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On the cohomology of sheaves & ¢ L
by
NG'UYEN VAN KHUE (Warszawa)

Abstract. Some results on the cohomology groups of sheaves SeL are given.
Using those results we get the splitness of Dolbeault complexes of holomorphic Banach
bundles ab only positive dimension over Stein manifolds.

Introduction. Lot L be a complex locally convex space and let I’
denote the strongly dual space of L. By #(L) we denote the set of all
balanced eonvex neighbourhoods of zero in L. For every U e (L) let
p(U) denote the Minkowski functional of U and let L(U) be the com-
pletion. of L(T)/p(U) L L(U)/p(U)"*(0) equipped with the norm p(T).

A locally convex space L is said to be s-nuclear (see [9]) if for every
U e (L) there exists a V e%(L) such that ¥V < U and the canonical
map o(V, U): L(V)>L(U) is s-nuclear, i.e., there exist sequences {1}
< R, {u} = L(V)" and {o} = L(V) such that

. sup {|lugl + ogll: § = 1,2, ..} < oo,
®) M A= >0,

2 M <o for p>0,
I=1 ’
and

©0
o(V, U)yu = Y Juj(we; for weL(V).
J=1
Let (X, 0) be an analytic space and & a coherent analytic sheaf
on. X. Tor every quagi-complete locally convex space I consider the
gheaf & ¢ L on X gonerated by the presheaf

U (U) o L % HOM,(L,, & (T))

for every open set U « X, where L, denotes the space L’ equipped with
the compact-open topology and HOM,(L;, #(U)) the space of all con-
tinuous linecar maps from I, into &(U) equipped with the topology of
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uniform convergence on all equicontinuous subsets of I’. Since the presheaf
UwHOM,(L;, # (1)) is a sheaf, we have

HNU, & el) = H(U, el

for every open set U < X, where we write HY(U, &) = & (U).

Let us note that H°(U, ¢ € L) is the space of holomorphie functions
on U with values in I, equipped with the ecompact-open topology [2].

The aim of this paper is to study the cohomology groups of sheaves
FeL. T §1 we prove that if X is an analytic space having a countable
topology and & a coherent analytic sheaf on X and if HY (X, & & F') =
for every s-nuclear Fréchet space F, then & (X) is isomorphic to €™ for
some m < oo, Moreover, we prove also that if X is a Stein space, then

HY(X,% ¢L) =0 for every ¢>2 and for every quasi-complete locally.

convex space L. These results will be applied to the study of the splitness
of Dolbeault complexes of holomorphic Banach bundles over complex
manifolds in § 2.

B Acknowledgments. The author wishes to express his gratitude to
Professor W. Zelazko and Dr. B. Ligocka for helpful discussions during
the preparation of the paper.

1. Cohology groups of sheaves & ¢ L. In thiy section we prove the
following

TeeorEM 1.1. (i) Let X be an analytic space having a countable topology
and & a coherent analytic sheaf on X. If HY (X, Fel') =0 for every
s-nuclear Fréchet space F, then H°(X, &) is isomorphic to O™ Sfor some
m< oo,

(i) If X 45 a compact analytic space amd & a ooherent analytio sheaf
on X such that HY(X, %) =0 for some ¢ >0, then H‘—’(X Fel)=0
for every quasi-complete locally convex space L.

TeeorEM 1.2. (i) If X is an irreducible analytic space ha'umg a non-
constant holomorphic function and if F 48 a Fréchet space which does not
admit a continuous norm, then H(X, @ ¢ I') == 0.

(i) If X is a Stein space and & o coherent analytic sheaf on X, then
HY(X,&%el) =0

Jor every g2 amd for every quasi-complete locally convew space I.
The proof of Theorem 1.1 is based on the following
ProrosiTioN 1.3. Let B be a subspace of a Fréchet space F. If B is

" s-nuclear; then there ewist am s-nuclear Fréohet space B and continuous

linear maps e: B—H and h: P8 such that h|B =e and ¢ is an em~
bedding.
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‘We need. the following.
Luvma 1.4, For every s-nuclear map T from a Banach space A into

. a Banach space B there ewist s-nuclear maps P and Q between Banach spaces

such that T = QP.

