@
STUDIA MATHEMATICA, T. LXXII. (1982) lm

Packing spheres in €, spaces
by

C." GIBL* (Greensboro, N, C.) and C. CLEAVER (Kent, Ohio)

" Abstract. Packing numbers for the spaces (, and their subspaces are studied.
The exact value is ‘found for 1< p< 2 and for the subspaces T, of all triangular
matrices 1 < ¢ < 0. Results are also obtained for other subspaces.

1. Introduction. A collection of balls of radius r is $aid to be packed
in the unit ball U of a Bamach space X if each pair has disjoint interiors
and they are all contained in U. The packing number P(X) is defined by

P(X) = sup{r: infinitely uiamj balls of radius r can be packed in U}.

In this paper, the packing numbers of the 0, spaces are studied.

‘The packing numbers P(J, ) Were found by Burlack, Rankin, and
Robertson [2] to be [1 +2“””]‘ 1<p < co. In 1970, Kottman [6]
showed that 1/3 < P(X) < 1/2 for any infinite dimensional Banach space.
Regults of Wells and Williams [10], along with slight modifications in [4]
show that for I,(u) with u not purely atomic, P(L,) is the same as for
1, for 1< p < 2, but for p > 2, P(L,) = [L+2'7]7",

To see tham an infinite number of balls of radius 1/2 can be packed in
the unit ball of ¢, and hence in I, choose the center of the kth ball to be
(1/2, 1/2,...,1/2, — 1/2, 0, 0,...) where the — 1/2 occurs in the kth
position. For Banach spaces contai.ning shbspaces isomorphic to ¢,, a the-
orem of R. 0. James ([5], Lemma 2.2) implies X contains a subspace nearly
isometric to o, and hence P(X) = 1/2, Thig result was extended by Kottman
[7] to show that if ¥ is isomorphic to l,, then P(Y) > P(l,). Thus the study
of packing leads to results about the subspace structure.

A Riesz—Thorin theorem and some properties of special matrices
are uged to study the packing number of the €, spaces and some subspaces.
Although the 0, spaces have many of the properties of both 1, and L,
they are not isomorphic to either.

* The contribution of the first named author is part of his Ph.D. thesis prepared
at Kent State University under the direction of the second named author.
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2. Main results. In the following, H will denote a separable Hilbert
space, % (H) the bounded linear operators on H, and A* the adjoint of 4.

If A is a compact operator in #(H) and u; > uy > ... > 0 are the
eigenvalues of (4.4*)1/2, then for 1 < p < oo we define

1l ={ 3w} = {teadrypipe.
n=1
The space 0, consists of all compact operators 4 such that ||A], is finite.
The number 4], will denote the operator norm of A. The space €, ig the
trace class and O, the Hilbert-Schmidt operators.

To find upper bounds for the packing number of €,, we use an interp-
olation theorem in the same manner as in [4] and [10].

Let X,, X,,..., X, be Hilbert spaces and P = (p;, Pz, ..., P,) be
an a-tuple of real numbers with 1 < p;, < co. Define @Opk(X,,) to be the
linear space of all vectors 4 == (4, A,,..., 4,), 4, € Oyk(X,,), with usual
coordinate addition and scalar multiplication. In this space introduce the
norm

n .
/
Mlp, ={ 3 14l 4}
k=1
where 1< r < o and 4 = (4, ..., 4,) i3 an n-tuple of positive weights.
In case r = oo, write

I4]lp,e = max | Ay]p,.
1<k<n

Denote by Op, (4) the set of A such that [4|p, is finite.

Suppose Y,, ¥,,..., ¥,, is another collection of Hilbert spaces,
N ={%y s M) With 7,0 and @ =(¢y, sy ..:; @)y 1< < 00 and
define Cy (7). Consider linear maps taking finite rank operators in Cp (1)
into finite rank operators in Cg,(#). Then the following interpolation
theorem is established in [37.

