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STUDIA MATHEMATICA, T. LXXI. (1981)

On a class of Hausdorff compacts and GSG Banach spaces
by
0. 1. REYNOV (Leningrad)

Abstract. The paper deals with compact Hausdorff spaces homeomorphic
to weak-star compact RN-sets in dual Banach spaces. One of the main theorems
asserts that if K is such a compact space, then K contains a G5 dense metrizable subset
of G5 points. This is a generalization of the Benyamini-Rudin-Wage result on Eberlein
compacts.

0. Introduction. A compact Hausdorff space is said to be an
Bberlein compact if it is homeomorphic to 2 weakly ecompact subset of
a Banach space. It is well known that every Radon probability on an
Eberlein compact has a separable support. Moreover, if K is a weakly
compact set in & Banach space and u is a Radon probability on K, then
there is a sequence of strongly compact sets {K, )5, such that u (UE,) =1

n

(the Phillips theorem). Thus the natural generalization of the notion of
2 weakly compact set in a Banach space is the notion of an RN-set in a dual
Banach space (cf. [7], [9], [12]): we say that a weak-star compact set
K « X* is an RN-set it every Radon probability on K is supported a.e.
on a countable union of strongly compact sets (let us mention that a con-
vex weak-star compact set K is an RN-set iff it has the Radon-Nikodym
property; see for example [7], [9], [12]. Now we only have to make one
step to get a new class of compact Hausdorif spaces which contains the
clags of Eberlein compacts.

DerpINrrioN 0.1. A compact Hausdorff space is said to be a compact
of type RN if it is homeomorphic to a weak-star compact RN-get in a dual
Banach space. ‘ ’ ‘

Tt is now convenient to formulate one of the main results of the paper
concerning compact spaces of type RN (it follows directly from Corollary
3.1 in Section 3). The author hopes that the introduction of the new notion
is partially justified by this result (and by the results obtained in Section 2).

TeEorEM 0.1, If K is & compact space of type RN, then there aists
a @5 dense metrizable subset 8 of K every point of which is a G, pom of K.
CororzARY 0.1 ([16], [11). If K is an BEberlein compact, then there

is a G5 dense metrizable subsel S of K every point of which is a @, point of K.
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The class of sets in Banach gpaces which is in a sense dual to the clags
of RN-gets is the class of sets measurable in themselves which was intro-
duced and congidered for the first time by the author in [4] (and in detail
in [8]): a bounded subset A of a Banach space X is said to be measurable
in dtself if for each finite Radon measure x on the unit cell K of X™* with
its weak-star topology the set of functions A = {{w,>: we 4} on K
is equimeasurable. Since every weakly compact set is measurable in
itself (see [5]), a natural generalization of the notion of WOG space is
the notion of the Banach space generated by a bounded subset measur-
able in itself:

DeriNizioN 0.2, A Banach space X is said to be GSG if there iy
a bounded. subset 4 of X, measurable in itself, whose linear span is denge
in X.

The following remark explains a discrepancy in terminology:

Remark 0.1. As we have already said, sets measurable in themselves
(under this very name) were considered for the first time in papers [4]
and [5]. Later C. Stegall’s attention was drawn to this class of sets. He
named them “gets with the GS property” and the Banach gpaces which
these sets generate —“GSG spaces” (see [14]). Preserving for these Banach
spaces the name suggested by O. Stegall, the author thinks at the same time
that it is fair to keep their original name for sets measurable in them-
selves. ‘

Our paper is devoted to a study of compact Hausdorff spaces of
type RN and the GSG Banach spaces defined above. In Section 1 we
prove a factorization theorem, which will be useful in the next section.
The proof of the theorem is ingpired by the Davis—Figiel-Johnson-Pel-
czylski construction in [2] but differs from it in details. As corollariey
of our factorization theorem we get some interesting results on RN-sets
and sets  measurable in themselves in Banach spaces (see Oorollaries
1.1-1.3).

In Section 2 we investigate some gemeral properties of compi‘uot
spaces of type RN and GSG Banach spaces. In particular, we show that
a compact Hausdorff space is of type RN iff 0(X) is a GSG space (Prop-
osition 2.5) and, more generally, if X is a Banach space, then the space
C(K, X) of all continuous X-valued functions on K is GSG iff X is a GSG
space and K is a compact space of type RN (Corollary 2.5).