Proof. Since T is s-nuclear, there exist sequences {4} c R, {;} = A’
and {v;} = B satisfying condmon (8) and such that

Tu = Z Ayuj () vy

J=1

For wed and § = (§)el', putting
Pu = 2 I/Ejuj(u)e} ,
Juul

where {¢} denotes the canonical basis of I', we get s-nuclear maps P and
@ such that T == QP. )

Limvma 1.8. Hvery s-nuclear mop T from a subspace of a Banach space
into o Banach space can be ewtended to an s-nuolear map.

Proof. The lemma follows from the Hahn-Banach theorem.

Proof of Proposition 1.3. Let {U,} be a decreasing sequence
of balanced convex neighbourhoods of zero in F such that

(a) {U,NE} forms a basis of neighbourhoods of zero in H.

(b) The canonical maps #h,; = o(U,. NE, U,NE): B, ,—~E, are
s-nuclear, where H, = H(U,NnE). By Lemma 1.5 for each # >1 there
exigts an s-nuclear map 7.t Fpy—H, such that 772,08, = fh,
where ¥, == F(U,). Applying Lemma 1.4 to #,, we get s-nuclear maps
P} and @QF such that

(1.2)

(1.1) for wued.

QfF = 2 Vilff/”h

=1

=QrP, ..., Py = Q?+1Pj”+1’
Let B, denote the completion of ¥, /p, equipped with the norm
(L.3) D(8) = |5~ wll -+ | Phg @f el ..+ IPF"

where wp., = ® (U,ﬂ,l, v,).
By (1.3) the map o, induces naturally & contmuous Linear map @.;:
B, .4, Putting

ne1

u“;

b= hm{E,,, @}, T =limbh,,
where h,: F,~H, denotes the eanonical map, we get a Fréchet space B
and a contmuous lmesn- maph: F->H such that ¢ = h|H is an embedding.
To finigh the proof it suffices to check that @j7y is s-nuelear for

> 2. For every 3> 2, by (L.2) and (1.3) we can define a continnous
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lineay map

izt By ISP, @ ... SImPy™
by the formula

Oy (B) = {ﬁnﬂlwz+1u Qn :L‘;lw%b-ll,u! N S n;.l’w}

Since o,y = Yu@n.1, Where y, denotes the embedding of B, into Im#i? '@
@ImP_,® ... QImP? given by the formula

yalB) = {iy™ P2} u}
and since Q7 are s-nuclear, it follows that a,,; is s-nuclear. Thus, by the
following lemma, we infer that &} is s-nuclear.

TevmA 1.6. Let ai A—~B and B: B—>U be continuous linear maps
such that ea is s-nuclear for some embedding e: B =— B and B is quasi-nuclear.
Then Ba is s-nuclear.

Proof. Since § is quasi-nuclear, 8 is represented in the form g = uy,
where y: B—>I® and 7: 1°->C are continuous linear maps [9]. By the
Fahn-Banach theorem there oxists & continuous linear map P B
such that §e = y. Since ea is s-nuclear, so is Fea. Hence fa = njen is
s-nuclear.

LemMA 1.7. Let T be a Fréchet—Montel space and let there ewist & con-

%, PL_q0lu, ...,

00
tinuous Vinear map P from B = [] B;, where By are Bamach gpaces, onio
fml

F. Then F =~ C™ for some m< oo
Proof. Let @, = H ij”B,, where U; = {u & B;: |lu] < 1}. Since

i>n
P is open, it follows tha.t for every m, the formula

Pou({thyy oeny wy}) = (PGP ({Ugy onry thy, 0, ...}

n
z1”1 B; onto F[p(PG,),
where = (P@,) denotes the canonical map from I onto F'/p(P@&,). By
hypothesis, 7 is Montel, it follows that P, is compact. Henco dimF (PH,)
< o0, On the other hand, since {PG,/m}y ... forms a basis of neighbour-
hoods of zero in T, it follows that JF is isomorphic to €™ for somo m = co.

