“"”Eap“ ( ”wk“]jh)lnez+

gince each B is p-normed

i by (7)

= lplpapge Il by definition (4).
Hence the functional F defined by (10) satistios F & (H4)* and
an I < Nl g -
(b) Suppose F e (BA)*. For each ke Z* write
Bi= Y 1= Uphezt| Yp = 0,(r % ), y; € By},
If ye#, then y e EZ and

Wllza = || Wiz, e = 15, le" Iz

e ©
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Hence %, and B, are isomorphic as complete p-normed spaces, and %,
is @ closed subspace of H# . Thus the restriction of F to %, yields a con-
tinuous linear functional on 4, so that

(18) Ap e Bi: Vy e @y, F(y) = gulyy)-
Algo, given ¢ satisfying 0 <<e<x1,

(19) gy, & By lg:llm,, =1 and @y(g,) > (1 "‘B)”‘Pk“B-« =0,
A

because, for any a, ¢ R,

Pul6™gy) = 6"ty (g,) and HG‘"’%IIB,‘ = |gllg, -

Now by (B) of Theorem 1, for any » € E#, we have, since F e (E®)",

Z‘ @@z,

keZ+

by (18).

R—+00

(20) F(#) =lim F(a™) = Lm Zn'(p,‘(mk) =
A0 fimp

Let (g,) be chosen as in (19) and, given u e B (4 # 0), define

b= (b yez+, Where h := |u,|*Pg, (VkeZt).

Then

Willza = 11(1% "G, gz |
= || (1) 1943, kez+]lz #ince each B, is p-normed
= || gz ]| since [ig,llz, = 1 by (19)
= |luliz by (6).
Thus b e B# and we now have
121 felP? = 1) (oI5

= |[F(h)| since, by Theorem 1, H# is pg-normed
=| 3 mw)| vy (20)
ez
= Z (P (g)  Mince g, is linear and g(g;) >0
A
> (1=e) ) 1w lpsl,e by (19)-
rezt
Letting ¢ — 0, we get

W21 3 (gl 1) 2 9l 5
kelit &
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$hus (”q’k”B,:)"EZ + e B (that is, @ € B%") and, taking the supremum

over all u e B (w # 0) and using (6), we get

Il > ll(uqaknﬁlywllw 2= [ipl]yap g

which, when combined with (17), yields (12).
It remains to show that the ¢ in the representation (10) is unique.
Suppose that ¢ and y are two such choices satisfying (10); then

D {pe(@) —w(w)} =0 (Yo e Ba).
rezt
Now for any zeB; we have (6, ..., ) e B4, whence
g;(2) —w;(2) =0 (Ve e By, and s0 ¢ = y.

ExampLE 1. The Wiener space T'y.

0jc1y @y Ojpry -

={1FeC®), Ifle, : —~2maxm< + oo}

ez [kJe+1]

This space was introduced by Wicener [13], p. 27, in the formulation of
one of his tauberian theorems; the functional dual T} was determined by
Goldberg [5], thus enabling him to give a quick proof of the tauberian
theorem.

Now T, is a closed linear subspace of I, {0k, %11}z (this in turn
is a subspace of the Ly, of Exawple 8 below, @, = k), so by the Hahn~
Banach Theorem, if ' e T} then F can be extended to a continuous linear
functional on I, {C[%k, k& +1]};ez With the same norm. By the Ricsz Repre-

sentation Theorem, F e Ok, k-+1]" implies
k+1
AV, e BV [k, k+11: F(f) = f fav, (¥feO[k, k+17),
k

where the ¥V, are normalized. Thus by Theorem 2, it J' e 17 then
k1

=3[ fav, =

keZ k&

B(f) - [1av (vVrer,

where we must, in order to get an wnambiguous definition. of V'(£) at the
integers, define

k
Vilt) 4 D'V,

#=l
0

D Vealn),

r=R+l

<t -1, b0
V)=

V() ~ <h+l, k< 0.

e ©
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Then V is 9 normalized function of bounded variation in each interval
[k, k+1], and

k1 k1
7| = sup dv,| = su av .
kez kf ] kl ku;) kj l I< Foo

This representation was obtained in a different way by Goldberg [5],
Theorern G, but with only the inequality ||F| > sup f aviy.