THEOREM 1. Suppose 1< P;,Q;< o0, 17, 8,< 00,4 =1,2 and
1P =1 —1)[P,+1/Py, 1/@ = (1—1)/Q1+1/Qs,
1/r = (L—t)jry-+try, Lfjs = (L—1t) /s, +1/s,.
Let L be a bounded linear operator taking finite rank operators in O,
i =1, 2 into finite rank operators in Oy, .., ¢ = 1, 2 with bounds M, and M,,

respectively. Then L takes Cp . into Cg , and

ML (A)lg,s < Mi™ MilAllp, for AeCp,.
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This theorem is used to establish the following inequalities.
COROLLARY 2. Let 1<p< oo and Ay, Ayy.vy Ay amy eollection of
n

Dositive numbers such that 3 2 = 1. Then for any A;, 4y, ..., A, in Cp,
=1

n

n
(i) O gl — AE <20 M aAE,  1<p<2
4, fm=1 dm=]
and

n n
() 3 A~ 4,12 < (29 (0-2)/(2 1)) 3} LIAZ, 2<p< oo
Gi=1 =1
where p' = p|(p—1) and y = max (1—4).
1<i<n
Proof. Let P;, ¢ = 1, 2 be the constant n-tuple with each component
1 and @, ¢ = 1, 2 be the constant n*-tuple with each component 1. Setting
=1 =L1andt, =r, =2, 4 = (4, 4y, ..., Ay} and 9 = (44)F;.,, define
L from Op,,1,(4) into Co,.r; (0) DY
L4y, ..., 4,) = (-Af"'Aj)

n
4,51
Now

LAl = ) 2414, — Ay,

i, =1
-

< ' Ak (i + 450 —2 T 24,0,

i,j=1 =1
n n
=2 3 (-2 4l <29 3 %1140,
i=1 =]
= 29 |4},

It follows from properties of Hilbert space that
1Al < V24l 2.

For 1 < p <2, choose s =1 go that 1/p = (1—t)+1/2 = 14%/2 and
apply the theorem to obtain (i). Statement (ii) can be obtained in'a similar
way.

To apply this to packing, assume # disjoint balls of radiug » with
centers 4, 4,, ..., 4, are contained in the unit ball of 0, T1<p<e,
the A,’s must satisfy (i) for any collection of A7s. In particular, choose the
A=1im, i =1,2,...,n, then

k3

D) () A= A2 < 2(A—10P> 3 (1/n) |42

hj=1 i=1.
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which implies ‘
(*) (L/n¥)m (0 —1) (2r)? < 2(1—1 /0P (1—1)"

gince the centers mmust be at least 2r apart and 4, <1-—7 Solvin’g-
this for 7, we have

7 < {1+[2(1 —1/n)] @702}
Letting n-»o00, r< [1+2"7]7,
Using (ii) and performing same operations as above we find that for
2 < p < oo, infinite packing is possible only if r < [1--2°]%.
THEOREM 3. If 1 < p < oo, the packing numbers satisfy

& P(0,) = L4+27T, 1<p<2,
2) 1421 <P(0,) < [1+27]7,  2<p < co.

Purthermore, if r > [1+27 2T, 1<p <2 or v > [14+2P]71, 2 < p< oo,
then the number of spheres of radius v which can be packed in the umit ball
of 0, does not exceed

(3) () = [L—12((1—n) r)?6-]"2,  1<p<e,
(4) Op(r) = [1-12((L—n) /7], 2<p < oo,

Proof. Equality in (1) follows from ‘the fact that 1, is isometric to
a subspace of . The left hand side of (2) is obtained since I, is isometric
to a subspace of 0. Inequality (3) is obtained by solving (x) for «.

Tt was shown by Spence [9] that the numbers C,(r) obtained above
are best possible in complex I,-spaces and hence the same is true in C,.
The results of Kottman [7] and. Theorem 3 lead to structural results
for €. -

COROLLARY 4. If X is a Banach space and, Y i3 an infinite dimensional
subspace isomorphic to O, then P(X)>[14+27P1 1< p<2, and
P(X) =142, 2< p < oo,

COROLLARY 5. If 1 < py < Ps < 2, then Oy, 18 not isomorphic to & sub-
space of O, . : ,

The remainder of the paper is eoncerned with finding packing numbers
of certain subspaces of C,,. The following lemma yields a useful relationship
among the ¢, norms.