Levuma 1.8. Let X be an analytio space and F -a Fréchet space. Then
for every f e (0eX'), there ewist U e (F) and fel0er(UY), such that
F==(0)f.

Proof. Since a map f from an analytic subset V of an open set &
in C" into a quasi-complete locally convex space L i holomorphic if
and. only if f can be extended to a holomorphic map on a neighbourhood
of every point 2 € V in & [2], we can assume without loss of generality

defines a continuous linear open map from Ep(G,)
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that X is an open set in C* for some n. Let fe(0 e F'),, z ¢ X. Take
a holomorphxc map f from a neighbourhood @ of z in X into L such that
f, = f and f(@ is bounded. Since F is Fréchet, f(@) is contained and
bounded in F(U)" for some U e%(¥F). Then, by the Cauchy integral
formula, we infer that f: G-F(U) is holomorphic. Obviously,
f = [(0) L

LevmA 1.9, Let X be a paracompact analytic space and & a coherent
analytio sheaf on X. Then H'(X, %) is s-muclear. .

Proof. (a) First we observe that subspaces and guotient spaces
of g-nmelear spaces are g-nuclear.

(b) From (a) by the Cartan Theorem B [6] and by the paracom-
pactness of X we can agsume that X is an analytic set in an open polydise

M= A= = (s e

in C" for gome n and & = 0.
(¢) Since the restriction map 0(4™)—»>0(X) is surjective [6], it suffices
to check that 0(4") iy s-nuclear.
(@) Let 0 <e<1 and let 0 < é< e By the Taylor expansion at
zero of overy element fe (4", the canonical map ’
w(s, 8): O(4")(T,)~0(4™)(Us)
is represented in the form \

w(e, 8)f

#,) € C*: maxig| <1}

= D' (8/e) ug(f)v
where ’

= {f € 0(4"): sup{|f(2)|: ze A} < 1},
ap)y, o] = a+...
U, € [0(4™)(T,)T,
FlEYaE, ... d&,

a = (ay .. )

' == gl i) ay - a,
' W (f) == &%')(2mi) s FaT | ot
0 € O(AY)(Uy);,  0a(0) = 1/8%efr ... 2fn, 2 e 4},

Since Z‘ (8/8)?* < oo for every p > 0 and gup {J|ug )l + 0]} < oo, it follows

that cu(a, ) is s-nuclear.

Proof of Theorem 1.1, (i). By Lemma 1.9 there exists a decreasing
basis of balanced convex nelghboulhoods of zero in B =H'(X,%),
{U,}, such tham the maps 7ty = @(Upsay Up)t BB, are s-nuclear.

Put F = ” B;. Applying Proposltion 1.3 to the canomical embedding
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e: BE—F, e(u) = {n(T, u}, we get an s-nuclear Fréchet space B and
continuous linear maps é: B->H, h: P—F such that & is an embedding
and he = 6. Since B /Imé is Fréchet-Montel, the sequenco

0— (B [Tmé)' —B' > B 0

is topologically exact. Hence the sequence
0S¢ (B [Imé) sk Pel

is exact. We prove that the map id 8’ is surjective. Lot 2 € X und f € (Fel'),.
Take a surjective morphism u: ¢?|¢—%|G and fe H(G, #eB'") inducing
f, where @ is a Stein neighbourhood of z in X. Let ¥V be a I‘(‘]MIVL‘JV compuach
neighbourhood of 2 in @. Then there exists W e #(¢? (G )) such that 0%(G@)(W)
is isomorphic to a Hilbert space and g|V = a(W ) gV for all g e OP(@).
Since the map fg: H'(G, 0°)—~H'(G, &) induced by 4 is surjective [6],
jtg induces a continuous linear map y from 0%(@)(W) onto H*(G, 2)(W),
where W = jig(W). Thus there exists a continuous linear map g: H-0?(V)
such that i, = f| V. By Lemma 1.8 we can assume that § € 07(V)
for some U e (F), where U, =& (U). On the other hand, since the
regtriction map B(U)—~[Imé(UNIméE)] iz surjective, there exists
ne 0PVl such that (ideé’)n = f [4]. Obviously

