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The Markov process determined by a
weighted composition operator

by

THOMAS HOOVER (Honolulu), ALAN LAMBERT* (Charlotte, N.C.),
and JOSEPH QUINN (Charlotte, N.C.)

Abstract. The ergodic theory of transformations of the form Tf = ¢for on
L’(X, Z, m), where 7 is a measurable mapping from X to X and ¢ is a measurable
function from X to R, is studied. Particular attention is paid to determining the con-
servative and dissipative parts of such operators.

1. Introduction. Transformations of the form Tf =foron L' (X, X, m),
where 7 is a measurable mapping from X to X, have been, and continue
to be, widely studied. Such mappings form the basis for a large part of
the modern development of ergodic theory and Markov processes. In this
paper the authors ¢xamine the broader class of weighted composition
operators on L'(X, X, m), that is, operators of the form Tf = g-for.
Particular attention is paid to determining the conservative and dissipative
parts of such operators.

In Section 2 the basic properties of weighted composition operators
are cstablished, such as evaluation of nmorm and adjoint. Most of the
notation employed in the paper is formalized in this section.

Section 3 is concerned with the development of the structure of the
a-ring of invariant sets for a weighted composition operator. Theorem (3.2)
establishes several equivalent characterizations of invariance and is the
major result of this section.

The results of Section 3 are, in Section 4, focused on the examination
of the conservative and dissipative sets for such processes. In the case
where 7 i measure preserving a complete analysis of these parts is ac-
complished ((4.2) and (4.3)).

Section 5 concludes the paper with two examples of such operators.
In the first example it is shown that even in the measure preserving 7,
isometric operator, case conservatism is not a metric equivalence invariant.
The second example indicates how complicated the non-measure preserving
case can be.

* Research supported by NSI grant MCS77-01342,


GUEST


226 T. Hoover, A. Lambert, J. Quinn

2. Preliminaries. Throughout this paper (X, X, m) is a probability
space and L' = I'(X, X, m) is the Banach space of equivalence classes of
absolutely integrable real valued functions on X. For § a Z-measurable
subset of X, L' (8) = L'(8, Zlg, mlg).

It X, is a subring of X, then to each non-negative X-measurable
(or L') function f there is associated a Z,-measurable function E(f|Z,)
so that for each X, set §

[fam = [B(f|Z,)dm.
8 8

B(f|Z,) is the expected value of f given X,. See [3] for a general discussion
of expected values.

Let = be a mapping from X to X such that +~'(S) is in 2 for each 8
in %, and such that mo<™! is absolutely continuous with respect to m.
The symbol " stands for the n-fold composition of = with itself. Further,
let ¢ be a measurable mapping of X into (0, c0). We define the weighted
composition operator T, . on L' by

T,.(f) = ¢ for

provided the resulting funetion is also in I'. It |1, .Il, < 1, we will call
T,. & weighted composition process since in this case (T, ., X, X, m) is
a Markov process, in the sense of Foquel [4].

We wish to establish formulas for the norms and adjoints of such
operators. We will use the following well-known facts frequently throughout
this paper.

1. ¥ g is Z,measurable, then E(fg|Z;) = E(f|Zy)g.

2. fis v~! Z-measurable if and only if f = gor for some T-measurable
function g.

In view of (2) above it makes sense to refer to the function B (f|jz"'Z)a
—1

oT .
(2.1) PROPOSITION. Let T =T, .. Then
= dmo v*
(8) IT; = || (Bpt Do) ——— | ;
m |00
-1
(b) T = [Blgghi*Epor] 207,
dm
equivalently
d ~-1
) (@gor = (Blogl 1 (T Jox
m
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Proof. Let f be in L’. Then
IZfll, = f olforldm = f Elpl for|[r™'Z)dm = f Bl Z)| fordm
X X X

= [BllhE)or]fldmos™!
X

dmozt

= [Br D0 —

x
In general,

Ifldm.

sup { [Ihglam: [hly =1} = lgl..,
X

80 the validity of (a) is established. Tn order to prove (b) and (b’), let f
be in L' and g be in L®. Then

(Zf,9) = [ (@) (for)g)dm = [ Elpgl v Z)fovdm
X X

o —1q Amoz™?