Actually, more is true. For suppose that the gwen feT} has the
above representation. Take 0 < d<1 and any k €Z, and define

frool) t= 1 =87t —F| for te(k—38,k+8), Jis(t) = 0 otherwise;

then fyaeT, and F(f,, =Rf J1,a@V = V(% +0) =V (k—0) 8 —0.

Thus the jumps of V at the points % are uniquely determined by . Write
Ut) =0 (for t=171), U (t)=V{E)—V(r+0)

a8

(for r < t<<r+1),

V(r+1—0)—V(r+0) (for t =r-1).

Now supposo, if possible, that for some r e€Z, f |dUT,| > 0. Choose

0<e f |dU,|. Then since U, is continuous atr and‘: +1,3g € C[r,r-+1]

" guch 'bhat

r+l

g(r)i=g(r+1):=0 > [ 14U, |-e>0.

Define fl() g(t) on [r,r+1], fi(t) :=0 otherwise; then f, €T, but
F(f) = f gdU s 0, contradiction. Thus U,(f) = 0.

Thls means that if F eT;, then the function V(f) is determined
uniquely, up to a constant, in each interval (v, r-+1) (r €Z). Of course,
the converse is also true, in the sense that each normalized function of

o1
bounded variation with sup [ |dV]< oo defines an F e T} such that
Wz

k+1
=sup [ 14V].
keZ

k

@1) F(f):= [fav (VfeTy, with |F]
x

ExaMmprn 2. The space TP, 1 <p< o, neZ”,

= (Z( max

&= k<lelignek +1

9= {f1 fe 0, If g < +oo)

0 — Studia Math. 72. 3
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Here ||-|jg» is the Buclidean norm. If, for cach % e Zt, A, denotes the
annulus {# € B k< |wllpn < k+1}, then TP is o closed linear subspace
of 1, {C(4,)}xez+- AlsO T ig the Wiener space T, of Example 1, while
T was also considered by Goldberg [5]. The definition of T® (1< p
< o0, n €Z*) was given by Nguyen Phuong Céc [10], who obtained the
general form of the continuous linear functionals on T
" ExAMPLE 3. Stepanoff spaces.
In the theory of almost-periodic functions, the spaces

sp:z{fl Il = sup (d*‘xfd; f(‘t)]”dt)”p< ~-‘|-oo} (1<p< oo)

are of considerable importance; e.g. see Stepanoff [12], Besicoviteh [3],
Chapter II, Amerio and Prouse [1], Chapter 4, § 7. For any two fixed
non-zero values of d, the spaces are the same (say 8?), and have equivalent
norms which are also equivalent to the norm [|-|lgn, where

8% = 1 {Ly [y b +1)}iezs IIfllgo ’=kselzlp IFleyipry A <p< o0).

Consequently, by Theorem 2, for
8° 2 (L {Zyy [y %+1)}1es)"

Amerio (see [1], p. 55, where further references are given) considers
almost-periodic functions with values in the space T, {X,},5; (1 < p - o),
where each X, is a Banach space. For these spaces the functional dual
is isomorphie to 1,{X;},;, & fact which is established by Kéthe [15],
p. 359.

Examern 4. The space wl, 0 < p < oco.