a = (ppeidyn e H(V, PeB') and  [(idse’)a], = .
Since B/Imé is s-nuclear, H'(X, Le(F/Imé)’) = 0. Thus the map
H(X, #:8') = HOM,(B, & (X))-H* (X, #el') == HOM,(E, & (X))

is surjective. Hence there exists an eclement 6 eI—IOM,(E, & (X)) such
that 6c = o for all v e HY(X, &). Setting P = 0h, we get a continuous
linear map from F onto H°(X, ). Since H'(X, &) is Fréchet—Montel,
by Lemma 1.7 H(X, &) is isomorphic to C™ for some m << oo. This
completes the proof of (i).

(ii). By #(L) we denote the set of all bounded balanced convex
subscts of L. Liet K e #(L) and let L(XK) denote the Banach space spanned
by L. This space is equipped with the norm g, where g iy the Minkowski
* funetional of K on L(K). Tt is known [2] fhat

(1.4) (Zel), = U((SsL(K)),: K e 4 (L)) seX.

Let w € HY(X, Sel). Since HY(X, PsL) mhmfi"(% &ell), by the com-
pactness of X and by (1.4) we find an K e J(L) such that o is induced
by some element o{K) € 2%, #sL(K)), whero % is & Stein open. covering
of X and Z4%, SeL(K)) = Kerd?, 8% = 9%, FeL(K)): 0%, #:L(K))
0%, ¥eL(K)) are coboundary maps and 0%#, .SPeL(K)) are oquipped
with the product topology. Sinee 2ais a Leray covering of X, by hypo-

ideé’:

for

eB(U,)" -

e ©
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thesis the map 87 0714, #)>2%%U, &) is surjective. Then, by the
nuclearity of 071 (%, &) it follows that the map

Yo, PeL(K)): 0\, FeL(K

ig surjective, Hence w(K) = 6776
o = 0 and (ii) is proved.

Troof of Theorem L2, (i): Let H'(X, 0sF') = 0, where F is
gome Fréchet space which does not admit a continuons norm. By a theorem
of Bessaga and Pelezydgki [1], there exists & complemented subspace
of F' which is isomorphic to €. Hence H'(X, 0sC*') = 0.

- Lot f be s non-congtant holomorphic function. onX Put o = sup{|f(2)[:

z e X} By the irreduecibility of X wo can assume that & — co since if
a < oo, wo replace f by the function (r—f(2))™", where |r] =a and
r o= limf(m,) for o sequence {w,} < X. Take a sequence {2,} = R(X),
where B(X) denotes the regular part of X such that | f( j~>oc0 and f(z,)
;!:j'(rx,-) for k = 4. Seleet ¢ € 0(C) such that ¢ 1(0) = {f(2,)},. Put

= (f)"(0) = CJ v, = fY(f(2)). Since {f (2}, is discrete

and gince f iy (-()11t1111L()11s, there exists an open covering # = {U,},,n of
X sueh that

K)) 24, SeL(K))
for some & e 0%, =L(K)). Thus

where V;

Ve Uy for j>
UinU; # @ for @4, 4,j=>1 and VnU, = @.
Put fiy == 0 for 4,j =1 and fi; = ~f = ¢le for j>0, where ¢ _(,)
¢ = (0,...,0,1), ]>1 Obviously {f} & Z' (%, 0C>"). Since H* (X , 0:C*')