Section 3 is devoted to the study of some properties of the Radon—
Nikodym operators with applications to RN-sets in dusal Banach. gpacos.
An immediate consequence of our results in this section is Theorem 0.1
above. The central place in Section 3 is occupied by Lemma 3.2, in which
some geometrical properties of non-Radon-Nikodym operators arc ob-
tained. The proof of this lemma, is very simple which makes several of its
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congequences interesting, some of them being well known. In particular,
we give an alternative (and simple) proof of O. Stegall’s theorepa on duajl
spaces with the Radon-Nikodym property. Another interesting appli-
cation of Lemma 3.2 is Corollary 3.1, which says that every weak-star
compact RN-get K < X* contains a dense G5 subset at every point of
which the identity map (K, o(X", X)) - (K, ||-|) is continuous.

In Section 4 we state some problems coneerning GSG spaces a.gd
compact spaces of type RN inspired by the known results on Eberlein
compacts and WCG Banach spaces. )

Our terminology is standard. Let us mention only that if A is a sub-

set of a Banach space X, then I'(4) denotes its closed absolutely convex
hully if A = I'(4) is a bounded subset, then X , is the Banach space Wh(ise
unit cell is A, If V is an absolutely convex neighbourhood in X, then X
denotes the completion of a normed linear space X - generated by V. It is
known that (X,)* = Xho.

1. A factorization theorem. Let X be a Banach space, let K be a weak-
star compact subset of X* and let B = (K)* be its Weak-star‘closed
absolutely convex hull. For each # =1, 2, ... we consider an eqmva._l_(int
norm |-|, on X* determined by the absolutely convex set B, = nB-+n"'D
(X*), where .D(X*) is the unit cell in X*. Since B, is weak-star compaet‘,'
the set BY determines an equivalent norm {-[, on X so that (X, ||-ll.)
= (X% |'],). Put po() = inf{|zl,} for » € X and let p be the “absolutely

n

convex hull” of p,, i.e. the Minkowski functional of the set I(py*[0,1]).
Then p is a seminorm on X and p(x) < p,o(#) < cliw|| for each x € X. T?le
Banach space associated with (X, p) will be denoted by @(X, K) and its
patural norm — by |{]-]||. Let ¥y: X~ @(X, K) be .the canonical map
and let B, = (¥¥)"!(B,). Forz e @(X, K) it is convenient to denote the
number sup [z, #>| by lell, (it # € X and z = ¥y(w), then el = [2ll.)-

el |
Note tha?teit';‘ follows from the definition of p, and p that mi}!lxg X |<zy 2"

= gup |{¢, #)| for each 2’ € Q(X, K)*. If # € X, then sup K&y 2]
tn{lelp) <1 z'eB

<sup <z, 2’| = |oll, for each n =1,2,..., ie. Pp(@)<|IF2(@)l;
a'eBy,

whenee the canonical map ¥,: @ (X, K)— Xy is continuous.

TerorEM 1.1. Let B be the category of all Banach spaces, and let €
be a class of all pairs (X, K) where X € B and K is a.weak-star gomxpact
subset of X*. The above mapp_iin_ﬁ): % — B has the following properties:

If (X,K)e% and B =T(K) , then

(1) the canonical operator Pgi: X — Xgo factors through the space
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QUX, K): X3 (X, K) S o and

(2) the set Py (X) is dense in Q(X, K);

(b) W3* is one-to-ome (or Wy (X% is dense in Q(X, K)*);

() the map Py: (Fo(D(X)), [I|-1ll) = (Pro(D(X)), 1) is & homeo-
morphism (D(Z) denotes the unit cell of Z);

(d) the map PF: (FF(D(ER), 1)~ (B, 1) is & homeomorphism;

(2) Q(X, K) = Q(X, B);

(8) K is morm separable iff @ (X, K)* is separable;

(4) K s an RN-set iff Q(X, K)* has the RN property.

Proof. Evidently the mapping @ has properties (La) and (2). Let
us prove that it has also the other properties.

