in 1. That is, \((S^n s_0)\) is a basis for \(l^1\) which, as our proof shows, is similar to \((e_n)\).

Using essentially the same ideas we can prove:

Theorem 4.2. If \(s_0 = (1, a_1, a_2, \ldots) \in l^1\) and \(f(s) = 1 + a_1 s + a_2 s^2 + \ldots\) with \(f(s) \neq 0\) for all \(s\) in the unit disc \(|s| < 1\), then \((S^n s_0)\) is a basis for \(l^1\) which is similar to \((e_n)\).

Proof. As in the proof of Theorem 4.2, our assumptions imply that \(f^{-1}(s) = 1 + d_s s + \ldots\) for \((e_n)\) in \(l^1\). Therefore the operator \(Q = I + d_s s + \ldots\) is a bounded linear operator on \(l^1\) and clearly \(Q^* = Q = I\). That is, \(Q\) is invertible on \(l^1\) and since \(Q s_0 = s_0\), the theorem is proved.

Corollary 4.3. If \(s_0 \in l^1\), the following are equivalent:

(i) \((S^n s_0)\) is a basis for \(l^1\) similar to \((e_n)\).

(ii) \((S^n s_0)\) is a basis for \(l^1\).

(iii) The function \(f(s) = 1 + a_1 s + a_2 s^2 + \ldots\) has no zero on the disc \(|s| < 1\).

Finally we state without proof a more general version of Theorem 3.1 (for the case \(X = l^1\)) which settles the question of similarity of \((S^n s_0)\) and \((e_n)\) in \(l^1\).

Theorem 4.4. Let \(s_0 = (1, a_1, a_2, \ldots) \in l^1\) and \(f(s) = 1 + a_1 s + a_2 s^2 + \ldots\) Then \((S^n s_0)\) is a basis sequence in \(l^1\) which is similar to \((e_n)\) if and only if \(f(s) \neq 0\) for all \(s\) on the unit circle \(|s| = 1\).

The proof uses essentially the same ideas outlined above along with certain estimates on the norms of linear combinations of \((S^n s_0)\) and will be given in a subsequent paper devoted to more general problems in this area.

References

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Received September 8, 1978 (1465)

STUDIA MATHEMATICA, T. LXXI. (1982)

A refinement of the Helson–Szegö theorem and the determination of the extremal measures

by

RODRIGO AROCEA (Cuenca)

Abstract. Let \(E_M\) be the set of measures on the unit circle which satisfy the M. Riesz inequality for the Hilbert transform with constant \(M\). \(E_M\) is determined by an associated class \(H_M\) of analytic functions. We give a geometric characterization of the elements of \(H_M\) and derive a refinement of the Helson–Szegö theorem. The extremal measures in the cone \(E_M\) are determined. Our basic result is the construction of a subfield of extremal measures by means of which every element in \(E_M\) can be naturally obtained.

I. Introduction. Let \(T\) denote the unit circle, \(f\) the Fourier transform of \(f \in L^1(\mathbb{T})\) and \(f\) its conjugate function. If \(M > 1\) is a fixed constant and \(\mu \geq 0\) a measure on \(T\), the Hilbert transform, we shall write \(\mu \in E_M\) if:

\[
\int_{\mathbb{T}} |f|^2 d\mu < \int_{\mathbb{T}} |f|\varphi^2 d\mu, \quad \forall f \in L^1(\mu) \cap L^2.
\]

Set \(E = \bigcup_{M>1} E_M\). Helson and Szegö proved [3] that \(\mu \in E_M\) if \(\mu\) is absolutely continuous with respect to Lebesgue measure, \(d\mu = \varphi(x) dx\), and

\[
\omega = \exp(\varphi(x) - \varphi(y)), \quad \varphi(x) \in L^2, \quad \|\mu\|_{L^2} < 2.
\]

Consequently, from now on we shall write \(\mu \in E_M\) if \(\mu \in E_M\). Cotlar and Sadosky proved [2] that \(\mu \in E_M\) iff there exists \(\alpha \in H^2(\mathbb{T})\) such that:

\[
\alpha - \alpha^2 - 2(\alpha^2 - 4\alpha^2) Re(\alpha) \rightarrow 0, \quad \text{a.e.}
\]

In this paper we study first those functions \(h\) that, by (I.3), characterize \(E_M\). Then we state a version of Helson–Szegö theorem for each \(E_M\) and, in particular, a simple proof of (I.2), deduced from (I.3). Finally we determine the extremal maps of the cone \(E_M\). Our basic result is:

Theorem 1. Let \(g = g_1 + ig_2 \neq 0\) be a function of \(H^2(\mathbb{T})\) with \(g(0) = 0\) and \(\tau(\varphi) = \langle \varphi, \varphi \rangle\), where

\[
\tau_0 = \arctan \left(\frac{|M-1|}{2M} \right), \quad \tau_0 = \arctan \left(\frac{|M+1|}{2M} \right), \quad \tau = \arctan \left(\frac{4M+1}{2M} \right).
\]

\(E_M = \{ \mu \in E_M : \mu = \mu \varphi \} \), where \(\varphi \in E_M\) and \(\varphi \neq 0\).
Then \(w = \exp(u + \bar{f}) \), where \(C \) is any positive constant, belongs to an extremal ray in \(E_M \). Let \(E_M \) be the set of rays obtained in this way: if \(w \in E_M \), log \(w \) is a weak star limit, in the duality of

\[
H_{\infty} = \{ f \in L^1; \hat{f} \in L^\infty, \hat{f}(0) = 0 \},
\]

of convex combinations of logarithms of elements of \(E_M \).

II. The class \(H_M \) of analytic functions. Let \(H_M \) be the set of all functions \(h \in H^2(T) \) that verify (I.3), that is,

\[
H_M = \{ h \in H^2(T); 3w_0 \leq 0, w \in L^1(T) \text{ and } h \text{ verifies } (I.3) \}.
\]

(II.a) Lemma. We have

\[
H_M = \{ h = h_1 + i h_2 \in H^2(T); h_1 \leq 0, |h_2| \leq (M - 1)|h_1|/2M^{1/2}, \text{ a.e.} \}
\]

Proof. If \(h \in H_M \) and \(h \neq 0 \), (I.3) says that for almost every \(z \) there exists a positive solution of

\[
-4Mw^2 - 2(M + 1)uw + |h(z)|^2 = 0,
\]

so \(h_1(z) = 0 \) and

\[
(M - 1)^2h_2(z)/4M \geq h_2(z).
\]

Reciprocally, if \(h = h_1 + i h_2 \in H^2(T) \) and \(h_1 \leq 0, (M - 1)^2h_2^2/4M \geq h_2^2 \), setting \(w = -(M + 1)h_1/4M \), it is clear that \(h \in H_M \), thus proving (II.a) and consequently that \(H_M \) is a convex cone.

Given \(h \in H_M \), we set:

(II.1) \(w_j = (4M)^{-1/2}((M + 1)h_1 - (M - 1)^2/2M^{1/2}) \),

and \(w_0 \) are the solutions of the second degree equation considered above, so we have

(II.b) Corollary. Given \(h \in H_M \), we and \(h \) verify (I.3) iff \(w_0 \leq w \leq w_2 \). In particular \(-\text{Re} h_M \) in \(H_M \).

So each \(h \in H_M \) defines a "band" of functions belonging to \(E_M \). We denote this band with \(W_{M,a} = \{ w; \text{measurable function}, w_0 \leq w \leq w_2 \}, \) where \(w_1, w_2 \) are given by (II.1). Therefore \(w \in E_M \) if \(3h \in H_M \), so \(w \in W_{M,a} \). Now we consider the angle:

\[
S_M = \{(x, y) \in E; \pi < 0, |y| < (M - 1)|x|/2M^{1/2} \},
\]

(II.2) and

\[
H_M = \{ h \in H^2(T); h \in H_M \}.
\]

(II.c) Proposition. \(h \in H_M \) and \(h \neq 0 \) iff \(h \) is given by the boundary values of \(f \), an analytic function on the unit disc \(D \), such that \(f(D) \subset S_M \).

