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Pointwise ergodic theorems and function classes M,

by
TAKESHI YOSHIMOTO (Kawagoe, Japan)

Abstract. A general treatment of pointwise ergodic theorems is given of positive
linear operators which are at the same time contractions of L, with 1 < p < oo and
of L. For 1< p < 0 and 0< a< oo, lot My denote the function class consisting
of all functions f such that (|f|/t)?(log*|f]/f)® is integrable over the set where |f]> ¢
for every ¢ > 0. In our consideration the basic setting is just the class M3. Some point-
wise ergodic theorems (which are those as time tends to infinity and those as time
tends to zero) are proved for products of positive linear contractions on Iy, with 1< p
< oo ag well as on Ly, and then extended to functions of M7, Moreover, the continuous
extensions of the Akcoglu~Chacon’s convexity theorem and of the Akcoglu’s ergodic
theorem are also proved.

1. Introduction. The present paper is in essence concerned with
two types of pointwise ergodic theorems for products of positive linear
operators: those as time approaches infinity and those as time approaches
zero. The usual setting in the study of ergodie theorems is the Banach
space L,(X) = L,(X, B, p), 1<p< oo, where (X, #,u) is a o-finite
measure space. A linear operator T': L,(X) - L,(X) is called bounded
if |7, <K for some constant K > 0, where lI-ll, denotes the norm of
L,(X). It K =1 then T is said to be a contraction. In many studies of
ergodic theorems, the boundedness of L,-norm or L,- and L, -norm of
the operators in question, in addition to the signs of operators, was the
indispensable conditions for various analyses of the limiting behaviors
of operator averages, and has produced many good results. In 1956 Dunford
and Schwartz [7] proved the so-called “non-commuting ergodic theorems?”
for products of linear operators on IL,(X) which are at the same time
contractions of Ly (X) and of L (X). The method of proof used by them
congisted of majorizing the operator in question by a positive one, called
the linear modulus. Then later Chacon and Krengel [6] also showed the
existenco of the linear modulus for an I;-contracting linear operator
without any additional hypotheses. The linear modulus does make it
possible to extend the results for positive operators to those for non-
positive operators in spaces of complex-valued functions. Therefore it
is important to study ergodic theorems with the L, -norm condition for
p >1 ingtead of the L;-norm condition, and this problem is the starting
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point of the present work. In this communication, including an affirmative
answer to this problem, a new approach to general treatment of the problem
is developed concerning almost everywhere convergences of operator
averages with time tending to infinity and to zero for positive linear
operators.

In our consideration, the basie setting is the function class ME(X)
L<p< 00,0 a<<oo) consisting of all functions f such that

2 a
f(m) (Iogm) du < oo
AN ¢

for every ¢ > 0. The important one in extending pointwisc ergodic theorems
on L, (X) to functions of M;(X) is the indispensable inequalities for quasi-
linear operators of weak type (p, ). In Section 2 we introduce two function
classes, L,(X)+L,(X) and L?(X)[log*L(X)]% and some Pproperties
of M,(X) are investigated in conmection with these classes. In Section 3
we shall prove some pointwise ergodic theorems with discrete time for
products of positive linear operators on L,(X), L<p < oo, which are at
the same time contractions of L,(X) and of L, (X). Moreover, the results
obtained on L,(X) are then extended to functions of M3(X) as gencraliz-
ations of those due to Fava [9]. In Section 4 we consider the continuous
extensions for the case of continuous semigroups. In addition, the con-
tinuous analogues of the Akecoglu-Chacon convexity theorem [2] and of
the Akeoglu theorem [1] on pointwise convergences for positive operators
on L, (X), 1 < p < oo, are also obtained with a few applications. The last
section includes two local ergodic theorems pertaining products of con-
tinuous semigroups.

(1.1)

2. Quasi-linear operators and function classes M. Let there be
given two measure spaces (X, #, ) and (¥, &#,v). BEqualities and in-
equalities are meant in the almost everywhere sense from now on. In
addition we shall sometimes suppress the argument of a function, writing
f for f(z). An operator 7T, which maps %-measurable functions defined
on X to #-measurable functions defined on ¥, is ealled quasi-linear if

1) IT(f+9)I < e(IZf1+1Tg)),  |T(af)| = la] |Tf|

for some constant ¢ > 0. In case ¢ =1, T is said to be sublinear. Further-
more we say that T is of weak type (p, p) it for any feL,(X)nD(T),
1<p< oo, with the domain D(T') of T and for any 1> 0
: (o}
(2.2) AITf > 1) < [ Ifeag,
X

where O is a constant independent of f and A. The space underlying the
following exposition will be o-finite measure space (X, &, u). We denote
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by L, (X) + L (X) the class of all functions f such that f = g-+h, g € L,,(X),
h € L (X). An operator T defined on L, (X)+ L, (X) is called L -bounded
provided that with some constant K >1

(2:3) TS oo < Elif llo

Examples of L,-bounded quasi-linear operators of weak type (p,p)
may be taken from the works by Dunford and Schwartz [7] and Akcoglu
[1] for the ergodiec maximal operators concerning linear contractions on
L,(X). Another example is the Hardy-Littlewood maximal operator,
which is given by

for feL, (X).