(1b): Let 2 £ 0 be in Q(X, K)*™. For each &k =1, 2, ...
(see the remarks preceding Theorem 1.1):

we have

0 <sup{|<e, ¢'"): 2" eQ(X, K)*, sup [<&, 2D < 1}
Int{lsl e
ZEQ(X,K)
< sup{[<e’, 2>} ¢ e Q(X, K)¥, ﬁ;up [y D] < 1}
el

= sup{[<e”, #'>|: ' € By}

< SUp(ICa", )1: 7 € WP (B} +
+sup{I¢e”, ) 2 € k(P (D(X))
< sup (<%, y)]: ¥’ € KD (X} +
+Esup{Ie”, 2: o € (F)7H(D(E))
=k H!I/;‘*z””(xz). + 7f}1 d,

where (' < +oco is a constant not depending on k. Thig implies that
Pt £ 0.

(le): Take {z,}7; < Yi(D(X)) and 6> 0. Suppose that for each
&> 0 there is an M = M (e) such that 2,, € ¢ ¥, (B) if m > M. We must
show that there is an NV = N(8) with |||z,]|] < & for each m > N, Let &
be an integer such that k™'< 6. Pubt M = M(s) for s = (4%*)~* and
N =N(8) = M. For every n =1,2,... and every m >N we have:
Wmlls = S0D{[<em, &'>]: &’ € B,}

< nil%(zm)u&BO+n"lsup{1<z,n, #3 e (P1)7HD(XY)) < %E"[;n~1_
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Hence

lemlll < It {loll} < inf {ne+ 07"} < 2het (20) 7 = 70 < 6.

(1d): Take {z,}n_; = ¥y (D(X3)) and 6> 0. Suppose that for each
&> 0 there is an M = M(¢) such that {|F} (z,)] < ¢ if m > M. We must
show that there is an N = N (4) with

sup {|<#, 2[: inf{lel,} <1} < 8

for each m > N. Put ¥ = M (¢) for ¢ = &*. Let 2z be an element of ¢ (X, K)
guch that [||z||| < 1. Then there is an n with [l#]], < 1, i.e.

ze (41,‘1(?{')‘1(D(X*)) +n ‘P:(-D(X%)))O-

Since 7, € ¥y(D(X})), it follows that |{z},,2>| < n7' for each m and if
m > M (e), then |{z,, 2>| < ne: Thus if m > N, then

-1

{2, 2] < min{n™", ns = n6%}.

Now, if n7! < 8, then [{z,, 2)| < , and if n~! > 6, thenns =nd2 < §,
80 [{2y, 2> < 6 again. Hence if m > N, then [o,lox,xr < J-

(8): If K is norm separable, then so is B. Since by (1b) the linear
span of (P})"Y(B) is dense in Q(X, K)*, it follows from (1d) that (X, K)*
is also separable.

(4): Let K be an RN-set. Then B is also an RN-set (see [7], [9], [14])-
Tt follows from (1d) and from the definition of RN-sets (see Introduction)
that ¥y (D(X%)) is an RN-set in the space @(X, K)*. But by (1b) the
linear span of ¥y (D(X%)) is dense in Q(X, K)*. Thus (4) follows immedi-
ately from the next statement (see [9], Proposition 1.1 or 1.3 for a proof).

LevumA 1.1. Let Z be a Banach space. If Z* is RNG (i.e. there ewists
a weak-star compact RN-set with a (norm) dense linear span in' Z%), then z*
has the RN property. )

Remark 1.1. Of course, as in the cage of the Davis-Figiel-Johnson—
Pelezyriski intermediate space [2], K is weakly compact iff Q(X, K)
is reflexive, and ¥yo “containg I'” iff @ (X , K) does. In view of Theorem 1.1
this implies in particular that every weakly compact (weakly eonditio-
nally compact) set embeds with its norm topology into a reflexive Banach
space (into a Banach space containing no subspaces isomorphic to ™.