== 0, wo can uassume that f;
thus we have «

o+affi =
Thus the formula

= f;~f;, where f; e H'(U;, 8:C*") and

on for ¢,j= 0.

o5+ ffy U;nT;

for zel;

Jiz) = e+ olfy(2)

dotine wn olement fe H'(X, 0s0*) such that f(V,) = o for > 1. MTake
%y E Iﬂ(,X) and & nol;rhlnnnh()()(l @ of 2, such that f(@) is bounded. Then

fith = (')j Cey for somne ny. Putb
: 36,3 2: f(&,) = (—BC&,}

Note thut @ is non-ompby wnd open. Let # € G NE(X) (m(l let @, be & con-
neeted neighbourhood of 2z in B(X) such that fa,) = G—) 00, for some p.
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- ny+p -
Since f|G,: G,~ D@-)Ce is holomorphie, f(G,NG) < (-I-)Oe, and G,NnG is
g=
11011 empty open m @,, by the connectedness of G 1t follows that f(@, )

c (-B Ce;. Thus 2 &@ and hence @ is closed in R(X). Since X ig irreducible,
fm1

- k(Z
R(X) is connected. Hence ¢ = R(X) and thus (B(X)) = é Ce;. Thig
Jml
- k(7
is impossible since #,.,; € B(X) and f(2,.4.1) ¢é Ce;. Thug (i) is proved.
=1
(ii): Let X, & and L be as in (ii) and ¢ > 2. We prove that H(X, &al)

=0. We write X = J W,, where W, are relatively compact sots in
X such that =l

Wa = Wn c Wyyr for nzl.
Tt is known [2] (Theorem B, p. 338) that
(1.5) for
Let

BP(W,, L) = mp=l

0—>.?3L——>J0—5»J1—Hvl> e

be a flabby resolution of #eL. Since
0—>.9’8L|Wn—+Jo [Wn-—>J1 IWN—> fou

is a flabby resolution of ,S’sLJW,Z, by (1.5) we have

¥

/\/\

(1.6) Kerd,|W, =Imd,_,|W, for mnp>1.

N
Let o € Kerd,. By (1.6) for every # > 1 there exists an. a™ e HO(W,,, Jy- )
/\
such that d,_, a(n) = o|W,. Since da (o™ — a"‘”‘”)]Wal” =0, by (L.6)
there exists a g™ e H(W,_,, Jyn) such that

N N
dy s ﬁ(n_l) == (a(m - Q(n—l)) (Wi

Since J,, are flabby for every x, there cxwts an g1 €y (2
that ﬂ‘”“"[W = . Define an a € J,_,(X) by

(a‘"’—d;\_z(z 5(»))’%_

k<n

X) guch

aIWn =
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Thig is well defined since for %3 m we have
~ . A -
“(n)“da-z(z ﬂ(k))“(a(m)“dq-s(Zﬂ(k))
ke<n k<m

= o — g _ 3 A9)

mek<n
e o) e ) 2 (a(k+1)~_a(k)) =0 on W,.
mek<n -

»y A - ~
Finally on W, d,.,¢ = o|W,. Thus Ay = 0.
OororAry 1.10. Cousin’s Firgt Problem for holomorphic functions

‘on a Stein spaco with values in F', where ¥ is a Fréchet space which

does not admit & continuous norm, may not admit a solution.

It is known [2] that Cousin’s First Problem for holomorphic functions
on & Btein space with values in a Fréchet space has a solution.

Now wo apply Theorems 1.1 and 1.2 to get the splitness of Dolbeault
complexes of holomorphic vector bundles over Stein manifolds at only
positive dimension. This result has been by Palamodov [8]. We need
the following

Lmmma LLL. Let 4 be a compact polydise in C* and o a O°-form of
bidegree (p, q) on a neighbourhood of A with values in a quasi-complete
looally oonvew space L. If ¢> 0 and 6 o =0, where 0% = 0%id, then
there ewists o (J°-form n of bidegree (p, g —1) on a neighbourhood of Z with
values in L such that 8% 'y = o.