= [ (Blpglr™5) 0v ] S22 f dm,
X

so that (b) and (b’) hold.

We will especially be interested in the class of weighted composition
operators T, for which v is measure preserving, that is m(z™8) = m(8)
for every § in Z. In this case we have dmor™!/dm = 1.

We will also be concerned with isometric operators, [|Tfll, = [Ifll, for
each f in I'. It follows immediately from the derivation of 2.1 (a) that

d —1
T =7T,, is isometric if and only if [B(plv'Z)or™"] mer g

a.e. dm. dm

A Z-get S is said to be invariant for T =T, if T*1g = 14, the char-
acteristic function of §. See [4] for a full discussion of invariant sets.
Let # = S (p, 1) be the o-ring of invariant sets for T, ..

The conservative set for T is ¢ = {we X: 3 (T"1)(z)= oo} and the
n=0

dissipative set for T, . is D = X —C ([4]). From [4], Ch. II, and (3.2),
it follows that ¢ (but not in general D) is an invariant set for T

Throughout this paper all set references are to be interpreted as valid
up to sets of measure 0. For example, the statement A < B is to be in-
terpreted as m(B—A) = 0.

3. Characterization of invariant sets. Let 7' =T, . be a weighted
composition process and let X’ = {4 e : 74 = 4}.

‘We say that 7 is full on the set 8 ¢ X if whenever B < 8, HeZ,
and m(#) > 0, then m(z" B) > 0.
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(81) LeMMA. Let 8 eX'. Then the following are equivalent:
(a) T is an isometry on L'(S);
(b) T"Lg > 1g;
(e) @) = s full on 8, and
(i) (T"1g)o7 > Lg.
Proof. Assume (2) holds and let 4 < 8, m(4)> 0. Then

m(4) =Ll = ITLyl, = (pl407,1) = (T1,1,407)
= (1, T*(1407).
d -1
But T*(1,07) = [B(glo7 v Z)ov ] —— . Now, 1,07 = 1,-1
=1,-14 lg since 4 < 8 and 'S = §, so that
dmov™*
(1, = |B) 1 )or™ Y ————
(1407) = [Blgls (Ly07)| e Zjor™ ] ——
- -1 dmor™?! .
=[B(glg] v77 2077} ———— 1, = (I"1lg)1,.
dm
Thus
m(d) = |TLglh= |T* (Lol = f(T*lS)dm <m(4).
A

It follows that T"1g =1 a.e. on 8, i.e. Ty >
holds, so that (a) and (b) are equivalent.

Suppose now that (b) holds. If 4 < § with m(v7!'4) = 0, then as
above, we have m({4) = 1T (L07)l, = |[T*L,—14ll,= 0, 80 = i8 full on §.
,(Al)so, since T™14 > 1g and 7728 = 8, (T*14)or > 1407 = 1g, so (b) implies
e).

Finally, supposa that (c) is valid. Let A
Then T—IA {wie(@) €8 and (T*1g)(r(w) <1} = [w e 8: (T*Lg)(r(0))
<1} = @. (The second equality follows from the fact that v—§ = &.)
But 7 is full on 8, s0 m(4) = 0, that is to say, (b) holds and the proof is
complete.

We are now ready to characterize the invariant ring (g, 7).

(8.2) TEEOREM. Leét 8 € X. Then 8 is 'm.f rp, ) if and only if S e’
and any of the (equivalent) conditions (a), (b), or (c) from (3.1) holds.

Proof. Since 71(8) = 8, (X —-8) = X—S. Therefore,

J Tedm = [ )(T*1g)am = [ (Le)(TLx_g)dm
L X-8 X X

1g. The converse clearly

={rel: (T, (») <1}

= Xf Plele-iogdm = [ (glg)(Lx_g)dm =0,
X

icm
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so that 1y = 0 off 8. Suppose that (3.1b) holds, ie. T4 >
T*14 <1 and vanishes off 8, T*1g = 14, so that S e £ (g, 7)-

Now suppose that S is in #(p, 7). We need only show that 7' = S.
Note that

1g. Since

0= [Tigim = [Tix gdm= [gl. -z g dm.
X—-8 8 8

Thus v~ (X —8) = X — 8. Moreover, T*1x_o = T*1 —T*1; = T*1 —1g, s0
0=[T"1y sdm = [ @l.—1igdm. It follows that »*§ =8 and so
s X-8

7718 = 8.
The following result holds for any Markov process on a probability
measure space with the property that |Tfl, = ITIfl;-

(3.3) CorOLLARY. X 48 invariant if and only if T is an isomeiry.