[

wp —=— [ If(w)ldy

a<g<p f—0 P

for feL,(—o0, +00) 4L (—00, 4c0).

LevmA 2.1. Let T be an L -bounded gquasi-linear operator of weak
type (p, p) defined on L, (X)+L (X). Then for any feL,(X)+L,(X)
and every t> 0

(2.4) Uf(@) =

(2.5) wTf1 > 2K <o [ 17Pd,
111>t
where C is a constant independent of f and 1.
Proof. If the right-hand side of (2.5) is infinite, then the lemma
holds trivially. We may thus consider the case where |f| is integrable

over the set where |f| > t. Define
(2.6) FO = frunsn: fo =Fran<n

for ¢ > 0, where x, denotes the characteristic function of the set A. Then
f =FO+fq and |Tf| < ol Tf®|+ Kot since |fyl., <t Hence we have

)
@1 (T > 2Ket < p (T > Kety <5 [ 1P d
X

which implies (2.5).

In the sequel we denote by M (X), L<p<< oo, 0K a<< oo, the
classes defined by (1.1). Let L?(X)[log*L(X)]* denote the class of all
functions f for which

(2.8) [ 1f1Pllog*If 1 Tdu < oo,
X

where log™u = logmax(u,1) for u > 0.

TrEorEM 2.1. Let 1< p, ¢< o and 0< a, f< oo
M;(X) is a linear space.
Ly(X) © My(X) & Ly(X) + Lo (X)-

(2.9)
(2.10)
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(211)  Mp(X) « Mg(X) for ¢< p.

(212) MI(X) « M5(X) for < e

(213) Ly (X) = M (X) for > p.

(214) Mp(X) = LP( ) og"L(X)}* < Ly (X) + L, (X).

(218)  M(X) = LP(X)[log*L(X)]* if and only if u(X)< co.
(216)  The linear span of \J L (X) « My(X).

a>p
Proof. The proofs of (2.9)-(2.11) are straightforward. To see (2.12)

it is enough to mote that w{t< |f|< 2i} < oo for fe Mj(X) and ¢> 0.
Then

o [{4 T

1f1>¢

< (207 Wlog2)Pu{t < |f] < 21} -+

st (o e

171>t
which imples (2.12). The inclusion (2.13) follows from (2.12) and the

following:
il ) Ifi]" (l.ﬂ)”(lfl -
2.18 - log —~~ <0 ] | {
( ) m‘!,( : [og 1m_£ 7 n ) du
0y [17Fdu< oo
X

for f € L, (X) and k = [a]+1 with some constants ¢; and C, since [logtu]*
< const. (u)q‘ﬂ for > 0. The first part of (2.14) is clear. Using (2.6),
we have f = f® +f and fi) € L,(X) and

(2.19) f RIKES f \f PDog*(f11"du

proving the second part of (2.14). Bvidently, Mg (X) = L?(X)[log*L(X)]*
implies u(X) < co. To prove the converse, suppose that u(X)< oo and

< (log 3)~

feI?(X)[log* L(X)]". With f® and f, given by (2.6) wo have
»
(2.20) f (‘—J;—‘) [1 lﬁ] au< 0 f IF120og™ |f 1% -+ Oy f L Pdp
11> B 1fi>t
<C: [ i1 Oog™ 11 d Oy [ (O +1figl#) < oo
IfI>t X

for some constants C,, 0, and Cy. The relation (2.20), coinbined with
(2.14), shows that M (X) = L?(X)[log* T(X)]% and so (2.15). The inclusion
(2.16) follows immediately from (2.9) and (2.13). The proof of Theorem 2.1
has hereby been completed. )
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Remark. (i): The class M (X) contains properly L,(X). We show
this fact for the Lebesgue measure x on the real line. In fact, let f(z) > 0
be a continuous even function defined on the real line with f(2) — 0 as
@ — oo, which ig strictly decreasing in x>0 and which is such that

[t 2) = (ja|+1)-0m.

the function f belongs to M (X) but does not belong to L, (X).
(ii): The clags M7 (X) contains properly the linear span of UL (X).

In fact, let g(v) = 0 be a continuous even function defined on the real
line with g{(x) -0 a8 & — co, which is strictly decreasing in z> 0 and
which is such that »?/g7'(1/2) > 0 a8 @ — co for any fixed ¢ > p, where
g7 (t) is the non-negative part of the inverse function of g(z). For example,
we may take g(#) = 1/log(jz|+2). Then g belongs to M7 (X) but does
not belong to the linear span of | JIL,(X), where X = (—oo, +o0).

q>p
It is an easy exercise to show this.