Remark 1.2. Let X and Y be Banach spaces and let T be an operator
from X to Y. Recall that T is said to be an RN operator if it takes each
X-vahied measure o of finite variation into a measure having a derivative
with. respect to the varia‘uioxi of m. It is known that 7™ is an RN operator
iff T* maps bounded subsets of ¥Y* into RN-sets in X* and iff T maps
bounded subsets of X into sets measurable in themselves in ¥ (see [7],
[9], [14]). Thus Theorem 1.1 implies that every dual RN operator factors
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through a Banach space with the RN property. This factorization theorem
for dual RN operators was obtained independently in 1976-1977 by
8. Heinrich, C. Stegall and the present author (see [7], [9], [14], [3]).
CoroLLARY 1.1. Let K be a weak-siar compact RN-set in a dual Banach
space X* and let B = I’(K)*. There exist a Banach space Z and an operator
U: X — Z such that
(1) U(X) =%;
(2) Z* has the RN properly;
(3) the set (U*)M(B) is weak-star compact;
(4) the map T*: ((T*"UB), 1) ~ (B, I ) 48 & homeomorphism.
Proof. Just apply Theorem 1.1, (1d) and (4).
COROLLARY 1.2. Let A be a bounded set measurable in itself in @ Banach
space Y. There ewist a Banach space Z and an operator U: Z -> Y such that
(1) UD(Z)) > 4;
(2) Z} has the RN property;
(8) the set (U™')(A) is bounded in Z;
(4) the map U: (U™Y(A), |-]) = (4, lI-) 45 & homeomorphism.
ﬂ‘)f' Let us consider the natural operator &: Yrgy - Y. The
set I'(A) is measurable in itself and thus @* is an RN operator (see [7],
Elf],(gﬂ)». Now it is enough to put K = &*(D(X*)) and to apply Theorem
1, (Le).
We conclude this section with an interesting result which is a direct
consequence of Theorem 1.1 ((1d) and (3)) above and Corollary 8 in [2].
COROILARY 1.3. Norm separable weak-star compact subsels of dual
Banach spaces embed (with their norm and weak-star topologies) into dual
spaces with boundedly complete bases. More precisely, if K is a norm separ-
able weak-star compact subset of a dual Banach space X*, then there ewist
" & Banach space Z with shrinking basis and an affine map ¢: _(TIE—)*»Z"
which is one-to-one and weak-star-to-weak-star continuous so that @ is a homeo-
morphism in the norm topologies.

2. Some properties of compact spaces of type RN and of GSG Banach
spaces. In this section we obtain some general results on compact spaees
of type RN and GSG spaces, establishing in particular a connection between
these two notions. Most of the facts are inspired by the well-known the-
orems conce_rning the properties of Eberlein compacts and WOG spaces.
Some questions remaining open in this paper are listed in Section 4.

Let us begin with the following obvious statement:

PrOPOSITION 2.1. (a)

Every Eberlein compact i
of e BN pact 18 a compaot - space
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(b) Hvery finite Radon measure on a compact space of type RN has
a separable support.
Moreover, if K is a compact of type RN and p € % (K), then there ewists
a sequence {K,} of metrizable compact subsets of K with s(UK,) = p(K).
n

It is shown in [14] that every weak-star compact RN-set in a dual
Banach space is sequentially compaet. A direct consequence of this fact is

PROPOSITION 2.2. If K is a compact space of type RN, then every se-
quence of elements of K contains a converging subsequence.

An immediate consequence of Corollary 1.1 is

PrOPOSITION 2.3. Bvery compact space of type RN is homeomorphic
1o a weak-star compact subset of a dual Bamach space with the RN property.

In the mext two propositions a connection between compact spaces
of type RN and GSG Banach spaces is established.

PROPOSITION. 2.4 If X is GSG, then the unit cell D(X*) of X* is a com-
pact space of type RN in its weak-star topology.

Proof. If 4 is a bounded subset of X which is measurable in itself,
then its closed absolutely convex hull is also measurable in itself (see [5]).
Now, if X is GSG, then there is a bounded set A measurable in ifself,
A =TI'(4) = X, such that the canonical operator @: X, — X has a dense
range. It follows that @* is an RN operator (see [14], [6]) and hence
&*(D(X*)) is an RN-set in (X ,)* (see [4], Theorem 7 or [7], Corollary 5).
Since O* is one-to-one, D(X*) is homeomorphic to an RN-set &*(D(X™"))
in its weak-star topology.

PrOPOSITION 2.5. Let K be a compact Hausdorff space. The following
Sour assertions are equivalent:

(1) X is a compact space of type RN;

(2) The unit cell in C*(EK) is a compact space of type RN in its weak-
star topology;

(8) The space O(K) is GRG;

(4) There is a bounded subset A of C(K) measurable in itself separating
the points of K.

Proof. That (3) implies (2) follows from Proposition 2.4; that (2)
implies (1) is obvious.

(1) =(4): If X is a compact space of type RN, then by Proposition 2.3
there is a Banach space X such that X* has the RN property and K is
homeomorphic to a weak-star compact subset S of X I j: X 0(8)
is 2 natural map (j#)(-) = <&, ->, then the set j (D(X)) is measurable in
itself (sce [14], [5]) and separates the points of 8. Clearly this proves that (1)
implies (4).