The space wj, is the space of complex-valued sequences, strongly
(0, 1)-summable to zero with index p, defined by

1<p<oo, pT+(p)' =1,

3
R
W 1= {w eco] lim ——A\J]wkv’ - 0} (0 < p < 00),

oo M A
Wilansky and Zeller [14] considered this space for p =1, Borwein [4]
for p > 1, and Maddox [9] for p >> 0. For each k & Z", write (B,, (R[]

= 1,[2%, 2%+, namely

By i={o] & = (@)ohicaler1}

1 ,\Me
oF 2 A y l<p< oo (norm);
l2lg,, ¢ == 1 2"“:2'”""
w ;1% 0<p<1 (p-norm).

oligi<ak+l

icm
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Then. Borwein and Maddox showed that an equivalent definition of w, is
wy, 1= O {Bibpez+, with - ] o2 ll(llwllp,c)kez+||co 1= Sup ”mllyk
' » kez+

The continuous linear funetionals ¢, on B, have the form

. o D"
24P y lat|p) y 1< p < oo,
abeizak+1
(@) == Gy ”‘Plc”B* = ~];__|_ 3'_ =1
aleact<olir1 & ) ' 4
2¥% max |a 0<p<l.
2"<t<z7‘+1[ il s

(The continuous dual of 1, is isomorphic to 1, for 1 < p << oo, and to
I, for 0 < p < 1). Also () =1,, ¢ = min(p, 1), and so, by Theorem 2,
for each F & (w,“,)* there exists a unique sequence a € @ such that

Pla) = Y aw, (Yoewp), B =3l

=1 freer By
This representation was obtained by Maddox ([9], p. 290), for 0 < p < oo.
Borwein’s representation ([4], Theorem 1), holds for 1 < p < co. A different
representation for F e (w))* was given by Wilansky and Zeller ([13],
Satz 5). The space w) also oceurs in ergodic theory in connection with
weak mixing (e.g. see Halmos [6], p. 38).

BxameLe 5. The space w}(d).

Here 0<p< oo, d:= (G)s, 4,>0 (VE), D,:i=d;+ ... +d,
— + o0, and

3
wh(d) : = {o ew| lim (D)7 Y dylamyl? = 0}

f-ro0 k=1
is the space of sequences strongly (N, d)-summable to zero, with index p.
This generalization of w) (take d, = 1) was considered by Jakimovski
and Livne ([7], §4), who obtained an equivalent definition and norm
(or p-norm) expressing wy () in the form required by Theorems 1 and 2
above. The representation for F e(wd(d))* obtained from Theorem 2

then tallies with that of [7], Theorem 4.4.

Bxamere 6. The space o[A],.

Given 1< p < oo, and a non-negative matrix A4 = (a;) with no
zero rows and colunns, write, as in Balser, Jurkat, and Peyerimhoff [2],

ofdl,: = {J: cw| lim S“kﬂ%lﬂ - 0}.

k>0 g
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Let Zif := {i e Z*| ayy # 0} and take B, to be the weighted 7, spaces
By ={o = @), | Il 1= 3 sulol?)” < +oo}  (kez?);
& ez}
then

O[A]p = co{Bk}keZ*': ”m"o[zl]p ckigg ”w”B‘k

Let p~'+(p) =1. For each keZ*, ¢, B} if and only if il(}v,“)wz+
(unique) such that k
P () = 2 haifr; (Vo e By),

H%HB; = ||(hm)‘ez;¢+”1p' <oo.
tezt

In order to complete the matrix H and preserve its uniqueness, define
by =0 if i ¢ ZF (that i3, when ay; = 0). Then, by Theorem 2, F ¢ o[4];
= (¢"{B,})* if and only if

F@) = Yeul@) (Voeo[AL), I1FI= Dlpde = X Wzl <co.
wez+ ezt B ezt

On the other hand, since 0 [A], has 4K (by (8)), we also have, V& e o[4],,

F(w) = 3 sm;, where & =T (6); and 3 |s@l < oo, becanse o[4], is
1€zt iez+

golid. Hence

o =F(d) = Y g (e) = > hual?

ezt ezt

and we get the representation of o[4]5 given in [2], Theorem 7, (a) and
(b) — note that the regularity hypothesis on 4 stated there is not required
for this form of the functional.