VIPde = co. For example, take f( Obviously

3. Pointwise ergodic theorems. In this section some generalizations
of the ergodic theorems of Dunford and Schwartz [7] are proved for positive

operators without any hypotheses on the L (X)-norm. In what follows
—1

the symbol A(n) will denote the average (1/n) Z’T" and sometimes,

when it is desirable to show the dependence of A (n ) upon T, the symbol

A(T,n) will be used instead of A4 (n).
TumorEM 3.1. Let Ty, ..., Ty be k positive linear operators on L,(X)
with 1< p < oo such that [Ty, <1, sup{|Lle: n >0} < K, 1 =1,2,...
-, k, for some constant K > 1. Then for every f € L, (X) the multiple sequence

ny—1 np—1
1 Y .
. vy ) f = ———— Ta... T
(3:1) Ay ooy m)f nl...n,cé: Z_ ief

is convergent (as My — 00, ..., Ny — oo independently) almost everywhere
on X, as well as in the morm of Ly(X). Furthermore, the functions (3.1)
are, for ny, ..., np > 0, all dominated by a function in L,(X).

Proof. The proof is by induction. The case & = 1 has already been
discussed by Akcoglu [1] without the L (X)-norm condition. We now
assume %> 1 and the almost everywhere convergence has been proved
for the cage of k—1 operators T, ..., Ty ;. Since the sequence .4 (n;)
is bounded and L,(X) is reflexive for 1< p< oo, the decomposition
theorem in [7], p. 133, shows that the lincar manifold 3, generated by
functiony of the form )

f =g+ (h—Th), gel,(X), Thg =4

(3.2) h & Ly(X) N Ly (X),
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is dense in I,(X). For a function f of the form (3.2) we have

1

(8:3) Ay ooy m)f = ARy, ooy M) gt "o A (g, ooy ) (B —TeR)
]

and

2K
(3.4) ' <

]
oo -
S 1Pllee

1
— Ay, -y '"’)c-l)(h"T}y:kh)
Moy

Adapting the induction hypothesis to (3.3), together with (3.4), shows
that the functions (3.3) converge almost overywhere as %, — oo,...
vey My, = 00 independently. Thig implies the almost everywhere convergence
of A(ny,...,n,)f for any fe,. However, applying the theorem of
Akeoglu [L] repeatedly proves that the sequence A (ny, ..., m)f, for
feL,(X), is dominated by a function in L,(X). Aecordingly we can
deduce the almost everywhere convergence of A (ny, ..., n,)f for f e L, (X)
from the Banach convergence theorem. The convergence of (3.1) in the
norm. of L,(X) may be proved by induction as in the proof of Dunford
and Schwartz [7]. Theorem 3.1 has herewith been proved.

COROLLARY 3.1. On the hypothesis of Theorem 3.1 without positivity
of the operators, if there ewist the linear moduli of the operators then Theorem
3.1 is also true for non-positive operators.

A linear contraction T on L, (X) is said to be regular if for some
feLy(X) with f #0,
(3.5) D IT| = + o0
k=0
almost everywhere on X (cf. [2]). The regularity of I' on L, (X) implies
the regularity of the linear modulus of T. For the existence of linear
modulus on L, (X), see Chacon and Krengel [6].

OororLARY 3.2. Let Ty, ..., T}, be k positive linear operators on L, (X),
with 1 <p < py for some po>1, such that [Ty, <1, ¢ =1,..., &k, for
1< p<p, and such that they are regular on L,(X). Then Theorem 3.1
remains true for feL,(X) with 1< p < oo.

Proof. According to the convexity theorem of Akcoglu and Chacon
[2], the operators T}, ..., T, may be extended in such a way that [|T,],
<L,é=1,...,kforl<p<oco. These extensions coincide with T'y, ..., T},
respectively, on L;(X), and so applying of the Riesz convexity theorem
proves the corollary through Theorem 3.1.

THEOREM 3.2. Let T, ..., T, be I positive linear operators on L, (X)+
+Ls(X), 1<p< oo, such that |Ty,<1, sup{|TFl,.: »>0}<K,
t=1,..., k5 for some constant K > 1. Then for every f e M=) oy
(where 6,(p) means the Kronecker delta) the sequence A (n,, ..., n,)f converges
almost everywhers on X as m, — 00, ..., My — o0 independenily.
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Proof. The case p = 1 has already been discussed by the aunthor
in [11]. (Cf. [9].) Now let p > 1 and fe My (X). Define

{3.6) U,f =sup|d(T;, n)fl, +=1,..,k,
n>0

(8.7) fr(@) = su

D

N yeeey N>
From (3.1) and (3.6) we get [A(ny, ..., n,)fI < U, ... Upf and thus by
(3.1 f*< Uy ... Upf. The product operator U, ... U, is an L,-bounded
positive sublinear operator, because so is each U;. Furthermore, a repeated
use of the Akcoglu theorem [1] will show that the product operator is
of weak type (p, p). Therefore, with f® given by (2.6) for ¢ > 0, one gets
by Lemma 2.1

w{f* > 2EK*} < p{U, ... U, f> 2E%)}

C
<u(Us. UfO> By <o [ Ifidp
1f1>¢

o[A (1g oy ) f ()

(3.8)

for some constant C independent of f and ¢. Let D, denote the set of all
k-tuples @ = (ny, ..., n) for integers »; with n; = r (i =1, ..., k). Let us
define