Proof. If \(h \in H_M \), \(h \in H^2(T) \). Set

\[
f(z) = (2\pi)^{-1/2} \int_0^{2\pi} P(r, u - b)h(t)d\tau, \quad r < 1,
\]

where \(P \) is the Poisson kernel; then

\[
h(\delta) = \lim f(\delta) \text{ a.e.}
\]

Being \(P \geq 0, (II.a) \) implies that \(f(D) \subset S_M \).

Reciprocally, let \(f \) be analytic on \(D \) and \(f(D) \subset S_M \). Set:

(II.3) \(\alpha(M) = \arg [(M - 1)/2M^{1/2}] \),

so the measure of the angle \(S_M \) equals \(2\alpha(M) \), if \(f \in H^2(D) \), \(\forall p \in [0, \pi/2] \). (See (I.1). Since \(2\alpha(M) < \pi, f \in H^2(D) \), then \(h(\delta) = \lim f(\delta) \) exists a.e. and \(h \in H^2(T) \). Clearly \(h \in H_M \).

In the above proof we have shown that \(h \in H_M \) implies \(h \in H^2 \), and \(\forall p \in [0, \pi/2] \).

Since \(w_0 \geq (\delta_2, \Pi (M)) \) says that

(II.d) Corollary. \(\forall h \in H_M, \exists \in \text{Lo}(T), \forall p \in (0, \pi/2] \), \(\alpha(M) \) given by (II.3).

Also, since \(|h_1| \leq 2M^{1/2} \), it is evident that

\[
W_{M,a} \subset \text{Lo}(T) \Rightarrow h \in \text{Lo}(T)
\]

\[
\Rightarrow \exists w \in W_{M,a} \text{ such that } w \in \text{Lo}(T).
\]

If \(w \in E_M \), there exists \(\varphi \in H^1(D), \forall p \in [0, \pi/2] \), such that \(w = |\varphi| \); in fact, if \(w \in E_M, 3h \in H_M \), such that \(w \in W_{M,a} \Rightarrow w \geq C|h|, C \), a constant, and \(|\arg h| \leq \pi/2 \) because \(h \in H^2 \Rightarrow \log |h| \in L^1 \); then \(\exists \varphi \in H^1 \) such that \(w = |\varphi| \); hence \(w \in E_M \). Finally \(\varphi \in H^1(D), \forall p \in [0, \pi/2] \).

(II.e) Corollary. \(\forall h \in H_M, h^{*} \in H_M \) and \((W_{M,a})^{*} = 4M W_{M,a-1} \).

Proof. If \(h(D) \subset S_M \), then \(h^{-1}(D) \subset S_M \). It is easy to see that, with obvious notation, \(w_{1,a} = 4Mw_{1,a}/|h| \), \(4Mw_{2,a-1} \), and \(w_{2,a} = 4Mw_{2,a-1} \), so \((W_{M,a})^{*} \subset \{ w; w \in W_{M,a} \} = 4M W_{M,a-1} \).

Examples. (i) Let \(k \in [0, 2a(M)/\pi], f(x) = -(1 + e)^{1/2} \). Then \(f(D) \subset S_M \) and \(w_{0}(w) = [\cosh(k/2)]^{1/2} \cos(\cosh(2)/2) \{(M + 1) + (1 - e)^2/4M(2)^{1/2}/M \}^{1/2} \), \(j = 1, 2 \).

(ii) If \(h_1 = -2, h_2 = 0 \), then \(w_0 = M^{-1}, w_2 = 1, \) so it is a measurable function such that \(0 < h_0 \leq h_2 \), with \(b/a \leq M \), then \(w \in E_M \).

If \(g: D \to D \) is analytic and

\[
P(z) = -(1 + g(z))/(1 - g(z)),
\]

\(a > 0 \), \(0 < k \leq 2a(M)/\pi \), then \(f(D) \subset S_M \). By subordination, this is the general form of the functions in \(H_M \).

We shall say that \(h \in H_M \) is a "boundary function" in \(H_M \) if \(h(T) \subset \beta S_M \Rightarrow (M - 1)/2M^{1/2} = \bar{h}_2/4M \).
If \(F : D \to \{ \text{Re} z < 0 \} \) is analytic, then

\[
F(z) = \frac{1}{2\pi i} \int_C \frac{F(t)}{t - z} \, dt
\]

with \(|f(t)| \leq t \), \(t \in [0, 2\pi] \), so \(\arg F(z) = \pi(t)/2 \). Then every \(F \in H_M \) has a representation (II.4) with

\[
f \in L_M = \{ g : T \to \mathbb{R}, \quad |g(t)| \leq 2a(M)/|\xi|, \}
\]

convex and compact with the weak star topology of \(L^\infty \). The Krein–Milman theorem states that every \(g \in L_M \) can be approximated, in that topology, by convex combinations of extremal points of \(L_M \). Now, if \(F \) is extremal in \(L_M \), iff \(|f(t)| = 2a(M)/|\xi| \), that is, iff the \(F \) associated to \(f \) by (II.4) is a "boundary function" in \(H_M \). In this case, going from \(F \in H_M \) to the associated \(g \in L_M \), we can say that the "boundary functions" determine \(H_M \).

III. Propositions related to the Helson–Szegő theorem.

(III.a) Lemma. Let \(h \in H_M \) and \(v \in W_M \). Then \(v = e^{\text{exp}(u - \theta)} \), with

(i) \(u = \pi - \text{arg} h \), so \(|v|_{\infty} \leq e(\xi) \);
(ii) \(O = \beta(0)/2M^{12} \);
(iii) \(w = \log(2M^{13}|h|/|\xi|) \).

Let \(U_M(v) = \text{arch} \big((M + 1)/2M^{12} \big) \). Then \(|u| \leq U_M(v),\ U_M(v) + : w = \log(w_1/\omega),\ U_M(v) - w = \log(w_1/\omega) \).

Proof. Since \(h(D) \in S(M) \), \(\arg h = (\theta - \omega)/(\xi) \) can be defined, with \(|\theta - \omega| = \xi |\omega| \leq a(M) \) and \(\theta = \log(\beta(0)/2M^{13}) \). From the definition (III.1) of \(u \), \(w \), we get

\[
\log(w_1/\omega) = \log \left(\frac{M + 1}{2M^{13}} \cos \left[\frac{(M + 1)^2}{4M} \cos \theta - 1 \right] \right) - \log 2M^{12},
\]

so

\[
\log(2M^{13}w_1/|\omega|) = -U_M(v), \quad \log(2M^{13}w_1/|\omega|) = U_M(v).
\]

Then, setting \(v = \log(2M^{13}w_1/|\omega|) \), the result follows.

Note. Helson–Szegő's proof of (I.2) uses properties of analytic outer functions. The characterization (I.3) has been proved in a direct and elementary way; moreover, it is immediate that (I.2) implies (I.3) for some \(M [\xi] \). (III.a) states the reciprocity. So (III.a) with (I.3) gives a new proof of Helson–Szegő theorem. (See also (III.e) below.) As (III.a) rests only on (II.b), this proof is a simpler and more elementary one, because it does not use refined properties of \(H \).

(III.b) Lemma. Let \(w = e^{\text{exp}(u + \theta)}, \ C \) a positive constant, \(|u| \leq U_M(v), |\omega|_{\infty} \leq a(M) \).

Set

\[
h(z) = 2M^{13}e^{\text{exp} [(\pi - \theta)(0)] + \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{\theta + \theta - \omega}}{e^{\theta - \theta - \omega}} v(t) \, dt}.
\]

Then

(i) \(h \in H_M \) and (on \(T \)) \(\text{arg} h = \pi - \theta \); (ii) \(w_1/w = \text{exp}(U_M(v)+u), \ w_2/w = \text{exp}(U_M(v)-u) \); (iii) \(w \in W_M \).