(4)=(3): A straightforward argument shows that if 4 and B are
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two bounded sets measurable in themselves in ¢(K), then the set 4B
= {fg: fe A, geB} is also measurable in itself and hence each get A?
= A4 ... 4 is measurable in itself. Furthermore, another straightforward
argument shows that if {B,}3°., is a sequence of uniformly bounded subgets

meagsurable in themselves of ¢(X), then the set B = U2 "B, is meagur-
S

able in itself. Now if 4 is a bounded set measurable in itself in ¢ (&)
separating the points of K, then the set {1}U(U2‘”A") is 11fea&ur:»ble

N=]
in itself and itg linear span is dense in ¢(K) by the Stone~Weiorstrass
theorem. .
. CoroLLARY 2.1. If & s a compact space of type RN, then the compaot

space of all Radon probabilities on K has the same property.

Proof. Apply Proposition 2.5, (1) = (2).

* COROLLARY 2.2. If K is a compact space of type RN, then every weally
compact operator from € (K) has & separable range. R

P.roof. If K is a compact space of type RN, then by Proposition 2.5
there is a closed absolutely convex bounded set 4 mensurable in itself,
1.1 < 0(K), gen.era,tmg the space (/(X). Let & be the canonical operator
trom (C(K)), into ¢(K). Since &* is an RN operator for each weakly
co;n_pact operator U from U (K), the map U® is compact (soe [6], Prop-
osition 1), whence U® has a separable range. Thus U also has 2 sepurable
range since the range of @ is dense in ¢(K):. ‘

CoROLLARY 2.3. Let X be a Banach space and let K be a weak-star
compact set in X* whose weak-star closed absolutely convew hull coincides

with the unit cell of X*. If K is a compact space of type RN 4n its weak-star
topology, then

(1) X is a subspace of & GSG space, and

(2) every absolutely p-summing operator from X has a soparable range.
) Prqof. This is a consequence of Proposition 2.5 and CGorollary 2.2
since X i8 a subspace of ¢'(K) and every p-integral operator from X factors
through a weakly compact operator from ¢ (I0). -

An easy consequence of Propositions 2.2 and 9.4 is

PROPOSITION 2.6. If X is a Grothendicok space, thon X
of a GSG space iff X is roflemive.

COROLLARY 2.4. 4 space I°(u) s a subspace o a GSG it 4

Sinite-dimensional, g 7o GG apan 47 4 X
In the next proposition B (X ) denotes the Banach, s i ‘ )

. : d ach space of all X-vulued

meagurable functions f: Q@ — X such that If()lx e B with 1;11; nutueal

norm |fllg = || 1f(-)lx]p- «
PROPOSITION 2.7. (1) Let X be a Bunacl, space, lot (0, 3

18 o subspace

s 1) be a finite
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measure space and let B be a Banach ideal in the space L°(u) of all measur-
able functions on Q. If X and B are GSG, then B (X) is also GSG.

(2) If X and Y are two GSG Banach spaces, then their injective tensor
product XE Y is also GSG.

Proof. (1): If X is GSG, then it follows from Corollary 1.2 (or from [14]
that there is a Banach space Z and an operator U: Z -~ X such that Z*
hag the RN property and U(Z) = X. On the other hand, if B is GSG,
then 1° does not embed into B by Corollary 2.4; hence each order interval
in B is weakly compact. Thus ¥ satisfies condition (A): if ¢,]0, then
lle,l| = 0. Now, since x is a finite measure, there is an essentially positive
element ¢ in B, and from condition (A) it follows that the weakly compact
interval [ —e, ¢] generates the space E. By using the Davis-Figiel-Johnson—
Pelezyhiski construction [2], it is easy to see that the canonical map
B_,q— B factors through a reflexive Banach space F which is an
ideal in L°(u), whence the natural inclusion j: ¥ — F has a dense range.
Now, the map j® U: F(Z)— E(X) has a denge range and the space F(Z)
is GSG (apply the following easy consequence of the main theorem in [13]:
if Z* and F* have the RN property, then so does F(Z)*). Thus the space
B(X) is also GSG.

(2): Let Z and W be Banach spaces such that Z* ans W* have the
RN property and there are operators U: Z— X and V: W— Y with
dense ranges. Then the space (Z&W)" has the RN property (this follows
from the fact that if # and F are two separable spaces with separable
duals then the space (B @ F)* is a quotient of the separable space B* & F*).
Since the natural map from Z@W to X &Y is an operator with a dense
range, we conclude that the space X § Y is GIG.