(3.9) o(f)(2) = limsup|V (k: a)f(x) — V(k: b)f(=)]

a,beD,

r—>00
by putting V(k:a) = A(ny, ..., n;) for a = (ny, ..., ). Clearly, w is
subadditive and o (f) < 2f*. Now choose a sequence {f,} of simple functions
having support of finite measure, such that lim f, = f pointwise and

If —f. < 21f] for all » > 1. 8ince o(f) < w(f—f,)+o(f,) and o(f,) =0
by Theorem 3.1, we have o(f) < o(f—f,) < 2(f—f.)%, so that by (3.8)

(810)  wfo(f) > 8KH} < ([ —f,)* > L)
¢ ¢ )
<u [ w-triws<y [-frda
|f=fpl>2t it

for cach > 0. But the last integral of (3.10) tends to zero as n — oo by
virtue of the Lebesgue dominated convergence theorem. Hence

(3.11) pl{w(f) > 8KM} =0 for any t> 0

which implies that o(f) = 0 and completes the proof of Theorem 3.2.

COROLLARY 3.3. On the hypothesis of Theorem 3.2 without positivity
of operators, if there ewist the linear moduli of the operators im question,
then Theorem 3.2 is also true for non-positive operators.
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The following corollary is an extension of Fava’s theorem [9].

COROLLARY 3.4, Let Ty, ..., T be positive lincar operators on L,(X)+
+ L (X), with 1 < p < p, for some po > 1, such that | Ty, <1, 4 =1,...

ok, for 1< p<p, and such that they are regular on Ly(X). Then the

same conclusion as in Theorem 3.2 holds.

The following theorem is an extension of the Akeoglu and Chacon
theorem [2].

TamoreM 3.3. Let Ty, ..., T, be k commuting positive linear operators
on Ly (X)+L(X) such that Ty, <1, i=1,....,k L<p<p,, for
some p, > 1 and such that they are regular on L,(X). Then for every f ¢ M{(X)

the limit
11m~—~ Th ... Tk
i % 7S !

Ty=0 =0

(3.12)

exists almost everywhere on X.
Proof. According to the Akcoglu and Chacon convexity theorem,

T, ..., T, are extended in such a way that [Ty, <1, i =1, ..., k, for
1< p< oo, Observe that the ergodic maximal operator U given by
(3.13) Uf (@) = supld(ny, ..., m)f(@)]

n>0

for feL,(X) is of weak type (p,p). Then the theorem may be proved
by the same argument as that in Theorem 3.2.

4. The case of continuous semigroups. Let {T(¢): > 0} be a strongly
continuous semigroup of bounded linear operators on .L,(X) with 1 <p
< oco. Then it is well known ([12]) that there exist KX > 0 and & > 0 such
that |T (3], < Ke® for ¢ 0. If we take K =1 and a = 0, then T'(1)
turns out to be a linear contraction on L, (X). Now for f e L,(X) there
exists a scalar representation £(f, ) of T(f)f (which is often denoted by
T(t)f(x)) such that

(4.1)  &(2, @) is measurable in (i, ) on the product space [0, oo) X X;

(4.2)  &(, @) is uniquely determined up to a set of points (i, x) whose
product measure 18 zero;

(4.3)  &(t, -) =T@)f(") in Ly(X) for almost all t = 0;

(4.4)  there exists a null set N(f) which may depend on f but which 8
independent of t and is such that for any we X —N(f), &(-, )
s integrable over every finite t-interval and

48)  [e@, @t = fT V@t in Ly(X)  for 0<a< oo,

[}
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With the function £(¢, %) we define

a

[T f@)at
0

for any a > 0. The point of this definition is that the left-hand integral
of (4.6) is a continuous function of a, for almost every 2. Given a semi-
group {T'(t): 1= 0} of linear operators on Ly(X)+ L, (X), we shall say
that the semigroup is L,-continuous and L -integrable it T(t) is strongly
continuous when restricted to L,(X) and strongly integrable over every
finite ¢-interval when restricted to L (X). We also say that the semigroup
is restrictedly stromgly continuous if T () is L, and L,-continuous when
restricted to L,(X) and I, (X), respectlvely Let {T(t t> 0} be an
L,-continuous and L-integrable semigroup of bounded linear operators
on L,(X)+ L, (X). For f = g-+h with g € L,(X), heL,(X), we define

f TH)fdt =

(4.6) = [&t, 2y

(4.1 fT( Vgt + (L, )fT(z)hdt
0
where the signs preceding the integrals indicate the norms with respect
to which each integral is defined. It is easy to verify that definition (4.7)
is conmtent To see this it is enough to observe that for any f e L, (X)n’

L, (X)
(4.8) (L) [ T(Ofdt = (L) JTosar.

0 0

Using scalar representations T'(t)g(x) and T(t)h(x) of T(t)g and T'(t)h,
respectively, we obtain a scalar representation 7'(t)f () of T'(¢)f by taking
T#)f(w) = T(t)g(@)+T(t)h(z). Then the ordinary Lebesgue integral

JT0)f(@)ar

a8 a function of #, is a sealar representation of f T(t)fdt. In what follows
we consider the following average

(4.9) f (t)g(@) dt—|—fT

[]

h(z)dt,

(4.10) A(a)f = %fl’(t)fdt, a>0,
0

for f € L, (X) + L (X).