Proof. (i) From the definition of \(h \) it follows that

\[
\text{arg} h = \text{Im} \left\{ [\pi - \theta(0)] + \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{\theta + \theta - \omega}}{e^{\theta - \theta - \omega}} v(t) \, dt \right\}
\]

so, on \(T \), \(\text{arg} h = \pi - \theta(0) + \theta = \pi - \theta = h \in H_M \).

(ii) On \(T \), \(|h| = 2M^{13}C \), so \(w = e^{\text{exp}(u)} 2M^{13} \). In the last proof we saw that \(w_j = e^{\text{exp}(U_M(v)+U_M(v))/2M^{13}}, j = 1,2 \).

(iii) Since \(U_M(v) \leq \omega \leq \omega \), (ii) says that \(w_1 \leq w \leq w_2 \) so \(w \in W_M \).

(III.c) Proposition. \(w \in R_M \) iff \(w = e^{\text{exp}(u + \theta)}, \ C \) a positive constant, \(|u| \leq U_M(v) \) and \(\text{Im} \{ \pi - \theta(0) \} = \text{Im} \{ \pi - \theta_0(0) \} \).

Proof. If \(w \in R_M \), \(3 \in H_M \) such that \(w \in W_M \) \((\text{III.a}) \) says that \(w \) is as stated. (III.b) proves the reciprocity.

(III.d) Corollary (Helson–Szegő theorem for \(R_M \)). \(w \in R_M \) iff \(w = e^{\text{exp}(u + \theta)}, \ w \leq U_M(v), \ |w|_{\infty} \leq a(M) \).

(III.e) Corollary (Helson–Szegő theorem). We have

\[
w \in R \supseteq \bigcup \{ R_M ; M > 1 \} \iff w = e^{\text{exp}(u + \theta)}, \ u, v \leq \omega, |w|_{\infty} \leq \pi/2.
\]

Proof. If \(w = e^{\text{exp}(u + \theta)}, \ |w|_{\infty} \leq \pi/2, \ u \leq \omega \), then \(3 \in H_M \) such that \(\text{conv} \subseteq 2M^{13}[(M + 1)/2M^{12}], \text{ and } |u| \leq \text{arch}(2M^{12}) \), so \(\text{arch}(2M^{12}) \leq a(M) \text{ and } |w| \leq U_M(v) \); the result follows by (III.d), which also states the reciprocity.

IV. Characterization of the extremal rays of \(R_M \) in terms of \(H_M \).

\(w \in R_M \) defines an extremal ray of \(R_M \) iff \(w = (w^* + w)/2 \), \(w \) and \(w^* \in R_M \) imply \(w^* = C\omega, \ w^* = C\omega \), \(C \) positive constants. Set

\[
\text{Ext} R_M = \{ w \in R_M ; w \text{ belongs to an extremal ray in } R_M \}.
\]
Proposition. Let \(h \in H_M \), \(w \in W_{MA} \). If there exists \(A \subseteq T \), \(|A| > 0 \), such that in \(A \), \(w_i < w \iff w_j \), then \(w \notin \text{Ext} R_M \).

Proof. Fix \(\varepsilon > 0 \) such that in a set \(A \subseteq T \), \(|A| > 0 \), \(w_i < w \iff w_j \), \(w_i < w - \varepsilon \), \(w_j < w \).

Setting \(w' = w_{X_{T-A}} + (w - \varepsilon)_{X_A} \), \(w'' = w_{X_{T-A}} + (w + \varepsilon)_{X_A} \), the result follows.

Corollary. If \(w \in \text{Ext} R_M \), then \(\exists h = h_1 + h_2 \in H_M \) and \(A \subseteq T \) such that

\[
\omega = w_{X_A} + w_{X_{T-A}} = -((M+1)h_1 - (M - 1)h_2) + 4Mh_2 + 4Mh_1^2/3/4M_M.
\]

Proof. Let \(-f_M(w) \) be the first member of \((1,2,3)\) that is, \(f_M(w) = 4Mw^3 + 2(M+1)w + |h|\). Then \(f_M(w) - f_M(w) = 2M - Mw + 2h + h_1 \).

Now, \(2Mw + h_1 \leq 0 \); moreover, \(2Mw + h_1 < 0 \iff h_1 < 0 \). Consequently, \(f_M(w) \leq 0 \), the inequality being strict iff \(h_1 < 0 \). Since \(f_M(w) \) is a second degree polynomial with two real roots, \(w_M1, w_M2, \) it follows that \(w_M1 < w_M2 \), with strict inequality iff \(h_1 < 0 \). In the same way we can prove the result concerning \(w_{X_A} \) and \(w_{X_{T-A}} \).

Corollary. \(\text{Ext} R_M = B_M - \bigcup_{1 < M < M_M} B_M \).

Proof. Let \(h', h'' \in H_M \), \(0 < h < 1 \), and \(h = h' + (1-t)h'' \), then

\[
w_i < tw'_i + (1-t)w''_i \iff tw'_i + (1-t)w''_i < w_i,
\]
equalities hold iff \(h'/h'' \) is real. So \(W_M = \{w_{X_M} : tw'_i + (1-t)w''_i < w_i\} \).

Proof. We want to compare \(W_M \) with \(W_{MA} = \{w_{X_M} : tw'_i + (1-t)w''_i < w_i\} \).

Set \(A = \{t((M-1)h'_2 - 4Mh''_2) + (1-t)((M-1)h'_2 - 1)2Mh''_2 + 2t((M-1)h'_2 - 4Mh''_2)\} \).

Then

\[
w_i - [tw'_i + (1-t)w''_i] = (A - B)/4M_M,
\]

with \(A, B > 0 \). Set

\[
A = (M-1)h'_2 - 4Mh''_2 > 0,
D = ((M-1)h'_2 - 4Mh''_2)^2 + (M-1)h'_2 - 4Mh''_2 > 0.
\]

Then

\[
A^2 - B^2 = 2t(1-t)(C - D),
\]

and

\[
C - D = 4M((M-1)h'_2 - 4Mh''_2)^2.
\]

Consequently \(w_i \geq tw'_i + (1-t)w''_i \), and equality holds only when \(h'_2 - 4Mh''_2 = 0 \). Analogously,

\[
w_i - [tw'_i + (1-t)w''_i] = -(A - B)/4M_M.
\]

Now suppose \(h'/h'' \) is real a.e. on \(T \). Consider the analytic function \(f = h'/h'' \); then \(f(D) = S = \{x : \text{arg} s < b\} \) for some \(b < \pi \) because \(h', h'' \in H_M \). Set \(F(s) = (1 + s)^{-1} t \) such that \(F(D) = S \); by subordination, \(F = F', g, D \rightarrow D \), analytic. Now \(f(e^{st}) \in E \) a.e. on \(T \rightarrow g(e^{st}) \) is constant. So we have the following

Lemma. If \(h', h'' \in H_M \) and \(h'/h'' \) is real a.e., then \(h'/h'' \) is constant (and positive).

Note. The above lemma implies that if \(h \) is a "boundary function" of \(H_M \) then it belongs to an extremal ray of the cone \(H_M \). In fact, if \(h = h' + (1-t)h'' \), \(h', h'' \in H_M \), it is clear that, on \(T \), \(\text{arg} h = \text{arg} h' \), so \(h'/h'' \) is real a.e. (\(\omega \)).

Proposition. Let \(h', h'' \in H_M \), \(0 < h < 1 \), and \(h = th' + (1-t)h'' \). If \(h' \neq \text{Ch}' \), \(C \) a positive constant, then

\((i)\) \(W_{MA} = \{w_{X_M} : tw'_i + (1-t)w''_i < w_i\} \), \(w_i \leq tw'_i + (1-t)w''_i \leq w_i \).