LemMA 6, If A€0,,A20,1<p < o, and p=r> 0, then |4,
= [l 4l)5- ‘

Proof.

o ANy = {brLAT(AT)* YR
= {tr[ Azr]pﬂr}rlp = {tr Ap}n’p = [l4]5.
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Relative to a fixed orthonormal basis {e;}2, of H, , asgociate the matrix
_A(z‘, J) with the operator A by A(i,j) = (4e;, ¢;). Let » be a positive
integer and R, § be subsets of the positive integers. Define the operators
P,, Pgr and E, on 0, by:

. A, ), max{i,j}<n
P — 11)s 15
wA (i, ) {0 otherwise, ’

s oo [46@,0), (5,j)) eSxR
Py pA(i, ) *‘{0 otherwise, ,

o _JAG0), ming,j}<n
B,43,j) “‘{0 otherv,vise. ’

' ]?enote by T, the subspace of O, consisting of those 4 in 0, for which
A(_m, J) =0 for j > 1. Let E, , be the subspace of €, congisting of thoge
4 in 0, having the property 4 = H, 4.

. Levma 7. Let By, R,, 8, and S, be nonemply subsets of the positive
integers and lot max R, < minR,. Suppose 2 < p < oo and A, B are elemenits
of Oy, such that Py 5 A = A4 and Pp, 5, B = B. Then
{415+ IBIZYT < 14 ~ Bll, < {I412 + B2},
Proof.
4 — Bl = tr[(4 —B)(4 —B)*]?
= tr[AA* 4 BB*]P"
= ||(44* 4 BB*)2,

_ Ome can similarly show |44 B, = [(44*+ BB*)"|,. The first
Inequality now follows from Clarkson’s inequality [8] and |4 +B|, =
”A——Bl[p.

The second inequality follows from:
l4—Bl,, = |(44*+BB*"|,
= |4A*+ BB}  (by Lemma 6)
< {14A% s+ IBB* [} = {JAIL +IBIEY".
The mapping T on €, defined by T'(4) = A* is an isometry onto C,.

Hence Lemma 7 remains valid when max R, < minR, is replaced with
max 8, < mings,.

Tarorem 8. P(T,) = 1/(1+2'7"%) for 1< p < 2. P(T,) = 1/(1+2")
for 2 < p < oco. .
) Pr?of. N otice I, is embedded isometrically in T,,, and T, is embedded
1sonlleltnca,lly in 0,. Thus P(l,) < P(T,) < P(0,). Hence P(T,) =1/(1+
+27) for 1< p<2. For 2< P < oo, suppose infinitely many balls
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of radius r are packed in U(T,). Let {4;};2; be their centers and let 4 be
a weak limit (without loss of generality assume {4}i, converges weakly,
gince €, is reflexive for 1 <p < o0 [81). Thus A is an element of T, and.
A, < 1—r. ; S

Let &> 0 and fix a positive integer n. There exists a positive integer
N such that (I —Py)4,ll, < & as the operators of finite rank are dense
in ¢, [8]. By Lemma 7,

(212 < 1 dp—Apl} = 1Py (Ap—An) + (I —Py) (4dn— 4Ll
K Py (A~ A+ 1T —Py) (4 — 41
< [1Py(dp— AR5+ —7+e)
Thus
(@) — (1 —7+8)* < [Py (dp— 4,1

This inequality is independent of m, and {4,}{, conve ges to A weakly.
Hence

(@) —(L—r+e) < NPy{d — A5 -
Letting N tend to infinity and ¢ to zero,
@) —(1—-rP<4—4,;
Again let ¢ > 0 and chdose M so that [Py Al, < e. From above,
(@) — (1= < A= 4,03
= IPy (4 —A,)+ (I =Py} (4 —4,)l
K 1P — AN+ (I —Par) (4 — 45
< 1Par(d— 4+ (1~ +e).
Letting » tend to infinity and & to zero yields
@ =1 —rP< 1)

for every n.

or
r< LJ(L423).

The above proof is a modification of the proof of Theorem 16.4 in [10].

THEOREM 9. P(H, ;) = 1/(1+2"), for 2< p < oo and ¥ a fived po-
sitive integer.