We bcgm by proving the following theorem which is a continuous
vergion of Akeoglu’s theorem [1].

THEOREM 4.1. Let {T'(1): >0} be a strongly continuous semigroup
of positive linear contractions on L, (X) with 1< p < co. Then for any
feL,(X) the average (4.10) converges (as a — oo) almost everywhere on X,
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as well as in the norm of Ly(X). Moreover, there holds the following strong
type inequality
IIf llps

(4.11) I+ ||,,\

where f*(x) = suplA(a)f(w)l.

Proof. Smce L,(X) is reflexive for 1< p<< oo, the convergenco
in the norm of I (X) follows from the fact that the averages 4 (a) are
bounded and T (n ) /n — 0 strongly as # — oo. The proof of almost every-
where ‘convergence is based wpon the following identity which will serve
to reduce the present object to the discrete case. Let a > 1 and fe L, (X).
Then

412) = f ()
{a]~-1 r
=%“]{%M T UT fdt) D-(ﬂf’l’(t)fdt)},
where a = [a]+7, 0<r< 1. However, since
s | T(t)fdths s | f Tfd] < 1fi,,
(4.14) ii{l; ) f T@fat =0 ae.,

we may apply the Akcoglu theorem to the right-hand side of (4.12) to
conclude that A (e)f converges almost everywhere as ¢ — co. Using an
approximation argument ag in Dunford and Schwartz [7], the estimate
(4.11) for f* can be obtained by reduction to a result in [1]. Tence the
theorem follows.

TeEBOREM 4.2. Let {T(f): 10} be an Ly-continuous and ])w-'é‘nte-
grable semigroup of positive linear operators on Ly, (X)L, (X), 1 < p < w,
such that [T, <1, sup{|T'()l.: t =0} < K for some aonsmm K>
Then for any fe My(X) the average A(a)f converges almost eawrywhma a8
a —>» 00,

Proof. The case of p =1 is known to hold for fe M} (X)
If p > 1, then by Lemma 2.1 we have

([14])-

. ¢ ‘
(4.15) u{f > 2K < f!f\-”du

11>t
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for [ & Ly (X) + Ly ( 2( and every > 0 since the ergodic maximal operator
i uwun by Uf =f* is an L bounded quasi-linear operator of weal
type (p,p) by (4-.‘1,1) Now let us put

(4.16) o(f) (@) = limsup|4 («)f(z

a,pro0

) =4 (B)f (@)

for f e My(X). Select o sequence {f,} of simple functions having support
of finite measure, such that f, —f everywhere as n — co and |f, —f]
< 21f] for all 2> 1. Then o(f) < o(f—f)+o(f,) and o(f,) =0 by
Theorem 4.1.. Thervefore, o(f) < o(f—f,) <2(f—f,)* and so

(447) #lo(f) > 8K < pf(f—f)* > 4H9)
¢
<z [ u—fra

[f=Ipi>2t

¢
<z [1U—fpano
1f1>¢

ag > oo on. account of the Lebesgue dominated convergence theorem,
which inplies o(f) = 0, and hence completes the proof of Theorem 4.2.

A strongly continuous semigroup {T'(f): ¢ > 0} of linear contractions
on L,(X) is called regular if

oo
(4.18) [ 1T f1a =

almost everywhere for some feL;(X
{T'(t): t= 0} is totally regular if T'(1)
that the strong measurability of {T
{T}

Tunorum 4.3. Let {T(t): t > 0} be a strongly measurable semigroup
of positive linear operators on L, (X) with 1 < p < p, for some po > 1 such
that [T, <1, 20, for 1< p < o and such that the semigroup ds totally
regular on Ly (X). Then {T'(t)} can be extended in such a way that [|T'(1)], <1
Jor Ls5p < o0

Proof. For each 2> 0, T'(f) is regular a8 an operator on I,(X) by
assinption. Thus, applying the convexity theorem of Akcoglu and Cha-
con [2], T(t) can be extended to a positive linear operator Tt on L p{X)
with 1:5 p < ooin such a way that IIT( Mp <1 for 1< p< oo and T ()
= T(1) on L,(X) with L<p <p,. Considering that the basic measure
space iy a-finit(\, let X, =« X, = ... be an increasing sequence of sets of
finibe measure such that X = (J X;, und let g, be the characteristic

) with f £ 0. We further say that
is regular for each > 0. Recall
(¢)} implies the strong continuity of

iml
function of X;. Then for any fe L,(X) with 1 < p < oo, f= 0 we have

§ ~ Studia Math. 72.3
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f(@) = lim (g, f) (@) for almost all # € X. And T(t) is given by
[{—>o0

(4.19) T(O)f (@) = YT (@) (x:f) ()

4—+00

which is defined for almost all ¥ e X. If f is not positive, then

(4.20) T)f = Tafr—Twf .
Now let {d;} be any decreasing sequence of positive numbers with l_irn d; =0,
and put for feL,(X) with 1<p << o0 and 3,820 oo

(4.21) By(t, 8) = {w: 1T (t+8)f(@) =Tt L ()f (@) > 0},
(4.22)  Bi(t,8) = {w: |L(t+8)(1:S) (@) — L OT (8) (uf) (@) > a3}
From (4.21) and (4.22) we obtain

(4.23) By, ) UE‘t 5)

and u(Bj(t, s)) =0 for all i>1. Therefore by (4. 23), w(By(t, 8)) =0,
from which follows the semigroup property of {Z'(t): ¢t 0} on L (X)
with 1< p < co. The strong measurability of {7 (£)} is ensured by (4 19),
the assumption on {I'(?)} and a theorem in [8], Ch. III. Hence the proof
of the theorem is completed.