An eagy consequence of Propositions 2.5 and 2.7, (2) is

COROLLARY 2.5. Let K be a compact Hausdorff space and let X be a Ba-
nach space. The space O (K , X) is GSG iff K is a compact space of type RN
and X is a GSG space.

To prove this we only need to note that O(K, X) = ¢(K)BX.

- 3. Points of weak-star-to-norm continuity of dual RN operators.,
In this section we show that each dual RN operator T™ has many points
of weak-ghar-to-norin continuity on every weak-star compact set (in a sense
almost all points of every weak-star compact set are points of continuity
of T).

Let M be a topological Haugdortf space and let f be a map from M
into a metric space B. We shall write f e D(M, R) if for each ¢ > 0 and
each closed subset K of M there is an open set V < M such that the
oscilation o (f; ENV) of f on VNI is less than e.

The following almost obvious statement will be useful in the proof
of the main result of the section.
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LeMMA 3.1. Let M be a Baire space and let f be a map from M into
a metric space R. If f € D (M, R), then there is a Gy dense subset 8 of M such
that the map f: M — B is continwous at each point of S.

Proof. Let A, be the union of all open subsets V of M with the prop-
erty that the oseilation of f on V is less than e Then 4, is a dense open
subset of M (since otherwise the open subset M\d4, contains an open
gubset on which the oscilation of f is less than ). Now, it is sufficient to

put § = (M4,-1.
1

The %g;msis for all the results of this soction is the following lemma,
which has a very simple proof:

LeMMA 3.2. Let T be an operator from a Bamach space X into & Banach
space Y. Let K be a weak-star compact subset of X* and let ¢ > 0 be @ number
such that o (T*, V) > & for each (weal-star) open subset V of K. Then there
is a separable subspace X, of X such that the subset (T|\X)*(K) of X§ con-
tains a weak-star compact set @ homeomorphic to the Cantor set such that
lp—gll> e if p,a €@, p # ¢ In pariioular, @ s not an RN-set in X.

Proof. Let W be an open subset of the compact space 7™ (K) and lot
V =(T*) N (W)nK. Since o(T*, V)>¢ we can find w, and w, in W
and o € X, o] <1, such that |{z, w, —w,)| > &. Now, there are two open
subgets W, and W, of W with the properties that W,uW,c W and
inf{[{w, Wy —p|: by € Wy, by € Wa} > &

Using this argument, we can find a sequence {w}}.; = X, [l <1,
and a system of open sets {W,};, W, c T*(K), such that W,,UW,,,,
< W, and nf{|<e,, wy—wp|: wy€ Wy, e 6 Wy i} > e

Let X, be the closed linear span of {w}2, and let @, = W,|X,

g = U{ﬁ@nk: My < mg<...). By standard arguments we can see that
K=l

there exists a continuous map ¢ from @ onto the Cantor set 4 such that
if m<my<...and m <m<.., then ¢(()Q,,) consists of one point
k

of 4 (if not empty) and either (’)Q,,k = QQ% or 'p(QQn;,) = cp((;] Qﬂ;’).
Since § is & metrizable compact space, there is (by a topological result
of Kuratowski) a subset @ of ¢ homeomorphic to 4 and such that ¢|Q
is & homeomorphism. It follows from the definition of ¢ and X, that @
is the compact space we wished to find.

Now we are ready to prove the main result of this section.

TeEOREM 3.1. Let T' be an operator from X to Y. If T is an RN oper-
alor, then for each weak-star compaot subset K of X* there ewists a subset §
of K having the following properties:

(1) 8 is a @, dense subset of K;

(2) thelmap T*|K: K - (X*, |I-])) is oontinuous ab every point of 8.
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Proof. According to Lemma 3.1 we only have to show that if there
is & weak-star compact set K in ¥* such that T*|K ¢D(K, X*), then T*
is not an RN operator. Let K be such a set. Without loss of generality
we may assume that there is an ¢ > 0 such that the oscilation of 7™ on
every open subset V of K is more than ¢. Now we can apply Lemma 3.2:
if T* is an RN operator, then for each subspace X, of X (T1X)*(K) is an
RN-set in X*, and so it is clear that Lemma 3.2 implies Theorem 3.1.