(II) \(W_{MA} = \{w_{X_M} : tw'_i + (1-t)w''_i < w_i\} \) is a set of positive measure in \(T \).

Corollary. Under the hypothesis of (IV,g), if \(w = w_{X_A} + w_{X_{T-A}} \), then \(w \notin W_{MA} = \{w_{X_M} : tw'_i + (1-t)w''_i < w_i\} \).

Lemma. If \(w \in \text{Ext} R_M \), \(w_0, w \in R_M \), \(w_0, w \in R_M \), not belonging to the same ray and such that \(w = (w_0 + w')/2 \).

Then \(w', w'' \in H_M \) be such that \(w' \in W_{MA} \), \(w'' \in W_{MA} \) such that \(w = (w' + w'')/2 \).

Let \(h', h'' \in H_M \) such that \(w \in W_{MA} \), \(w' \in W_{MA} \), when \(w \in \hat{W}_{MA} \) and \(h' \neq h'' \). If \(w \in W_{MA} \), \(h' \neq h'' \), \(w' = w_{X_{T-A}} + w_{X_{T-A}} \), then \(w' = w_{X_{T-A}} + w_{X_{T-A}} \), \(w'' = w_{X_{T-A}} + w_{X_{T-A}} \), \(w' = w_{X_{T-A}} + w_{X_{T-A}} \), \(w'' = w_{X_{T-A}} + w_{X_{T-A}} \). Then \(w' = w'' \), \(w' = w'' \), \(w'' = w'' \), \(w'' = w'' \), which is not possible. But if \(h'/h'' \) is not a real constant, \(\omega \) states that \(w = w_{X_A} + w_{X_{T-A}} \) is impossible. The result follows.

The last lemma and (IV,a) prove the following

Proposition. Let \(w \in \text{Ext} R_M \). Then \(w \in \text{Ext} R_M \) if \(w \in W_{MA} \) implies \(w = w_{X_A} + w_{X_{T-A}} \).
That is, \(w \) belongs to an extremal ray if and only if it belongs to a "band", it equals the upper function of the band in some subset of \(T \) and, in its complement, it equals the lower function.

Definition. For every \(w \in E_M \) let

\[
H_{M,w} = \{ k \in H_M : w \in W_{M,k} \}.
\]

If \(0 < t < 1 \), then

\[
|k + (1-t)k'|^2 = t(k_1^2 + k_2^2) + (1-t)(k_1'^2 + k_2'^2) + 2t(1-t)(k_1 k_1' + k_2 k_2') - t(k_1 h_1 + k_2 h_2)^2,
\]

so:

\[
|k + (1-t)k'|^2 \leq t|k|^2 + (1-t)|k'|^2,
\]

and equality holds only when \(k = k' \), (IV.2). This relation shows that:

IV.2 Proposition. The set \(H_{M,w} \) is convex.

IV.2. Proposition. Let \(h \in H_{M,w} \) and \(w = u_{k,x} + w_{k,x_T - A} \). Then \(h \) is an extremal point of the convex set \(H_{M,w} \).

Proof. Suppose \(h = (k + h')/2 \), \(k', h'' \in H_{M,w} \), \(k \neq h'' \). The hypotheses on \(w \) says that \(0 = -4Mw_3w - 2(M - 1)w - |h|^2, \) a.e. (IV.2) ensures that \(3A \subset T, |A| > 0 \), such that in \(A \):

\[
-4Mw_3w - 2(M - 1)w - |h|^2 \geq -4Mw_3w - 2(M - 1)w - |h|^2 + |h''|^2/2 > 0 > 4Mw_3w - 2(M - 1)w - |h''|^2/2,
\]

which contradicts \(k', h'' \in H_{M,w} \).

IV.2. Corollary. If \(w \in E_{M,w} \), then \(H_{M,w} \) contains only one element.

Proof. (IV.2) and (IV.2) state that every element in \(H_{M,w} \) is an extremal point. In this way we get a first characterization of the extremal rays of \(E_M \).

IV.2. Theorem 2. The following conditions are equivalent:

(i) \(w \in E_{M,w} \);

(ii) there exists one and only one \(h \in H_M \) such that \(w \in W_{M,k} \) and

\[
w = u_{k,x} + w_{k,x_T - A} = -2(M - 1)h + (k_1^2 + k_2^2)/4M, \text{ a.e.}
\]

Proof. (IV.2) and (IV.2) say that (i) implies (ii); (IV.2) proves the reciprocal.

V. Characterization of the extremal rays of \(E_M \) by means of Helson–Szegö theorem.

V.1. Lemma. Let \(w \in E_{M,w} \). Then there exists only one \(v \) such that

(i) \(|v|_M \leq a(M) \);

(ii) \(v = Ce^{i\arg h} \), with \(C \) a positive constant and \(|w| \leq U_M(v) \).

Proof. There exists at least one such \(v \) because of (III.5). Lemma (III.6) says that \(w \in W_{M,A} \), with \(v = -\arg h \). Since \(w \in E_{M,w} \), (IV.2) shows that \(h \), and consequently \(v \), is well determined.

V.1. Lemma. Under the same hypothesis and with the same notation as in (V.1), it must be \(|w| = U_M(v) \).

Proof. (IV.2) shows that \(w = u_k \) or \(w = w_3 \) a.e., so (III.5) implies, respectively, \(U_M(v) = u_k \) or \(U_M(v) = w_3 = 0 \).

V.1. Lemma. Under the same hypothesis and with the same notation as in (V.1), \(w(v) \) is also unique.

Proof. If \(w = C \exp(u_k + \bar{v}) = C \exp(v_3 + \bar{v}) \), then \(u_k = v_3 + \bar{v} \), \(k \) a real constant. Considering (V.1), we can see that \(|w_k| = |w_3| = u_k \) is constant \(= \tau \) equals a.e. a constant \(t \).

Suppose \(t \leq a(M) = \frac{\pi}{\bar{C} \exp(u_k + \bar{v})} \). Then \(w = C \exp(u_k + \bar{v}) = C \exp(v_3 + \bar{v}) \) with \(u_k = v_3 \), \(C \) \(= C \exp(u_k + \bar{v}) \), and \(|v_3| \leq a(M) \). (III.5) says that \(w \in E_{M,w} \) and (IV.2) that \(w \) would not belong to \(E_{M,w} \). Then, it must be \(w = a(M) \) a.e. \(= U_M(v) = 0 \) a.e. \(\Rightarrow w = u_k \).

V.1. Definition. A (measurable) function has property \((E_M) \) if the following conditions are satisfied.

E.1. There exists one and only one pair \((v, w) \) such that

(i) \(|v|_M \leq a(M) \);

(ii) \(|w| \leq U_M(v) \);

(iii) \(v = C e^{i\arg h} \), for a (well determined) positive constant \(C \).

E.2. \(|w| = U_M(v) \).

What we have proved up to now is that \(w \in E_{M,w} \Rightarrow w \) has property \((E_M) \).

Reciprocally:

V.2. Lemma. If \(w \) has property \((E_M) \), then \(w \in E_{M,w} \).

Proof. \(w \in E_{M,w} \) because of (III.5). Lemma (III.6) says that \(w \in W_{M,A} \) with \(h \) defined above. Suppose \(k \in H_M \) is such that \(w \in W_{M,k} \); then (III.5) states that \(w = C \exp(v_3 + \bar{v}) \), with \(v_3 = -\arg h' \), \(C' = |C|/2M^{1/2} \), and \(|v_3| \leq a(M) \), \(|w| \leq U_M(v) \). So, by (E.2), \(v = v_3 \), \(w = w_3 \Rightarrow C = C' \). From \(\arg h = \pi - \pi = \pi - \bar{\arg h} \) we see that \(h' \) is real a.e. on \(T \); then (IV.2) shows that \(h' = h \), \(h \) a positive constant. Consequently \(h = |C|/|C'| \Rightarrow C = C' \). So there is only one \(h \in H_{M,w} \) such that \(w \in W_{M,A} \).