TEEOREM 4.4. Let {T(t): i 0} be a sitrongly continuous semigroup
of positive linear contractions on Ly(X) such that |T(t), <1 on Ly (X)
e L,(X) with L<p < p, for some py> 1. Then for any fe L,(X)

(4.24) lim 2 [ T f(@)at

a
a0 & o

ewists and s finite almost everywhere on X.

Remark. This theorem is a continuous analogue of a result by
AXkcogln and Chacon [2]. If p, = co then Theorem 4.4 is known as a special
case of the Dunford and Schwartz theorem [7]. But, unfortunately, if
Po = 1 then Theorem 4.4 is not true. This fact may be seen from the work
by Chacon [4].

Proof of Theorem 4.4. Let the conservative and the dissipative
parts of T(1) be O and D, respectively. Putting p(f, +) = x(+) for all
t> 0 with the characteristic function y, of C, we define

71
(4.25) Pal*) = [ p(t,)dt, w=0,1,2,..
n

The convexity theorem of Akcoglu and Ohacon, together with the fact
that 0 is a T'(1)-invariant set [3], show that {p,: n > 0} is a T(1)-admis-
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sible sequence. Assume that fe I, (X). Observe that for almost all z € X

 T([a]) [

. lim 24 -
(4.26) lim —22 f 2(01f|(a) )
and that for almost all z e 0

ot o)t
(4.27) lim %.:1____. =0,

where a = [a]-7, 0 <r< 1. From (4.26) we obtain

(4.28) lim&_—  _9

for almost all @ € 0. Therefore by (4.27), (4.28) and Chacon’s theorem [57,
for any fel,(X) and for almost all x €0,

L8 - frosma
(4.29) lim— f T(t)f (@) dt = lim &
0
[a] -1 a
S THF@) [ Tt)f)d
=0 -+ la]
[a]—1 [a]—1
= llm Jo=0 - k=0
oo [p@, 2)a
14 [a[]a]-z
2 P(®)
Je=0
[a]—1
S TP (@)
= lim 25—
o 3 pala)

Jo=0
exists and is finite, where I = f T(t)fdt e L,(X). On the other hand,
gince for almogt all ¢ eD

(4.30) ]Z T(])F (@)| < oo,

=)
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we have

[a]) ! a
(4.31) ! fT(t)f w)dtl 1- > T (k) F (= l (_[ T0)f| (@) ),

le=0 0

and hence by (4.26), (4.30) and (4.31)

.1
Hm —
a-»00 aﬂ

(4.82) T f(z)d =0

almost everywhere on D. Consequently, combining (4.29) and (4.32)
proves Theorem 4.4.

THBEOREM 4.5. Let {T;(t): 120}, ¢ =1,2,..., %, be & strongly con-
tinwous semigroups of positive linear operators om L, (X) with 1 < p < oo,
such that [T; ()l <L, sup {Ti(Mlle: 1= 0} < K, ¢ =1,2,..., %, for some
constant K > 1. Then for every f € L,(X) the averages

@

o 14 f
1 k 0

(433) A(ag, . 0)f = [ 2ut) ... utfats ... a
[
are convergent (as a, — o0, ..., o — oo independently) almost everywhere
on X, as well as in the norm of L,(X). Moreover, the functions (4.33)
are, for a; > 0, ..., a; > 0, all dominated by a function in L,(X).
Remark. The interest herc lies in the fact that these semigroups
need not commute. The case of p =1 and K =1 is known as a special
case of the Dunford and Schwartz theorem [7].
Proof of Theorem 4.5. Since the theorem is true for the case of
% =1 (Theorem 4.1), we shall apply induction and assume that it has
been proved for the case of k—1 semigroups {T;(1)}, ..., {T_,(¢)}. The
mean convergence follows then easily from the induction hypothesis.
Let 4;(a) be the average of the semigroup {I(t)} on the interval (0, a).
Then A (aj, ..., &)f = 4;(a;) ... A{a)f. To prove that the function
(4.33) is dominated by a function in L, (X), we may and will agsume that
f>=0. In view of Theorem 4.1 there wre functions fy,...,f in I, (X)
such that
CAVES

{0 < Apy (o 1)fk < i1y

................................