Remark 3.1. The converse of the theorem is also valid. In fact,
it is easy to see that for each topological Hausdortt space M and each
metrio space R every map f e D(M, R) is universally (Lusin-) measurable
(see [10]). Thus if 7% is in D (K, X*), where K is the unit cell in ¥* with
its weak-star topology, then the map T* is universally measurable as the
map from K into X*, whence T* is an RN operator in virtue of Theorem 7
in [4].

COROLLARY 3.1. Let K be a weak-star compact subset of X*. If K is
an RN-set, then there ewists a subset 8 of K having the following properties:

(1) 8 45 a G4 dense meirizable subset of K;

(2) the identity map K — (K, ||*|) is continuous at every point of 8;

(3) each point of 8 is a G, point of K. .

Proof. This follows immediately from Theorem 3.1 since K is an
RN-get iff I'(K) is and iff Drzye is an. RN operator (see [14], [5]).

CoroLLARY 3.2. If K is a weakly compact subset of & Bamach space,
then there is a subset 8 of K having properties (1)~(3) of the previous corollary
when K i3 equipped with the weak topology.

‘With the help of Corollary 3.1 we get a simple proof of the main
result in [13]:

CorOLLARY 3.3. If X is a separable Banach space such that X* has
the RN property, then X* is separable. '

Proof. If X is separable and X* has the RN property, then the unit
cell K = D(X*)is a metrizable weak-star compact RN-set in X*. By Cor-
ollary 3.1 for every wealk-star closed subset K, of K the identity map
X, - (K, |-1) has a point of continuity. It follows (from the Baire the-
orem. for Banach space valued functions) that the identity map X — (K » D
is o Baire-1 function on K with values in X*. Therefore the set K is norm
separable. )

We conclude this section with a corollary of the above results, proving
ounly a part of it (a complete proof is based on Corollary 3.1 and some
properties of universally measurable mappings). This statement gives
an answer to a problem posed in [15] by M. Talagrand in a particular case.

CoroLLARY 3.4. Let Y be o subspace of o dual Banach space X* and
let K beo a subset of X which is weak-star compact in X*. If the space X is
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K-analytio in its weal topology, then the o(X*; X) closed absolutely convem
Tl B of K belongs to X and there ewists a Gy dense set 8 of G, points in K
(for the topology o(X*, X)) such that the identity map (IL o(X*, X))
- (K, ||*1) ts continuous at each point of S. KR

Proof (in the case where K = B). Let & be the caronical opemtor
from X% into X*, Note that & is a dual of the canonical map from X to Xpo
and X% = ¥;. Hence @ is o dual operator and factors through the weulkly
K-analytic Banach space Y. Now Corollary 8.4 follows from Corollary 3.1
and from

TmvmA 3.3. Let U be an operator from o Bamach space Z into o Banach
space W. If T* factors through a weakly K- tmalytw Banaoh spowe, then U*
8 an RN operator.

This is a simple consequence of Theorem 1 in' [8].

Remark 3.2. A complete proof of Corollary 3.4 with some other

close results will appear elgewhere.

Remark 3.3. Tt is easy to see that the proof of Lemma 3.2 is valid
in the cage where K is a Polish subset of ¥Y* in its weak-star topology.
Thus we conclude in particular that if K is a weak-star Polish. subset of
a dual Banach space X* such that the identity map is j: (K, o(X" X))

- (I, [|-1) is universally measurable then this map is in clasg D (the con-
verge is also true and follows from Remark 3.1); by Lemma 3.1 this implies
that there is a subset 8 of K having properties (1)-(3) of Oorollmy 3.1
when K i8 equipped with it§ weak-star topology.

Remark 3.2. The proof of Lemma 3.2 is inspired by I. Namloka, 8
proof of a result of C. Stegall on Asplund spaces. However I. Numioka’s
proof is based on the main result (a difficult one) of paper [13] while our
proof is not; moreover, our proof makes it possible to get the result in [13]
ag o simple consequence.