E.1. \((E_M) \) says that \(|w| = U_M(v) \); by (III.6) \(w = u_k \) or \(w = w_3 \) a.e. Considering (IV.2), the result follows.

Summing up we have

V.2. Theorem 3. \(w \in E_{M,w} \Rightarrow w \) has property \((E_M) \).
VI. The set P_M.

(VI.a) Definitions. Set $G(v, u) = u + \varepsilon$, $P_M = \{(v, u) \in L^0 \times L^0 : ||u||_\infty \leq \alpha(M), |u| \leq U_M(v)\}$, $L_M = G(P_M)$.

(VI.b) Lemma. L_M is a strictly concave function.

From the lemma, considering that U_M is a decreasing function in $[0, \alpha(M)]$, the following result follows.

(VI.c) Proposition. P_M is convex, symmetric and absorbent. In the norm topology of $L^0 \times L^0$, P_M is the same as the closure of its interior.

(VI.d) Definitions. Let L_M and \hat{L}_M be the "cylinders" given by

$$\hat{P}_M = \{(v, u) + (0, \varepsilon) : (v, u) \in L_M, \varepsilon \geq R\},$$

$$\hat{L}_M = G(\hat{P}_M) = L_M + R.$$

Let us consider the sets $\text{Ext}\hat{P}_M$ and $\text{Ext}\hat{L}_M$ of extremal generators of these cylinders and the space $L = \{v = u + \varepsilon, \varepsilon \geq R, v, u \in L^0\}$, where functions that differ in a constant are identified. Then $\text{Ext}\hat{P}_M$ is just the set of extreme points of L_M, a convex subset of L.

(VI.e) Proposition. \hat{L}_M is a weak star compact and convex subset of L.

Proof. L is the dual of H_{rep} with a norm equivalent to the one given by

$$||\varphi||_{L^0} = \inf ||\varphi||_{L^0} = \{\varphi \in L^0 : \varphi = \varepsilon + u + \varepsilon, \varepsilon \geq R, v + \varepsilon \in L^0\}.$$

In this norm \hat{L}_M is bounded, because $\varphi \in \hat{L}_M$ implies $||\varphi||_{L^0} \leq U_M(0) + \alpha(M)$. Let us now prove that \hat{L}_M is closed. If φ belongs to the norm closure of L_M, for each natural number n may be written as $\varphi = \varepsilon_n + u_n + \varepsilon_n$, with $\varepsilon_n \geq R$, $(v_n, u_n) \in L_M$, $\lim ||\varepsilon_n||_\infty = 0$. Considering eventually subsequences, we may assume that $\varepsilon_n \rightarrow v$ in the weak star topology of L_0 to v, u, respectively. Set $p_n = u_n + \varepsilon_n$ clearly, $\varphi_n = \varphi_n(u_n, v_n), v_n = 0$, so φ and φ_n represent the same element of L.

Obviously, $||\varphi||_{L^0} \leq \alpha(M)$; moreover, in a set $A \subset L$ such that $|A| = 0$ the following inequalities hold: $|v| \leq \lim ||u_n||_\infty, |u| \leq \lim ||u_n||_\infty$. Since U_M is a decreasing function in $[0, \alpha(M)]$, in every point of A we have: $U_M(v) \geq U_M(\lim ||u_n||_\infty) = \lim U_M(v_n) \geq \lim ||u_n||_\infty \geq |u|$. Consequently, $(v, u) \in L_M$ and so $\varphi \in \hat{L}_M$. Considering the theorem of Bourbaki–Alaoglu, the proof is over.

(VI.f) Corollary. Let $(v, u) \in P_M$; then (v, u) is an extremal point of the convex set P_M iff $|(v, u)| = U_M(\varepsilon, |v|), a.e.$

Proof. If $|(v, u)| < U_M(v)$ in a set of positive measure it is easy to construct u_1, u_2 such that $u = (u_1 + u_2)/\beta, (u_1 - u)$ and $(u_2 - u)$ are not constant and a fortiori not zero and $|u_1|, |u_2| \leq U_M(v)$. Then $(v, u) = \frac{1}{\beta}(v, u_1) + \frac{1}{\beta}(v, u_2)$ and $v \neq U_M(v)$ in P_M, so (v, u) is not an extremal point of P_M. This proves that $(v, u) \notin \text{Ext}\hat{P}_M$.

Reversely, suppose $|(v, u)| = U_M(v) \ a.e.$ and $(v, u) = \frac{1}{\beta}(v', u') + \frac{1}{\beta}(v'', u'')$ in P_M. Then $|(v, u)| = U_M(v) \geq \frac{1}{\beta}U_M(v') + \frac{1}{\beta}U_M(v'') \geq \max(|v'|, |v''|)/\beta = |v'| \ a.e.$ Since U_M is strictly concave, we must have $v = v' = u''$ to get equality in the first inequality, hence $(v, u) = (v', u') \ a.e.$, and we must have $u = u' = u'' \ a.e.$ to get equality in all the inequalities.

(VI.g) Proposition. Let $(v, u) \in P_M$; then the following conditions (a) and (b) are equivalent:

(a) $(v, u) \in \text{Ext}\hat{P}_M$.

(b) $|(v, u)| = U_M(v)$ and at least one of the following conditions is satisfied:

(i) u changes its sign,

(ii) $v = 0$.

Proof. (a) \Rightarrow (b): We saw at the beginning of the proof of (VI.f) that (b) implies $|(v, u)| = U_M(v)$. Suppose that (i) and (ii) are both false; then we may assume that $u \geq 0$ and that $|v'| > 0, 1 < |v| < 2$.

Set $u_1 = u = U_M[a(M')]$ then $u_1 \geq 0$ and $u_1 < u$, so $(v, u_1) \notin P_M$ and (v, u_1) is not an extremal point of $P_M = (v, u_1) \notin \text{Ext}\hat{P}_M$. The result follows.

(b) \Rightarrow (a): Let $(v', u'), (v'', u'') \in P_M$ and γ a constant such that $v = v' + v''$, $u = u' + u''/2 + \gamma$. In the set $A = \{u \geq 0\}$ we have:

$$u = U_M(v) \geq \frac{1}{2}U_M(v') + \frac{1}{2}U_M(v'') \geq \frac{1}{2}|v'| + \frac{1}{2}|v''| \geq \frac{1}{2}(u' + u'')/2;$$

so, if $|A| > 0$, $\gamma \geq 0$. Analogously, if $|(u < 0)| > 0$, $\gamma \leq 0$. Then, if (b_1) holds, $0 = v = v' + v'', u = u' - u''$, because $|u| = U_M(v)$ ensures that (v, u) is an extremal point of P_M. But (b_1) does not hold, then $||u||_\infty = \alpha(M)$; for each natural n, $\exists \beta_n \in T$ such that $|\beta_n| > 0$ and, in β_n,

$$|v| \geq \alpha(M) - 1/n \Rightarrow |v'|, |v''| \geq \alpha(M) - 2/n = |u''| - |u'| \geq 2U_M(a(M')) - 2/n;$$

consequently, $|v| = 2U_M(a(M)) - 2/n \rightarrow 0$, and the result follows.

(VI.h) Corollary. Let $(v, u) \in P_M$ be such that $\text{exp}(u + \varepsilon) \in \text{Ext}\hat{P}_M$.

Then $(v, u) \in \text{Ext}\hat{P}_M$.