ExAMeLE 7. The space Wp, L<p < oo,

. . L F \
W= f1 f is measurable on [1, o), lim ”‘i:f [f[P = 0}.
) . Lortoa T l
Take
il
Bir Illg) := Ly (2%, 24, iflgy 2= (27% [ 1F )" (VI e 2Y).
ak

Then an equivalent definition of W (Borwein [4]) is

Wyt = ¢ {Bilrez+, ”f"W:; i= i&li“f“sr

icm°
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The continuous linear functionals ¢, on B, have the form
PYANY

o(f) = f 19, ||€01J|B;c =2"”’llg|le.[zk,2k+1), (@)t =1,
ok
and by Theorem 2, F e (W,)* implies that g (unique) such that

PNl = ) 2l phsty <+ o0,

k=0

B(f) = [ fg (VfeWp),

which is equivalent to the representation obtained by Borwein [4], The-
orem 2.

Examern 8. The space O .

Let o : = (@,)5ez be 2 fixed real gequence, —oo < ... < &, < @y < ...
co. >+ o0, and write X :=(wy,®,,,], with length |X,|:=a,,, —@;.
Let B, be the L, space of measurable functions on X}, with

Wls, = 1 X Pl (L<p< +o00, keZ).

Detine
05 i= " {Bluez = {f| Ym Ilflls, =0}, Ifllp :=supifis,-
1El-»00 D2 kez

This space was considered by Jakimovgki and Russell [8]. A representation
for F e (0} )" is obtainable from Theorem 2 above, which coincides with
that given in [8], Theorem 1. The representation is used in [8] to solve
an interpolation problem, namely the existence of a function from a certain
clags which takes prescribed values y, at the points w, (Vk €2Z).

When @, —&; =1 (Vk), Schoenberg [11] defines the space

Lpy:= [fl I lzgy; ==2 esssup |f] < +°°}_

ez @i

Thus Lpy = b{L (@, 111}kez, and 50 his space is (isomorphic to) (G2 )"
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A remark on finite-dimensional P,-spaces
by
J. BOURGAIN* (Brussel)

Absteact. It is shown that finite-dimensional P;-spaces contain 1% (7)-subspaces,
where m iy proportionul to the dimension of the P;-space.

Iniroduction. Let us recall that the Banach-Mazur distance 4(E, F)
of two normed linear spaces B and F of the same finite dimension is
given by A(H, F) =it {|T| |T-|; T: B - F is a linear isomorphism}.

Wo say that X is a P,-space provided for any Banach space Y in
which X embeds isometrically, there exists a projection P from ¥ onto X
with [P} < 4. As is well known, the space Y in the above definition may
ag well be replaced by the space I®. The characterization of P,-spaces
is a rather old and still unsolved problem. One may hope for an affirm-
ative solution to the following question, dealing with the finite-dimensional
vergion of the problem:

Does there exigt for all A< oo some constant ¢, < oo such that
4(B,1°(@) < ¢, holds, for any P,-space B of dimension d%

In [4], the existence is shown of a function d(2,m, &) so that given
a P,-space H, dim (H) > d(A, m, &), one can find a subspace F of E with
dim (F) = m and A(F,1°(m)) <1-+s.

Our purpose is to show the following fact which, taking into account
a related observation of [4], will improve the above result.

THROREM 1. Given A< oo, one can find a constant ¢ = ¢; < o©
such that given a finite-dimensional P;-space B, there exists a subspace F'
of B satisfying dim(F) = m > ¢"'dim(B) ond A(F,1°(m)) < c.

Proof of the result. We recall that if 7: X — Y is an operator between
Banach spaces X and Y, then T'ig (p, q)-absolutely summing if there exists
a constont M < oo such that

DI (@) P}'? < M sup (3 1wy ayr)

=1 =<1 =1
holds, whenever (#;),«icn 18 @ finite sequence of vectors in X.

* Aangesteld Navorser, N. . W. O. Belgium, Vrije Universiteit Brussel, Plein-
laan 2, 7, 1050-Brussels.
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