4. Some remarks and questions. H. P. Rosenthal (sco [11]) has
gshown that there exist a probability measure p and a subspace X of
Y = I*(u) which is not WOG (and hence is not GSG). Furthermore, sinco
a continuous image of an Eberlein compact is an Eberlein compact {11,
the unit cell in X* is an Eberlein compact in its weak-star topology. Thus
we.conclude that there exist a Banach space Y and its gubgpace X with
the following properties: (1) the space ¥ iz GSG, but X is not GNG; (2)
the unit cell of X* is a compact space of type RN in its weak-star topology.
In particular, the converse of Proposition 2.4 is not valid. On the other
hand, we know (Corollary 2.3) that if the unit cell in X* is a compact
space of type RN in the topology ¢(X*, X), then X is a subspace of a GSG
space. This leads to : : i

ProBLEM 4.1. Let X be a subspace of a GSG Banach space. Is tho
unit cell in X* a compaet of type BN in its weak-star topology ?
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The Benyamini-Rudin~Wage theorem [1] on Eberlein compacts
mentloned above leads to the following question:

PrROBLEM 4.2. Let K be a compact space of type RN and let § be
a continuous image of K. Is § a compact space of type RN¢

The next question we state here is inspired by Corollary 2.3 and by
the following property of Eberlein compacts: if K is a weak-star compact
set in a dual space X* which is an Eberlein compact in its weak-star
topology, then I’(K)* is also an Eberlein compact (indeed, then I’(K)*
is contained in the continuous image of the Eberlein compact (D(C*(K)),
0(0* (K), C(K))); hence I'(K )* ig an Eberlein compact by [1]).

ProBrLEM 4.3. Let K be a weak-star compact set in a dual Banach
space X* which is a compact space of type RN in its weak-star topology.
Is I'(K)* a compact of type RN in the topology o(X*, X)?

We close the paper with the following remark. It is known that
every separable Eberlein compact is metrizable. However, this fact is
not true for compact spaces of type RN. In faet, in [13] it is shown that
there exists a separable non-metrizable Hausdorff compact space K
such that O*(K) = I'(K). Thus there exists a separable compact space
of type RN which is not metrizable.
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Ein Beitrag zur Lipschitz-Saturation im unendlichdimensionalen Fall
von

HANS-JORG REIFFEN und HEINZ WILHELM TRAPP (Osnabriick)

Abstract. We study the problem of Lipschitz-saturation in the complex Banach
analytic case. In codimension 1 relative Lipschitz-saturation and absolute Lipschitz-
saturation are equal; the results of Stutz on equisaturation are also valid in the Banach
case. We uge only geometric methods and a simple power series calculus.

Von Ramis [4] wurde die Theorie der C-analytischen Teilmengen
endlicher Definition von C-Banachmannigfaltigkeiten systematisch ent-
wickelt. Schickhoff [6] hat die Geometrie dieser Ramisschen Mengen
untersucht. Wir setzen in dieser Arbeit wie in [5] die Untersuchungen
von. Schickhoff fort; insbesondere benutzen wir die Bezeichnungen aus
[6], [6].

Gegenstand der vorliegenden Arbeit ist die von Zariski [9], [10],
gowie von Pham, Teissier [8] begriindete Theorie der Saturation. Da wir
die endlichdimensionalen algebraischen Methoden nicht verwenden kénnen,
folgen wir dem geometrischen Ansatz von Stutz [8].

In §1 treffen wir Vorbereitungen; insbesondere fithren wir die Beg-
riffe der Lipschitz-Holomorphie, der Puiseux-Regularitit und der Lipschitz-
Regularitit ein, Wie bei Stutz gehen wir dabei von der Situation aus, daf
die Singularititenmenge die Codimension 1 hat.

In § 2 filhren wir aus, daB in geeigneten Fillenr elative und absolute
Lipschitz-Holomorphie iibereinstimmen. Daraus leiten wir Sitze iber
Lipschitz-Regularitit ab, d.h. iber die Existenz von Produktdarstellun-
gen im Sinne der Lipschitz-Biholomorphie.

In § 3 beweisen wir, daB die in § 2 angegebenen hinreichenden Bedin-
gungen fiir Lipschitz-Regularitit auch notwendig sind. Unsere Brgeb-
nisse sind also scharf. .

In § 4 zeigen wir, daB in der von uns betrachteten Situation “fast
immer” Lipschitz-Regularitit vorliegt. Ferner erhalten wie eine Verallge-
meinerung einer von Stutz bewiesenen Aussage iiber den Cs-Tangenten-
kegel.

Insgesamt stellen unsere Ergebnisse Verallgemeinerungen Stutaz’
geher Resultate fiir den unendlich-dimensionalen Fall dar. Wir kinnen
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