Proof. Suppose the statement is false. Since (V.h) says that $|(v, u)| = U_M(v^2)$, both (b_1) and (b_2), in (VI.g), must be false. So we may assume that $u \geq 0$ and $||u||_\infty < \alpha(M) = 3M' = 1, M' < M$, such that $||u||_\infty < \alpha(M')$. Set $u_1 = u - U_M[a(M')]$ and we shall see that $|u_1| \leq U_M(v)$ which is equivalent to

$$U_M(v) - U_M(a(M')) \leq U_M(v^2) \Rightarrow \text{arch}(M + 1) \leq \text{arch}(M + 1) + \text{arch}(2M'/2M'^2);$$

setting

$$\theta = (M + 1)(2M/2M'^2) \Rightarrow \text{arch}(M + 1) + \text{arch}(2M'/2M'^2) \leq \theta.$$
the last inequality is true because \(\operatorname{arch}(a) - \operatorname{arch}(t) \leq \operatorname{arch} a, \forall t \geq 1. \) So \(|v| \leq U_{M} (v) \) and

\[
\begin{align*}
|v_{w} &= c(M) \Rightarrow (v, u_{1}) \in E_{M} \Rightarrow e^{\nu}_{w} u_{1} = e^{\nu}_{w} u_{1} e^{\nu}_{w} R_{M} \\
&= e^{\nu}_{w} \notin \mathbb{R} M.
\end{align*}
\]

Now we can state the relation between the extremal generators of these cylinders and the extremal rays of \(E_{M} \).

(VI.1) Proposition. The following conditions are equivalent:

(a) \(f \in \operatorname{Ext} L_{M} \);

(b) \(e^{\nu} \notin \operatorname{Ext} E_{M} \);

(c) \(e^{-1}(f) \cap \mathbb{R} M \) contains only one element that belongs to \(\operatorname{Ext} E_{M} \).

Proof. (a) \(\Rightarrow \) (b): Let \(f = \psi (v_{1}, u_{2} + \nu), (v_{1}, u_{2}) \in E_{M} \), \(C \) a constant; (III.b) says that \(w = e^{\nu} \notin \operatorname{Ext} E_{M} \). Suppose \(w \notin \operatorname{Ext} E_{M} \); then (IV.j) ensures that \(z \in H_{M} \) and \(A \subset T \) such that \(w \in W_{M, A}, |A| > 0 \) and, in \(A \), \(w_{1} < w < w_{2} \); so \(B \subset T \) and \(a > 1 \) such that \(|B| > 0 \) and, in \(B \), \(w_{1} \leq w_{2} / a \). Set \(w' = w_{x_{2} - B} + \frac{1}{a} w_{y_{2} B} \), \(w'' = w_{x_{2} - B} + \frac{1}{a} w_{y_{2} B} \); then \(w', w'' \in W_{M, A} \) and \(w_{2} = w'r'' \). Then (III.a) shows that

\[
w = \exp (u_{1} + \nu), \quad w' = \exp (u_{1} + \nu), \quad w'' = \exp (w'' + \nu),
\]

\[
(v, u_{1}), (v', u_{1}) \in E_{M} \text{ from } w = w' = w'' \text{ we get } u_{1} = (u_{1} + \nu)2 + + (w'' + \nu)2 \text{ since } w'/w \text{ is not a constant, } (u_{1} + \nu) - (u_{1} + \nu) = 0 \text{ not one either, so } (u_{1} + \nu) \notin \operatorname{Ext} E_{M} \Rightarrow f \notin \operatorname{Ext} E_{M} \).
\]

(b) \(\Rightarrow \) (c): Suppose \((v, u_{1}) \in E_{M} \) and \(f = k + u_{1} = k' + u_{1} + e^{\nu}, k' \) and \(h' \) real constants; then \(w = e^{\nu} = e^{\nu} + e^{h'} = e^{h'} \), \(C \) and \(C' \) positive constants.

Let \(h \) be defined in terms of \(e \) and \(C \) as in (III.b) and, in the same way, \(k \) by means of \(v' \) and \(C' \); then \(w \in W_{M, W_{M, A}} \). Since \(w \in \operatorname{Ext} E_{M} \) (IV.n) states that \(k = k' \), so \(v = v' \), \(C = C' \) and, consequently, \(w = w' \). Thus \(e^{\nu}(f) \cap \mathbb{R} M \) contains only one element, \((v, u_{1} + \nu) \); since \(e^{\nu} = e^{\nu} \cap \mathbb{R} M \) shows that \((v, u_{1} + \nu) \in \operatorname{Ext} E_{M} \).

(c) \(\Rightarrow \) (a): Let \(f = f(u' + \nu) / 2 \), \((v', u') \in E_{M} \), \(k = (v' + \nu)2 \); since \(((v' + \nu)2 / 2, (v' + \nu)2 / 2) \in E_{M} \), \((k + (v' + \nu)2 / 2, (v' + \nu)2 / 2) \) is the only element in \(e^{\nu}(f) \cap \mathbb{R} M \), in order that it belong to an extremal generator, it is necessary that \(v' = v', u' = u' \); \(u' = u' \), so \(f \in \operatorname{Ext} E_{M} \), and the proof is over.

Let \(N \) be the kernel of \(f \). Then following is the basic result of this section.

(VI.1) Theorem 4. Let \(w \in \mathbb{R} M \); then (a) and (b) are equivalent:

(a) \(w \in \operatorname{Ext} E_{M} \);

(b) \(w = \exp (u_{1} + \nu), \quad \nu \) a positive constant, \((v_{1}, u_{2}) \in E_{M}, |u_{2}| = U_{M}(u_{1}), (v_{1}, u_{2} + \nu) \cap \mathbb{R} M = (v_{1}, u_{2}) \) and at least one of the following conditions is satisfied: (I) \(\nu \) changes its sign, (II) \(|u_{2}| = a(M) \).

Proof. (a) \(\Rightarrow \) (b): (I) says that \(w = \exp (u_{1} + \nu) \), with \((v_{1}, u_{2}) \in E_{M} \). Let \(f = u_{1} + \nu \); (II) states that \((v_{1}, u_{2} + \nu) \cap \mathbb{R} M \) contains only one element, evidently \((v_{1}, u_{2}) \). Since \((v_{1}, u_{2}) \in \operatorname{Ext} E_{M}, \) (VI.1) finishes this part of the proof.

(b) \(\Rightarrow \) (a): (VII.1) Shows that \((v_{1}, u_{2}) \in \operatorname{Ext} E_{M} \), so the result follows from (VII.1).

(VII.1) Proof of the main theorem. The preceding characterizations of the extremal rays are not constructive now we shall construct explicitly a subset \(E_{M} \subset \operatorname{Ext} E_{M} \) such that, in the sense specified in Theorem 1, every \(v \in E_{M} \) can be obtained by means of elements of \(E_{M} \).

Let \(K_{1} \) be the interior of \(E_{M} \) in the norm topology of \(L_{x} \times L_{y} \) and \(K_{2} = (v_{1}, u_{2}) + N \), where \((v_{1}, u_{2}) \) is as in (VII.1) and \(N = \{ v' - \nu; v' \in L_{x} \} \). Considering (VII.1), a well known corollary of the Hahn--Banach theorem ensures the existence of an hyperplane \(H \) that separates \(K_{1} \) and \(K_{2} \). Since \(K_{1} \) is open, \(K_{1} \cap H = \emptyset \), so \(H \) is not dense; consequently, it is not difficult to prove the following result.

(VII.1.1) Proposition. Let \((v_{1}, u_{2}) \) be as in (VII.1). Then there exists \(\nu, \mu, \) belonging to the topological dual of \(L_{x} \) such that:

(i) \[\int_{v_{1}} (d_{1}u + \nu d_{1}) = 0, \quad \forall u \geq 0, \]

(ii) \[1 - \int_{v_{1}} (d_{1}u + \nu d_{1}) \geq \int_{v_{1}} (d_{1}u + \nu d_{1}), \quad \forall (v, u) \in E_{M}. \]

It seems reasonable to suppose that \((v_{1}, u_{2}) \) will have some special properties when the functional can be represented by functions. So we set the following.