Since ¢ = O(T) is an invariant set, T is an isometry on L'(0). Let
I(T) be the largest (modulo sets of measure 0) invariant set in S (¢, 7).
Set DI(T) = I(T)—0(T), and 8D(T) = X —I(T). Then T is am isometry
on I/(I(T)). Furthermore, v {DI(T)) = DI(T) and v Y(8D(T)) = 8D(T).
It follows that T = To@Tp; ®Tgp where Ty, is the restriction of T
to the space L'(M). In the case where v is measure preserving we will
succinetly and completely characterize these “parts’” of T.

Note that if v is measure preserving, then = is full on every Z-set.
It follows from (3.2¢) that S(1, v) = Z’, In particular, the dissipative
set for T, , is in X'.

4. The conservative and dissipative sets. In this section we characterize
the conservative and dissipative parts of T, , in terms of ¢ and v when =
is measure preserving. For notational convenience let 7* be the k-fold

n
composition of v with itself, set ¢, = 1 and ¢,,, = [] por*. Thus T
k=0

= g,for" or equivalently I™ =T, .». Let E,(f) = B(f| v™"Z), so that
T*"f = B,(p,f)or ™ The following lemma is related to [3], p. 732, Bx. 27.
However, in this setting a more detailed analysis is possible.

(41) LemMA. Let T =T, be a weighted composition operator (noi
necessarily coniractive) with v being measure preserving., Further suppose
that loge is in L'. Then

Lim gl»

N—>00

Proof. We have

= exp [B(logp|Z")] a.e. dm.

n—1

- 2o = Lo [ o) -

k=0

$lH

n—
logg,™ (@) 2 (logg)o ()
=0
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1 n—1
== 3 1k loge)(@).
gt
The result follows from the Birkhoff pointwise ergodic theorem [1].
(4.2) TamoREM. Let T =T, . be a weighted composition operator such
that © is measure preserving and logy is summable. Then D = {E(logy|X")
< 0}.
Proof. Ifxisin {B(loge|Z’) < 0}, then from (4.1) we have Lim [p, ()]/»
< 1 so that Y, (#) < co. Thus {H(logg|Z)< 0} < D.

o0

Set f =1/ 3 p,). Then f =0 off D and 1>f>0 on D. Dircet

n=0
computation shows, for > 1, that

n—

(for1—( 21 o )f] = ouf-

k=0

It follows from this that
Tim ()" < fim (fo 7"
and thekproof of (4.1) can be modified to show that
Iim (fo ") ¥ = lim (for)** < 1
i 0< f< 1 Using (4.1) it can now he seen that H(logp|Z')< 0 on D.

I 7 is measure preserving and T = T, is a process, then somewhat
more can be said about the pieces of 7' in terms of ¢. Tt turns out that
we need not agsume that loge is in L’. We will use the following notation.
If A e X, then A, is the largest (as usual up to sets of measure 0) J (p, 7)
set in A4([4], Ch. IIT).

4.3) THBOREM. Let 7 b i -
4 =({E)1(¢) O ¢ measure preserving, A, = {p -=1} and
(a) I(T) = Ay,
() O(T) = A,
(¢) DI(T) = Ay —4yx, and
(@) 8D(T) = X —A,4.
-1

Proof. (a): Since or =1, a set § is invariant if and only

if_r Is full on § and By(ple) > 1g. Thus, if § is invariant, 1 > F,(pls)
=EH(p}lg =1on 8, s0 § = 4, and congequently S < 4,,. If (b) holds,