Proof. For L = C the lemma hag been established in [6]. Let us
notice that the proof in [6] gives also a proof of Lemma 1.10 since we
have the following

Remark 1.12. Let D be a simple connected domain in € and g a
O°-function on D with values in & quasi-complete locally convex space
I such that suppg is compact. Then setting

| s

for every 2 € D we geb a (®-function £ on D with values in I 50 that 85, f = g.
Moreover, it g is €% or holomorphic in some additional parameters, so

in f.
Let & be a holomorphic Banach bundle over a complex manifold
X. By 0, wo denote the sheuf of germs of holomorphie seetions of £ on X
and by Qﬂ’”*") the sheat of germs of ¢™-forms of bidegree (p, q) on X with
values in & Lemma 111 1mplxes that the sequence
Fl
0"*‘)0;*’)‘9 %Qﬁ —v-} ves

(L.7)


GUEST


192 ’ Nguyen van Khue

i cxact, where Qf = Q9. The complex

20 21
D(E): 0-0,(X)~ QX B AXE ..

of global sections of (1.7) on X is called the Dolbeault compler of & We
gay that the complex D (&) splits at ¢ if there exists 4 continuous lincar
map y,: Imo¢-—>Q4(X) such that &y, = id.

ProposrTION 1.13. Let £ be o holomorphic wector bundle on a Siein
manifold X. Then D(&) splits a q if and only if ¢ > 0.

Proof. Lemmsa L.1L implies that for cvery quasi-complete locally
convex space L the sequence

(1.8) 0->0;6L—>Q e L2} eLi— ...

which is obtained by tensoring the sequence (1.7) with L is exact. Hence

HYX, 0.el) = Ker(8%eid)" [(Im 8%eid)"
— Ker §%L Tm (34 5id)".

(1.9)

Let ¢ > 0. Applying Theorem 1.2 (if) to L = (Imﬂé)‘g’)', by (1.9) it follows
that the map (8%id) : Q¢(X)e(Im 2l —~(Tm ohe(Imdf) is surjective.
This implies that D(&) splits at g.

Now we prove that D(&) does not split-at 0. For a contradiction
by (1.9) it follows that

H'Z, O:sL) =0

for every quasi-complete locally convex space L, where Z is some com-
ponent of X. By Theorem 1.1 (i) the space 0,(Z) is isomorphic to ™ for
m < oo. This is imposible, since @,(Z) is an infinite-dimensional Fréchet
space having a continuous norm. The proposition is proved.

2. Splitness of Dolbeault complexes of holomorphic Banach bundles.
Let X be an analytic space. We say that X hag o Stein morphism if there
exists & holomorphic map = from X into & Stein space W such that =~ (U)
is Stein for every Stein open set U helonging to a Stein open covering
4 of W. Since a(on™'(V)) < 8V for cvery open set ¥V < W it iy easy
to sce that 7~ *(V) is Stein for every Stein open set V in X contained
in some U e %. Thus by a lemma of Stehlé [11] there exists a Stein open
covering {V;}2, of W such that

(8,) & = V; are Stein.
i<y
(8,) £,nV,., are Runger domaing in V.

(8)) & ={X; =" (V;} is & Stein covering of X.
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a

Since X, is Stein, by (3,) it is easy to check that X;nX;,, is Runger
in Xj,,.

In this section we prove the following

TororoM 2.1. Let & be a holomorphic Banach bumdle over a Stein
manifold X. Then D(£) splits ot ¢ if and only if ¢ > 0.

TumornMm 2.2. Let & be a holomorphic Banach bundle over a complex
manifold X having a Stein morphism. Then

(i) D(&) splits at q > 2.

(i) .D(&) does mot split at 0.