(VII.1.2) Definition. \((v_{1}, u_{2}) \) as in (VII.1) belongs to the set \(E_{M} \) if there exists \(f_{1}, f_{2} \in L_{x} \) such that \(d_{1}u = f_{1}d_{1}, d_{2}u = f_{2}d_{2} \), satisfy the assertion of Proposition (VII.1). In the way to prove the first part of the main theorem, it will be shown that \((v_{1}, u_{2}) \in E_{M} \) iff \((v_{1}, u_{2}) \in (g \in H_{M}, g_{1} > 0), \) where \(g \) as defined in Section I. (VII.1.a) and (VII.1.b) say that:

(VII.1.3) Proposition. Let \((v_{1}, u_{2}) \) be as in (VII.1). Then \(f_{1} = (f_{1}, f_{2}) \) such that \(-f_{1} - f_{1} = H_{M}, f_{1} = f_{1} = 0 \), \(f_{1} > 0 \), \(f_{2} = 0 \).

(VII.1.4) \[\int f_{1}d_{1}u + \int f_{2}d_{2}u \leq \int f_{1}v_{1} + \int f_{2}u_{2}, \quad \forall (v, u) \in E_{M}. \]

Proof. Since \(E_{M} \) is convex and absorbs, \(N \) is a closed subspace and by (VII.1) \(\{ (v_{1}, u_{2}) \cap E_{M} = (v_{1}, u_{2}) \), the Hahn--Banach theorem states that \(f \in (L_{x} \times L_{y})' \) such that \(f(M) = 0 \) and \(f((v_{1}, u_{2})) = f_{1} \).
\(\forall s \in \tilde{P}_M. \) If \((v, u) \in \tilde{P}_M\) and \(C\) is any real constant \((v, u + C) \in \tilde{P}_M, \) so it is necessary that \(f_s(0) = 0; \) the result follows. From now on \((v_u, u_u)\) and \(f = (f_1, f_2)\) shall both be as in (VII.c). Consequently \(|u_u| = U_M(v_u), \) so \(u_u = U_M(v_u)(\lambda_{\delta} - 2\delta - \epsilon \rho_u).\) (VII.d) Proposition. With the above notation, the following relations are true, except for the sets of measure 0:

(VII.2) \((f_1 > 0) \cap \{[v_u] < a(M)\} \subseteq A_{\delta}, \)

\((f_1 < 0) \cap \{[v_u] < a(M)\} \subseteq A_{\delta}. \)

Proof. Set \(v = v_u, \) \(u = U_M(v)(\lambda_{\delta} - 2\delta - \epsilon \rho_u); \) then \((v, u) \in \tilde{P}_M \) and \(\int f_u v_u = \int f_u v_u \) so (VII.1) says that

\[\int f_u U_M(v_u) - \int f_u U_M(v_u) \leq \int f_u U_M(v_u) - \int f_u U_M(v_u). \]

If the first statement of (VII.2) is false, setting \(A = (f_1 > 0) \cap \{[v_u] < a(M)\} \subseteq (f_1 > 0) \cap \{U_M(v_u) > 0\} \)

it follows that \(|A - A_{\delta}| > 0 \) and \(A_{\delta} - A \subseteq \{U_M(v_u) < 0\}. \) Then

\[\int f_u U_M(v_u) - \int f_u U_M(v_u) \leq \int f_u U_M(v_u) + \int f_u U_M(v_u) \]

\[- 2 \int f_u U_M(v_u) \leq \int f_u U_M(v_u) > 0, \] which contradicts (\(\#\)).

The second statement of (VII.3) can be proved in the same way.

(VII.e) Proposition. With the same notation, the following relation is true, except for a set of measure zero:

(VII.3) \(\exists u_u = \text{sgn} f_1. \)

Proof. Let \(|v| = |v_x|, \) \(u = u_u, \) so \((v, u) \in \tilde{P}_M \) and (VII.1) says that

\[\int f_u < \int f_u v_u. \] Set \(B = (f_1 < 0), v = v_x + \epsilon u \lambda_x; \) then it is clear that:

(i) \(|f_1| < 0) \subseteq C. \)

Now set \(C = (f_1 = 0), v = v_x + \epsilon u \lambda_x; \) then it is clear that:

\[\int f_u U_M(v_u) = \int f_u U_M(v_u) \subseteq U_M(v_u) \]

and \(\{f_1 = 0) \cap \{v_x < a(M)\} \subseteq \{v_x < a(M)\} \) because \((-f_1 + \epsilon u \lambda_x) \in \tilde{P}_M; \) so \(|u_u| = U_M(v_u) \) a.e. in \(C = v_x = 0 \) a.e. in \(C. \) Consequently

(ii) \(|f_1 = 0) \subseteq \{v_x = 0\} \subseteq \{v_x = 0\}. \)

Let \(D = \{v_x = 0\} - (f_1 = 0) \); suppose \(|D| > 0; \) then \(|v_x = 0 \) if \(|v_x| = a(M) \) and \(v_x = \text{sgn} f_1 \leq a(M) \).

A refinement of the Hénon–Segré theorem
Then, for every natural n, v_n verifies (iii) and $|v_n| < a(M)$ in $\{0 < |v_n| < a(M)\}$. Given any interval J, set $v = v_{2x-J} + v_{2x}$, so v verifies (iii)\

Then (ii) states that\

$$\int [f(x)] |v_n| + |f(x)| U_M(v_n) dx < \int [f(x)] |v_n| + |f(x)| U_M(v_n) dx$$

$$\Rightarrow |f(x)| |v_n| + |f(x)| U_M(v_n) < |f(x)| |v_n| + |f(x)| U_M(v_n)$$

Consequently,\

$$\frac{U_M(v_n) - U_M(v_n)}{|v_n| - |v_n|} < \frac{f(x)}{f(x)}$$

holds a.e. in $\{0 < |v_n| < a(M)\}$. So we have

(v) $J_M(|v_n|) < [f(x)|v_n|$ a.e. in $\{0 < |v_n| < a(M)\}$.

Now set $v'_n = v_n$ if $v_n = 0$ or $|v_n| = a(M)$,

$$v'_n = \left\{ \begin{array}{ll} v_n + \frac{a(M) - |v_n|}{\omega} \langle \omega \rangle v_n & \text{in } \{0 < |v_n| < a(M)\}. \end{array} \right.$$

Then v'_n verifies (iii) and $|v'_n| > |v_n|$ in $\{0 < |v_n| < a(M)\}$ so, in the same way as above, we see that

(v') $|f(x)| |v'_n| \leq J_M(|v_n|) a.e.$ in $\{0 < |v_n| < a(M)\}$.

Since $(-f_1 + f_1) \in H^1$, (VII.3) shows that, except for a set of measure 0, $J_M(|v_n|) = 0$ and $v_n = 0$, so $f_1 = f_1 = 0$ and $J_M(|v_n|) = 0$ (VII.4) is proved in $\{0 < |v_n| < a(M)\}$.

In order to finish the proof it is thus enough to show that $f_2 = 0$ a.e. in $B = \{v_n = a(M)\}$. Set

$$v_n = v_n \langle x - \frac{1}{n} \rangle \langle x \rangle, \quad u_n = u_{2x - 2a} + \hat{U}_M(v_n), \quad (sg f_1) \langle x \rangle$$

then $(v_n, u_n) \in F_M$ and $sg v_n, sg u_n = sg v_n$, so (VII.1) and (VII.3) show that

$$\int [f(x)] |v_n| + |f(x)| U_M(v_n) dx < \int [f(x)] |v_n| + |f(x)| U_M(v_n) dx$$

$$\Rightarrow \int [f(x)] \frac{U_M(a) (1 - 1/n)}{(1/n)a a(M)} \to \infty \quad \text{as } n \to \infty.$$

The result follows.