©
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then (¢) and (d) are valid, as they would be the definitions of the respective
parts. The proof will be complete upon the verification of (b),
(b): Suppose first that loge is summable. Certainly, O(T) = A
Ll
gince ) @, = oo on Ay. Let A € X’ with 4 < X ~A4,,. On 4 we have,

im0
via Taylor’s theorem,

(p—1)*
Z()?r
for some function Z on the range of ¢. Then

(p—1)
1 = —1) — .
Af ogy zf (p—1) ) ey

Since A eZX =1, and since Bi(p)<1 ae., [l@—1)=[B(p)—
—m(4)<0. Thus floge < [((¢—1)*/[Z(¢)]"). But :i cX —zﬁ,, 50 @
cannot be identicaﬁy 1 onAA. Consequently [{(p —1)*/[Z{¢)]}) > 0, 80
tha;tAf logp < 0. Thus H(loge|Z')< 0 a.e. on } —Ags. Now, from (4.1),

we have that X —4, < D(T).

This shows that A, = O(T). Dropping the assumption that loge
is in I, let y = }(1-+¢). Then logy is summable and T, is a weighted
composition process. Moreover, {y =1} = {p =1} = 4,. Hence 0(T,,.)

logp = (p—1)—

= Ap. Now
1 n-—-1 1 n-1
Uny = = —
log[yi"] == D logpa = D log(h+1por)
k=0 Km0
n—1

1 —
> % 3logy or*(concavity of log)=%-;10g(pn = logV ¢}™.

s )
Thus pi* > Vg, Let a =lim y)"; then Tmel*< a2, and so {a<1}

) N-p00
< D(T,,). This implies that D(ZT,,) 2 D(T,,) = X —Ax, and hence
O(T,.) < Ag. Since the reverse inclusion holds regardless of the sum-
mability of logg, the proof is complete.

We terminate this section with some results concerning the dissipative
part of a conjugate of T, .. This material will be used in the subsequent
section. The proofs of the following two results are both immediate and
omitted.

(4.4) LuvmA. Let ¢ be a measure isomorphism on (X,2) and lot
Ty=¢""or00. Then 0(T,.,) =07 0(T 0e-1,)) and D(T,, ) = ¢~ (D (Tg0e-1,1)-

3 — Studia Math. 723
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" (4.B) OOROLLABY Ifr=¢ “lorop as above and log qaog

. D(T,.) ~g~1({E(1og¢og-']z' }<0})

Yis in L', then

.- 5, Two examples, Two operators 4 and B on the normed set N
are said to be metrically equivalent if |Aw|| = ||Ba|| for every z in N. It ig
eagy to see that the weighted compogition operators .T,,, - and Te .+ (same 7)
are metrically equivalent if and only if B, (p) = Hy(p). At first glance
it would seem reagonable that the property of being conservative is a
metric equivalence invariant, but (4.3) suggests that this is not the case.
This first example illustrates that, even in the meagurc preserving case,
most weighted composmon processes, Jncludmg isometric ones, are dissi-
pative.

(5.1) Bxauprm. Let X [o,1} and’ let m be Lebesgue measure.
Define the measure preserving mapping v from X to X by

2w,
2(1—a),

00<1/2

wo) = r<l.

: 1/2

It is easily verified that +~'X is the o-ring of all measurable sets in X
symmetric about 1/2. Moreover, I'(1, 7) is ergodic, i.e. #(1, ¢) = {@, X}.
Congider 4 € #(1, 7) with-m(4) > 0. For each o in (0, 1) there is a diadic
interval J = [m[2?, (m+1)/2’] such that m(And)> a/2!. For k<j
we have m(t*J) =1/2""% and using the fact that ™4 = 4 and v is
méagure preserving, we have m(ANT) > a/2" 7. In particular, for
k =j we have m(4) = m(A ) > a. Smce a was chosen arbitrarily in
(0, 1), we are forced to conclude that m(4d) =1.

In light of (4.3) ‘we may make the following observations:

(a) If @ is not identically 1, then D(T ) =X.

(b) If B (¢) =1 a.e., then I(TW) =

(¢) For ¢ = {1, 1,2}—}—4};1[1,2 1y We have D1¢ =1 a.e. and so (a) and
(b) yield I(T,;) =D(T,,) = X

In particular, T, , and T, , are metrically equivalent while the former
is conservative and the latter is dissipative.