Aq(ay) oo Ay(a)f < fi,

a)f is dominated by a function in I,(X). Now A4, («)
[n — 0 strongly a8 # ~ co and L,(X) is reflexive for

U > 0,
(4.34) Gy o > 0,
Ayy evey 0> 0,

that is, A (g vy
is bounded, T (n)

icm
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1< p< oo, and thus the linear manifold M. genemted by functions
of the form’

(4.35) f= !]+Z(hg-1’k () hy)
with g e L,(X), T,(t)g =g, >0, and with by € L,(X)NL,(X), is denge
in L,(X). For every f of the form (4.35) we have

(4.36)  Alay, ooy qp)f = Alay, ..., 0 1)9—{-

ﬂk+y

J}’j'zl"l” Ay(ay) oo dy (o 1)[ka(t h’l‘”"’f T, (®) hfdt]
Je=

(4.37) “A ay, - ,ak)[z (hy =T (4, 1) ” _-—Znh,uwt,

The induction hypothesis, eombined with (4.36) and (4.37), shows that
lm A4 (ay, ..., )f exigts almost everywhere. Therefore it ensues from
this that the almost everywhere convergence of the function (4.33) holds
for every fe . Considering the situation described above, since
sup |4 (a;, ..., a5)f| < co  almost everywhere for feL,(X), we may
apply the Banach convergence theorem to complete the ploof Hence the
theorem follows.

TupoREM 4.6. Let {T,(1): 1> 0},4 =1,2,..., k&, be I, -commuous and
L-integrable semigroups of pomtwe linear opemtors on L i (X) +L (X)
with 1 < p < oo such that |T,(0), <1, sup{T;(t)le: = 0} <K, i=1,
2y .05k, for soms constant K>1. Then for any f eM"l‘f’W“")(X)
ﬂw funomon (4.33) converges almost everywhere on X as a, — oo, ..
independently.

We omit the proof of thisy theorem since the argument of proof is
the same ag that in Theorem 8.2 using Theorem 4.1 and Theorem 4.5.

COOROLLARY 4.1. Let {T;(1): 120}, ¢ =1,2,...,k be strongly con-
tinuous, totally regular semigroups of positive linear contractions on I,(X)
such that Ty, <L, ¢ =1,2,..., % on L (X)NL,(X) with 1 <p < ps
Sor some py > 1. Then .’l’heorom 4.5 holds Jor every f e L, (X) with L <p < oo.

Proof., Use Theorem 4.3 and Theorem 4.5.

QOROLLARY 4.2. Let {Ty(t): 120}, 4 =1,2,...,k, be Ly-continuous,
L -integrable and totally regular semigroups of positive linear operators
N Ly (X) + Loy (X) such that |Ty(t) I, <1, 6 =1, 2, ..., k, on L, (X)NL,(X)
with 1 < p << p, for some p, > L. Then the same assertion as that of Theorem
4.6 s true for the case of p == 1

Proo:ﬁ.EUse Theorem 4.3 and Theorem 4.6.

g Oy —> OO
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COROLLARY 4.3. Under the hypothesis of Corollary 4.2, assume the
additional condition that the semigroups are commutative. Then for any
fe MYZX) the limit

(4.38) fim — f f Ty(ty) ... Tyt fts ... dt,

k
a0 & H

exists and is finite almost everywhere on X.
Proof. The proof is similar to that of Theorem 3.3 using Theorem
4.3 and the Dunford—Schwartz theorem ([7], Theorem 17, p. 169).

5. Local ergodic theorems. In this section we prove

TEBEOREM B.1. Let {T(ty, ..., 8): 1,22 0,0 =1, 2, ..., %} be an L,-oon-
tinuous, L-integrable k-parameter semigroup of positive linear operators
o1 Ly (X) + Lo, (X) with 1 < p < oo, such that [T (ty, ..., bl < expla(t+ ...
e ) T (R, ooy Bl < K exp [B(8+ ... +-E)] for some constants a > 0,
b>=0 and K> 0. Then for any fe My(X) with 1< p< oo

a

1 -
(5.1) lim ——Ff...f_’l’(tl,‘ ey G)fdly o ity = f
0 0

a0+ &

almost everywhere on X.

TusoREM 5.2, Let {T;(t): t=0}, 1 =1,2, ..., k, be restrictedly stron-

gly continuous semigroups of positive linear operators on Ly(X)-+L,(X)

with 1< p < oo, such that |T,(t)l, < exp(ag), |T;(®)l < Kexp(bt) for

some constants K >0, a;>0 and b; >0, 2 =1,2, ...,k Then for every
fe Mg)l(zz)(k—l)( x)

ay

=
A

0

(8.2)

o
f To(ty) oo T (t)falty ... dt, —f
0

almost everywhere as a; — 04, ..., a, — 0 independently.

In what follows the symbol Ay(ay, ..., o) will be used instead of
A(ay, ..., az) when it is desirable to show the dependence of 4 (a;, ..., &)
upon T;(t), ¢+ =1,2,..., %k To prove the above theorems we noed the
following

Lemma 5.1. On  the lhypothesis of Theorem 5.2, let S;(t) ==
exp [ —max(a;, b)t] Ti(t), ¢ =1,2,...,k Then for every feL,(X)--
+ Lo (X), 1 < p < oo, the following two statements are equivalent:

(5.3) m  Agp(ay, ..y ap)f =1 ae.
Uyyeen, 020
(6.4) lim  Ag(ogy ...y a)f =F a.c.

ay e ,a7=+0+

icm
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Proof. Straightforward.