(VII.5) COROLLARY. The following relations hold except for sets of measure 0:

$$f_1 > 0 = A \cap \{v_n < a(M)\},$$

$$f_2 < 0 = (T - A) \cap \{v_n < a(M)\}.$$

Proof. (VII.5) says that $|f(x)| \neq 0 \Rightarrow \{v_n < a(M)\} = 0$. So, except for sets of measure 0, (VII.2) shows that

$$f_1 > 0 = \{f_1 > 0\} \cap \{v_n < a(M)\} = A \cap \{v_n < a(M)\},$$

$$f_2 < 0 = \{f_2 < 0\} \cap \{v_n < a(M)\} = (T - A) \cap \{v_n < a(M)\}.$$

Since $f_2 > 0 \cup f_2 < 0 = \{v_n < a(M)\}$, the result follows.

Now we easily see that f determines (v_n, u_n), let J_M^+ be the inverse function to J_M, and remember that $u_n = U_M(v_n)$ for $x \geq x_0 - A_0$. Then (VII.2), (VII.4) and (VII.5) state that:

(vii) (vii)

$$u_n = U_M(v_n) = \langle \langle x \rangle - h \rangle f_1 = f_1$$

and $\cos v_n = \sqrt{(b + y^2)/(b + b^2)}$.

Consequently, (VII.6) can be written in the following way:

$$v_n = \arg \sqrt{((M - 1) f_1 (M + 1) f_2 + M f_2)}.$$

(VII.7) $u_n = \arg \sqrt{((M + 1) f_1 + 4 M f_2)}/4 M f_2).$$

So we have proved that

(VII.1) PROPOSITION. Let (v_n, u_n) be as in (VII.1). Then $3 f = (f_1, f_2)$

$\neq \emptyset$ such that $(-f_1 + f_2) \in H^1, f_1(0) = f_2(0) = 0$, and (v_n, u_n) are given by (VII.7).

(VII.1) LEMMA. If $f_1, f_2 \in L^1(T)$ and (v_n, u_n) are defined by (VII.7), then $(v_n, u_n) \in F_M$.

Proof. Clearly $|v_n| L^1(a - (1/a)) = a(M)$.

$$\cos v_n = \sqrt{((M - 1) f_1 f_2 + M f_2)}/4 M f_2).$$

So

$|v_n| = \arg \sqrt{((M + 1) f_1 + 4 M f_2)}/4 M f_2) = U_M(v_n).$

(VII.1) LEMMA. In the same hypothesis of (VII.1), $f(v, u) < f(v, u)$

holds for every (v, u) in $F_M = \{v_n, u_n\}$.
A refinement of the Helson–Szegő theorem 221

Proof. Since \(|u| \leq U_M(v), u = hU_M(v)|, with |h| \leq 1. Then
\[
\int f(v, u) = \int [f_1(v, u) + f_2 U_M(v)].
\]
(VII.7) shows that
\[
sg v_0 = sg f_1,
\]
and also that
\[
tg((v_0)) = (M + 1)^{f_1} / [(M + 1)^{f_2} + 4Mf_1]^{1/2} = f_1 / f_2 = J_M((v_0)).
\]
Also
\[
u_0 = U_M(v_0)-(A_{f_2 < v} - A_{f_2 < v}).
\]
(iii) and (iv) show
\[
\begin{align*}
\int f(v_0, u_0) &= \int [f_1(v_0, u_0) + f_2 U_M(v_0)] \\
&= \int f_1 U_M(v_0) - \int f_2 U_M(v_0) > 0
\end{align*}
\]
except \(h = sg f_4 \text{ a.e. in } (v_0 < \alpha(M)), which would imply \(u = u_0). Suppose that \(\mathcal{A} = \{v_0 \neq v_0\} \text{ has positive measure. Consider, in } \mathcal{A}, C = \{U_M(v_0) - U_M(v_0) \leq -U_M(v_0) \leq v_0 - v_0\}; if \(\|v_0 - v_0\| > C > -U_M(v_0) \geq J_M(|v_0|), and, if \(\|v_0 - v_0\| < |v_0|, C < -U_M(v_0), \) so, in \(\mathcal{A}, C \leq -U_M(v_0) = J_M(|v_0|) \leq |v_0| - |v_0|).
\]
Then (iii) shows that, in \(\mathcal{A}, f_1 U_M(v_0) - f_2 U_M(v_0) > J_M(|v_0|) \) a.e. Since \(|\mathcal{A}| > 0,\)
\[
\int f_1 U_M(v_0) - \int f_2 U_M(v_0) > \int f_1 U_M(v_0) + f_2 U_M(v_0)
\]
considering (i) and (v), the results follow.

(VII.k) Proposition. In the same hypothesis of (VII.j), \(\exp(G \circ r(g)) = \exp(u_0 + \hat{v}_0) \in \text{Ext } E_M\) and \(r(g) \in \text{Ext } E_M,\)
\[
\mathcal{P} = \{v, u + \hat{v}_0 \in U_M(v_0) : \langle u_0 + \hat{v}_0 + N \rangle \cap \mathcal{P}_M\}
\]

since \(N \subset \text{Ker } f, it is clear that \(G^{-1}(u_0 + \hat{v}_0) \cap \mathcal{P}_M = \langle u_0 + \hat{v}_0 + N \rangle \cap \mathcal{P}_M\),

contains only one element and that it belongs to \(\text{Ext } \mathcal{P}_M\). So \(\exp(u_0 + \hat{v}_0) \in \text{Ext } E_M\) because of (VII.l). Consequently \(v_0, u_0) \in \text{Ext } E_M\) as in (VII.j); set \(d \mu = g d \tilde{t}, d \nu = \tilde{g} d \tilde{t}.\) Then, the result follows from (VII.j) and Definition (VII.b).

Remark that the first part of Theorem 1 has been proved. In order to prove the second we shall give a geometrical interpretation of \(E_M\).

We say that \(\varphi \in L_M\) belongs to the set \(\text{Ext } \mathcal{P}_M\) of exposed points of \(L_M\) if there exists a linear functional \(F\), continuous in the weak star topology of \(L\), such that \(\mathcal{F}(\varphi) > \mathcal{F}(\varphi), \forall \varphi \in L_M - \{\varphi\}\).

Proposition (VII.3) shows that there exists a bijection between \(\text{Ext } E_M\) and \(\text{Ext } \mathcal{P}_M\), given by \(f \mapsto \varphi\). We shall show that the same relation holds between \(E_M\) and \(\text{Ext } \mathcal{P}_M\).

(VII.k) Proposition. \(\varphi \in \text{Ext } \mathcal{P}_M \iff \varphi \in E_M, \)
The proof. If \(\varphi \in \text{Ext } \mathcal{P}_M\), clearly \(\varphi \in \text{Ext } E_M\), so \(\varphi \in \text{Ext } E_M\). Then \(\varphi = c + u_0 + \hat{v}_0, with (v_0, u_0) \) as in (VII.l). Moreover, there exists \(g \in H, c\) such that \(\int (g v_0 + g \hat{v}_0) > \int (g v_0 + \hat{g} v_0)\) for every \((v, u) \in E_M\).

Thus \((v_0, u_0) \in \text{Ext } E_M,\) Proposition (VII.l) and the definition of \(E_M\) finish this part of the proof. Reciprocally, if \(\varphi \in E_M, \varphi = c + u_0 + \hat{v}_0, with (v_0, u_0)\) as in (VII.l). By (VII.l), \(\varphi \in \text{Ext } \mathcal{P}_M\).

We know that \(L_M\) is a weak star compact and convex subset of \(L, so we may refer to the following theorem of Y. Klee (\(\text{Rem.}\)); Let \(E\) be a separable Banach space and \(E^*\) its dual topological dual. Let \(C\) be a weak star compact and convex subset of \(E^*\). Then \(C\) is the weak star closure of the convex hull of the set of exposed points of \(C\).

This theorem, with \(E = H, C = L_M, says that the proof of Theorem 1 is over.

References

Received April 21, 1979