In general when v is not necessarily measure: preserving we know
dmor™?

am

that in order for T, , to be conservative it is necessary that By == [
-1 .
or] . A natural conjecture would be that T,. is congervative if

dmor™* ~1
or(#) | .The next example indicates that the situation

o) = [

is not nearly so simple.

icm°®
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b 2) EXAMPLE Let .
<13, ..,

3m/2 0<
o(@) = :
(Bo/d)+1/4, 1B<wo<l,
and let v be as in Example (5.1).
Note that
22/3, I<z< 1/2,
07 (w) =
(4aoj3)—1/3, 12<e<1
Let =, =vg'lo-'tog, so that -
o 20, 0<o<1/6,
w13, 16<o<1[3,
u® =\ 520, 18<w<2f,
1—a, 23<e<1.
It follows roufinely that
amory? .
1 ory = (312) Ty HE/) k-

Sinee (1, 7) is trivial, we have, according to (4.5), that T\, . is dissipative
if and only if f log(yoe™Y)dm < 0. We make two observations:
x . N 4y

-1
] _, then

logyog™ = (10g2 3 1[0,1/41u e, T (10g 4/3)1[x/4,a/41
= —log3 +(3/2 log2 < 0;

dmo1;

()Ifw~[————dm ot

Thus [logypoe™
@ 1

1, o<w<1/6,

2, 1/6<z<1/3,

1, 1B3<a<23,

102, 2/3< o<1,

¢*@) =

amor;!
then E((p*ltflz) = [—_d—'rrf_

0@t = 0. It follows that T .

-1 .
01:1] , and caleulation shows that [ log ¢*o
X
is conservative.
. e ) dmort
‘We will show that if ¢ satisfies B(p|77’Z) =|- T

not identically ¢*, then Ty, is dissipative. In order to ascertain this prop-

-1
orl] but is
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erty we develop a method for explicitly computing H(gl|v~*X). This
technique’s development is aided by examination of the following process.
In what follows ¢ is an arbitrary strictly positive L’ function.

Let ©,(#) = 1—= and 7, = ¢ 'ory00. Then

dmor;? (x '(m)) - {2, o< o<1/,
el L “l1e, 18<w<l1.
It follows that T, is a conservatxve process, In fact, y, = y for k odd,
n—1
and y, = 1 for k even, hence hm 2 Ve = (320, + (3/4)Lpyp,yy  2e0.
k-o

But then, by the Chacon Identlflcatlon Theorem (21,

[ Smel/ G 3]

= E(wlf(r, T,) )/E’( IJ(V, 7)) = B(glr'Z).
Thus
o (1/3) [p(2) -+ 20 (1 —22)], 0<az<1/3,
Blpl' Z) (#) =
@B e@ +12e(d—oe2), 1B<e<l.

A straightforward calculation yields

logpog™ =
{0,31U03/4,11
But ¢7'[0,1/4] < (0,1/3), so on [0,1/4], Hp(e™*(2))+2¢(1—207(2))]
= (B(p| r,“)l‘))(g“‘ w)) = 2/3. Hence
e (1 ~2) = p{t —2¢™(@)) = (2 —ple™ @)2
Consequently,

i E
f logg(e™ (v))dm+ f logp(l —2¢™" (o)) dw.
0 0

3
(*) [ logpog™ = [logllpoe™)(2 —poe™)/2].
[0,1/4)U[3/4,1] )
It is easily verified that such a quantity as the right side of () is maximized
when gog™* =1 on (0,1/4) and goe™ =1/2 on [3/4,1]. Similarly,
3/4

f logpog™ is strictly maximized when ¢ oo™ is 2 on (1/4, 1/2) and is 1

on (1/2, 3/4). However, these conditions imply that f logpop™ is maxim-
ized precisely when ¢ = g*.
In the above example, it turned out that there was a unique ¢ with

Blph'Z) = (d m o)

-1
01:) such that T,. was conservative. The ¢

icm
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-1

-] L :
that works is not [dm ik or] a8 might be supposed from the measure
preserving case; rather, ¢ was that function among those with the appro-
priate 7712 expected value which maximized E(loggp|Z’'). We ask whether,
for = conjugate to a measure preserving map, this is always the case.
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