Proof of Theorem 2.1. We can assume that X is connected. First
we prove that D(£) does not split at 0. For a contradiction by (1.9) we
have - ‘

(2.1) HY (X, 0,6C™') =0
Select o € 0;(X), o # 0. Since ‘X is Stein, there exists a sequence {2,} = X
and fe®(X) such that
o() #0 for j=1,
|f())|—c0 and  f(z) #flz) for j#k.

Consider the function ¢ € 0(C) and the covering # as in the proof of
Theorem 1.2 (i). Putb
o; =0 for 4,j>1 and

oy = —0; = olgf®@e; for j=0.

Obviously {o,} € 2" (%, ;cC™"). Henee by (2.1) we can agsume that
0y = 0;—0;, where ;e H' (U, 0,C),
whence
ofo,+ o®e; = gfo;+o®@¢;  on U0,
Thus there exists an element g e H*(X, 0,60 such. that (z;) ='Lr(z,.)®ej
for j = 1. By the connectedness of X and since H°(X, 0,eC*') = H'(X,
0,)eC™' it follows that
B e H'(H, O)e,® ... DH (X, Oy)e,,
This comtradicts the relation
B(#pg11) = 0 (ng11) g1 £ HY (X, 0)e® ... DHY(X, O)e,,
gince o(2,.1) # 0.
Now let ¢ > 0. We prove that D(§) splits at ¢.
(a) Tirst wo prove that

for some n,.

(2.2) H"(X,04eL) = 0 for cvery p =2 and for cvery gquasi-com-

plete locally convex space L. R

7 -~ Studla Mathematica 72, 2
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K

By the proof of Theorem 1.2 (ii) it guffices to prove that
H? (W, O;6L) = 0

for every compact subset W of X and every p =>1. Since the relation

\U{BeL(K): K € (L)} = U{[B:L](K): K € #(BeL)}
holds for all Banach spaces B, it follows that ‘

(0;6L), = U|(0s6L(K)),: K e B(L)] for zeX.

Thus

(W, (Deel}):- lim H”(W OgsL(K))= hm H”(W OpeLi(K)).

e e L)

Sinece W has a basis of Stein neighbourhoods, we infer that

HP(W, 0,50) = lim lim  HP(@, OpeL(K)) =0
— —
s Ke#(L)y
G ig Stein
(b) Using (2.2) to I = (Tm %), by the rolation ((Tmd8);); = Im 24,
we infer that the map

N

HOM,{Im ¢, Q‘g(X))—»HOM, (Im 5%, Im 5&)
induced by
024(X)->Tm 4
is surjective. This implies that D(&) splits at ¢. The theorem is proved.

The proof of Theorem 2.2 is based on the following

PrOPOSITION 2.3. Let & and X be as in Theorem 2.2 and let z, € X.
Lot Jy, denote the subsheaf of the sheaf Oy consisting of germs which vanish
at 2,. Then

(i) there emists a Stein open covering @, of X such that the map 6"
0°(0121,J€¢0)->Z1(4121, Jg,) has dense image.

(il) HY(X, 0;eL) = 0 for every q=3 and for every quasi-complote
locally convew space L.

Proof. (i ) We write & = Ji,,. Take a Stein open covering @y of
X such that @ < 4, %, forms a basis of open sets in X and

(2.3) U Xy = U Xy O U)Xy

for j>1, where %,|¢ = {Ue4,: U< @. We prove that Tm 6° (%, &)
ig denge in Z*(#,, &). It sutfices to show that

(24) Im & (% |X;, &) =2\ X;, &) for  j>1.

©
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Since 4,|X, is & Leray covering of the Stein manifold X,, (2.4) holds
for j = 1.

Now given ¢ e 2' (4, | X;,,, &). Take a sequence {a}} = O°(%,|X;, &)
such that 6°af—~|%;|X;. Since (8°al, —9)|%,)X;NX},;—0 and the map
0 A = O, X;, 9)BO (U | X;0 X}y, &) 20| X0 X5 )

defined by )
e(0, B) = 8°(0~B) 14| X;n X7,
is surjective, there exists .a sequence {(y3, ¥2)} = A converging to zero
such that
0((9’1117 '}’fz)) = (3°a{,—(p]0171|X,ﬁX;+1
= 0'd, Wﬂxj"‘X}H — 8|4, XN Xy, ,
where fe "% X},,, &), 88 =X . .