Proof. Suppose infinitely many balls of radius r are packed in ( J (B ,)-
Without loss of generality, assume the {4,} converge weakly to 4, and
the A, bave the property P, 4; = A;. Let ¢> 0, and choose 7>k
such that (I —P,)Al, < &/8. Pick B, in {4,} such that |[P, (4 —Bi)l,
<&/8 and choose ny > n, such that P, B, = B,. Choose B, in {4,} such that

icm
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||1"n1 (A Byl < /8 and pick n, > #, such that P, B,= B,. Continuing,
obtain a sequence of integers {n;}2, such that k2< Py <Ny < Mg < ..,y
and also a sequence of operators {B;}, in E,,, such that B, <1—r,
P, B; = B;,and [P, (4 —B;, )| < ¢/8. Let B = L2, 8,8 = {0, +
+1, m+2,..., @i}r, and o; = |[Pgg B, f;, = IPs, »Bill,. Notice that
a;, B e [9, 1] for i =1, 2,... By passing to a subsequence, if necessary,
there exist a, # € [0, 1] such that le—a;f < ef8, |B—B] < &/8, and (af +
+BP)"" < 1—r. Now consider for ¢ > j,

2r < |B;—Bylly = I[Py, (B;— B)) +(P,,— P,) (B;— B,) +

+ (Pn.; '—Pu,-)(Bi“'Bj)”p
< (P, = Py) By = (Pyy—Po) Bylly + 1P, (B;— By}, +
+1(Pa; —Py) Byl + (P, — P,,) Byl
S NPy —Pp) By~ (P, — P, ) Bjll, + /4 + /4
= |[Pgs;+Ps, 5 +PR,S,- +st.n] [(Pr, *Pn,-) B;— (Pnj ~P,)B;1ll,+
+&/2
= {IPr,s;(Pu,—Py) By~ Py (P, — P, ) B2+
1P, (P, — Py) B;—Pg, (P, —P, ) Bj|p}? 4 ¢ /2
< A{UNPg,s5,(Po;— Po) Billy + |1 P s (Pr, — P ) B2 P2 +
+ U P s, 2P, —Pp)Billy + Py, o (P, — Py ) B L RY te/2
S {[(a+2/8)"+ (a+¢/8) 1 + [(B+/8)*+(B+ & B P27 4 &/2
= 2% {(a+2[8)" + (B +&/8)?}"? + 5/2.
Thus,

2 < 2P {(a+ o8V (B+2/8)"M P+ /2 for s> 0.

Letting ¢ tend to zero yields
2r < 212 (0P 4 PP < 2 (1 — )
or
r < 1142,
It was shown by Arazy and Lindenstraugs [1] that 0, is isomorphie

to T,. This combined with other properties of 0, seem to indicate that
P(0,) = P(T,) but the techniques above do not yield this result.
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Weighted weak type Hardy inequalities with app]iéations to .
Hilbert transforms and maximal functions

by

KENNETH F. ANDERSEN() (Edmonton, Alta) and
BENJAMIN MUCKENHOUPT@®) (New Brunswick, N.J.)

Abstract, The pairs of nonnegative weight functions{ U, V) for which the modified
€@
Hardy operator P,f(w) = &~ "ff(t)dt, n real, is of weak type (p, g) are characterized.
. F r '

o
Dual results for the operator @, (%) = x~"[f(t)dt are given. These results complement

z
the classical (strong) Hardy inequalities and their generalizations considered by Artola,
‘Talenti, Tomagelli and Muckenhoupt. New weighted weak type inequalities for Hil-
bert transforms and maximal functions are derived as applications of these results.

1. Introduction. Let 1<p,g< oo and suppose U(x), V(x) are
nonnegative extended real valued functions on (0, «). We say that
(U, V) is a strong type (p, q) weight pair for the linear operator T if there
is a finite constant ¢ independent of f such that

o

(11) (] 1@ P U@ < 0 (] (f@P ¥ @)a)”,
: 0

0

and we say that (U, V) is a-weak type (p, ¢} weight pair for T if there is
a finite constant ¢ independent of f such that for all y > 0

wy ([ v@af <o (] iorv@a)®.
{@: 1 TS ()| >u} 0 i

The smallest éhoice of consgtants € in (1.1) and (1.2), called the strong
and weak norms of T, are denoted |T|,, ||T|l,, respectively. It is well
known that (1.1) implies (1.2); moreover, [|T|, < 1Z],-
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