Proof of Theorem 5.1. Define a new semi oup {S(t
by setting groue {3t

(8.5) S, ...

o b)}

1 t) = exp[—max (a, b)(t+ ... +4)]1T(ty, ..., 4,);
then I8ty oo Gl <Ly 18(ky, oy 4l < K. In proving the theorem we
may and will assume 0 < f e M3(X). Let us put

, 1pFF
(5.6) V(a)f = -Jf'--fﬁ(tu ey Ty <. dty,
0 0

f5(@) = sup V(a)f(a).

ax>0

(6.7)
If we define

(8.8) o(f)(@) == l'im%up V (a)f (@) —liming V(a)f(2),
a0+

a0

then o is subadditive and w(f)< 2f%. Now choose a sequence {f,} of
simple functions having support of finite measure such that fa = f point-
wise a8 n - oo and [f —f,| <2]f| for each n>1. We have o(fi<w(f—F,)+
Fa(fp) = o(f—F,) < 2(f~f,)5 since o(f,) = 0 by the MeGrath theorem
[10]. Upon. applying Theorem 4.5 and o slight modification of the Dunford
and Schwartz lemma ([7], Lemma 11, p. 169) we see that the ergodic
maximal operator Ug given by Ugf =f5 is an I_-bounded sublinear
operator of weak type (p, p). Thus from Lemma 2.1 we get with the de-
composition (2.6)

(5.9) pl{o(f) > 8Kt} < u{(f —fu) > 4Kt}
o
<z [ 1F-filau

1/ ~Fpl>2t
< g *d, 0
= 4P ml‘ ’f”fnl ® >

a8 # ~» co for every ¢ 2 0 on nccount of the Lebesgue dominated conver-
gence theorem, which implies that o(f) = 0 and that lim V{(a)f =f
a.0., beewuso wo have e

(8.10) V() f =f1 =< [V (@) (f = -+ |V (a)fp —fal + 1f —fl

and
uflimsup |V (@) (f ~f,)| > 4K1} < p{sup |V (o) (f—F,)| > 4K}
) | a>0
<

w{(f—fa)s > 4K}
This, together with Lewma 5.1, completes the proof of Theorem 5.1.
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Proof of Theorem 5.2. Let {8;(t)}, ¢ =1,2,...,k be the semi-
groups defined in Lemma 5.1 for which [8;(8)l, <1, I8;(})lle < K. Tor
these semigroups the convergence (5.2) in the case of p = 1 has already
been discussed in [11]. We assume p > 1 and apply induetion to prove
the theorem. The convergence (5.2) is true for the semigroup 8,(¢) (The-
orem b5.1). Next suppose that the theorem has been established in the
case of k —1 semigroups 8y (2), - .., Sy; (f). Denoting By(a) = (1 /u) I S:(bat,
we have for ke L,(X)NL,(X) 0

1/ .
(5.11) Bula)h—Hll < = [ ISu(t)h—hludt
@ 1]

tending to zero as a -0, so that

(512)  |Ag(an, -y @) —h] < [By(ay) -o. By (@) [By(a) —I1h]+

+IBy(ay) « v Byoy(@gy) o — A
< E* 7By () b —Bllg +1By (@) - By—y (o) b — 1]
which approaches zero as ay, ..., @, — 0+ by the induetion hypothesis.

This shows that the limit (5.2) holds good for any simple function with
support of finite measure. Since by Theorem 4.5

(5.13) & = sup

°1""'"k>°

[dg(ayy ooy gp)f| < o0

almost everywhere for any f e L,(X), the Banach convergence theorem
guarantees the existence of the limit on the left-hand side of (5.2) for
8,(1), ..., 8,;(t) and for any f € L, (X). Now, for a general function f e M) (X),
we choose, as in the proof of Theorem 5.1, a sequence {f,} of simple func-
tions having support of finite measure such that f, —f pointwise and
If —ful < 2|f]| for each n. Let D, denote the set of all k-tuples a == (ay, ...
«+y o) of real numbers with L/a; > 8, L < 4 < k, and put Vg(a) = Aglay, ...
vy o) fOr a = (ay, ..., a;). Let us define

(6.14) o(f)(@) = Lm sup |Vg(a)f(@)—Ve(B)f (@)l

d—+00 @, i Dy

From what we have already observed above we obtain.

(5.15) olf) S2(f—flst o), o) =0
and
(5.16)

P {limBqulT/'S (a)f —f| > 8E*g}

§~>00 ag. 7}
< p{(f—1a)s > 485} 4 p{|f — f,| > 4K}

icm
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for cach 1> 0. Morecover, using Theorem 4.1 we have, as in the proof
of Theorem 3.2,

(B.17)  w{(f T8 > 4E*} + u{lf—F,| > 4K} <tﬁp f If —falPdp — 0
If1>2

Consequently, (8.15), (5.16) and (5.17) imply o(f) =0 and
p{lim sup|Vg(a)f —F| > 8K*} = 0.
bvo0  aeDy

an fno> 00,

(5.18)

Henece Theorem 5.2 follows immediately from this and Lemma 5.1.
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