Since X;NXj,, is a Runger domain in Xj,,, there exists a sequence
{h} = H*(Xj.1, &) such that w,—h,—0 on XanHl, where u, = (af—
—yh) —(B—9%) € HNX;nX},,, &). Let 4, and k, be trivial extensions
of u, and h,, repectively, on X;. Put
afb —'71]1, "'ﬂ‘n_il‘n on @1 |-Xj7
B—vn—"Tn, Toon 4| X,

Then {at'} @ (9| X ., &) and ol > %y | X,

(ii): (a) Sinece HY(Z, 0;eL) = 0 for aevery g > 2 and for every Stein
open set Z in X, by induction on j and considering the Mayer—Vietoris
sequence of pairs (X, X;.,) we infer that
(2.5) H%X;, Oesl) =0 for ¢>=3 and for j=>1

(b) Take a flabby resolution

J+E
Uy =

O—a-weaL»JoEngfi
of thoe sheal 0,eL. Wo prove that for every j=>1 and for every ¢>3
N N
the wmtmn map Kerd,,|X;,,~Kerd, ,|X; is surjective. Given
a & Kevdg,| Xy, Since X;nXj,, is Stein and ¢—1>2, by (2.2) we find
A\
N € I guy (XyNnXyyy) such that dy, | X;0 X7 = a|X;nX;.,. Let 7 be an
extension of  on Xj,;. Setting
~ ~ -t N ! ~
QX =a and @\ X;, =dy X7,
wo got an elowent @ EKel‘da”lIXj,“ extending a.
(6) Lot oeXor da,q >3. Take 0y €Jy(X;) such thab d_ | Xyay
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' N
=a|X,. By (2.8) there exists a, € J,_,(X,) such that d,_,0 = a[X,.

: A\ . " N
‘Since (aj—a,)| X, € Kerd,_,| Xy, by (b) we find a;’ € Kerd,_,| X, extend-
ing (of—o0y)|X;. Put @y = aqy—ay . Then o, €d, ,(X,) und

~
0| Xy = oy, dq_1|.X2a2 = a|X,.

Oontinuing‘ thig process we get elements a, €J,_,(X,) such thab

AN
Uy | Xy = Oy ad dy | Xp0, =X, for az=2.

Thus the formula 8|X, = a, for n>1 defines an element §&J,., (X)
A . .
such that d,_,f = . Hence (ii) is proved.

The proof of (i) is similar to a proof of Jennane [7].

Proof of Theorem 2.2. The splitness of D(£) at ¢=2 follows
from Proposition 2.3 (ii) and from the proof of Theorem 2.1.

Now we prove that D(£) does not split at 0. For a contradiction
by Proposition 2.3 (i) we have H(X, 0;) = 0. Hence, by the splitness
of D (&), we infer that (2.1) holds. By (2.1) and by the proof of Theorem
2.1 it suffices to show that 0y (X) 0 and dim0O(X)> 1.

Obviously dim@(X) > 1 gince X hag a Stein morphism. )

Asgume that @,(X) = 0. Take z, € X such that &, # 0. Let %, and
&' = dy, be as in Proposition 2.3. Then H'(X, ') = Z' (4, &) [T &° (4,
&) and Imé°(%,, %) is dense in Z*(%,, &'). Then, by the exactness
of the following commutative diagram

0
¥
: 0ty SHY(X, &')>0
¥ ¥
00 (%1, 5") >0 (D, O)—>C° (W, )0
o v
T 0Ly, By OBy, S

0

we infor that Imé(%,, &) is closed’ and hence H'(X, ) = 0. This
implies that &, = 0 which contiradicts choice of #,. The theoremn is proved.
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