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A pew group algebra and lacunary sets in
discrete noncommutative groups (%)

by
MAREK BOZEJKO (Wroclaw)

Abstract. Wo define for o discrete group ¢ the *-Banach algebra 1G], and
the oquality *[G] = () charactorizos the amenability of a disereto group &. We
congider tho lacunary sets with respoet to that algebra, which in the amensble case
coineido with Sidon sote introduced by A. Figd-Talamanca and M. A. Picardello [117.
Weo give the construction of unconditional Sidon sets.

Introduetion. For a discrete group @ we introduce the new *-Banach
algebra under convolution I*[@], which is equal to the closure of functions
with. finito support with respect to the norm ||fly = ||f [y xeay-

Using thoe results of A. Derighetti and A. Fulanicki concerning the
charactorization of an amenable group, we see that I'[G] = /() if and
only if G is am amenable group.

M. Leinert digeovered a new class of lacunary infinite sets which
could not he Sidon sets. We propose a new class of lacunary sets, U-Sidon
sety, which containg Sidon sets and Leinert sets. We also introduce another
class of “lacunary” sets (amenable sets) and we show that that class is
closed under finite union. When the group @ is amenable, every set is an
amenable gob and every U-Sidon. set is 2 Sidon set. .

M. A. Picardello has shown that weak Sidon sets are 4(p) sets for
every p < oo. Using the same argument (the Rademacher functions),
wo prove that U-Sidon sets are A(p) sets for every p < co: We also show
that oll infinite group @ 4s not U-Sidow set or, which is the same, 1*[G]

# 03(0).

The remainder of Section 3 ghows that the union of a Leinerl and
a U-Sidon sol is again o U-Sidon sot. I wo take the union of an infinite
Bidon get and an infinite Loinert set, then wo obtain o U-Sidon. set which
is not & Sidon set or o Loinert set. '

The main vesult of Section 4 is Theorcm 4.1, which gives a sufficient
condition for a set to be U-Sidon.

(*) ghis work was done during the author’s stay at the University of British
Columbia, Canada. :
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0. Preliminaries. We establish some notations and definitions. For

a discrete group G,
@) ={5: {3 f@rf< ).

zeld

Tor a bounded function fel®(@), we denote |f|(®) = [f(2)]; ¢x(GF) will
denote the space of all functions on @ which tend to zero at infinity. We
refer to P. Eymard [9] for the basic definition, propertics and theorems
of A(@),B,(&), B(&),5(6) and VN(G).

We recall only that C*( @) and VN (@) are, respectively, the *-algebra
and the von Neumann algebra generated by the operators o(f) on I*(G),
where o is the left regular representation and f el ().

Since every T ¢ VN(@) is of the form ¢(f) where f == T'(4,), we shall
identify 7 with T(9,), where, for % @, d, is the Dirac function at ». So
for f € VN (&) the operator norm is

I lvne = sup {If*glla: lgls =1, ¢ € (@)}

where the convolution is defined as

(Fro) (@) = 3 flay™)g(y)

yed
for every f, g € I*(6).

For the funetion f e 1*(G) we define the involution by f*(») = f )
and the left and right translation by (af)(y) = fl@™'y), (fo)(y) = f(yw).
Note that

a*f =gf and f«d,=Ff_,.

For f, g el®(&), (f-9)(» f(m g(2) fer every @ c@.
Let L(G) denote the set of all functions on @ with finite support.
For a subset X in (@) and ¥ < G, we denote

Xp = {feX: suppf c B}
and

X|p = X(B) ={fly: fe X},

where f |5z denote the restriction of f to the set Z.
For an f e L(G) we define the L**-norm as

anL2n = {(f*f*)n(a)}l&n,

where the power is a convolution power. Let I*" = L*(@) denote the
completion of L(G) with respect to this I**-norm [see [197]. )

Let M (4A(&) = {f1®(@): f-A(F) c A(G)} with the operator norm.
Note that if G is an amensuble group, then .M (A(G)} = .B(G). ye always
have B(@) = M(4(&)).
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It is not difficult to verify the following lemma:
Lmymva 0.1. Let £, g € VN(G) and let G be a discrete group; then
) Ifegl < 1f1*1g15

If FeVN(®), then |flllyxe = If llvwes

) If f2 920, then |Iflvx = lgllvx-
1. Group algebras of a discrete group G. We start with the following

proposition.

ProPOSITION L1.1. Let G be a discrele group; then

U (@) = {f e VN(@): If] e VN(E)}

with the norm ||f|ly" = [I1f{llyx 8 @ =-Banach algebra under convolution.
Proof. Using Lenuna 0.1, we have for f, g e U,(G):

(@) If gl = Hf*glllex < 1IF 1% lglllow < If o 91l -

‘We also note of course that || || is a norm. To prove that U,(¢)is a Banach
space, we observe that if {f,} is a Cauchy sequence in U,(@), then {|f,[}
is Cauchy in VN (&). Hence there exists an f € VN (G) such that

(as) L | 1f 1= alllywe = 0.

8o f € U,(@) and wo see that lim||f —f,lly = 0. Since [f*| = (f[*, we infer

n
that U,(@) is a »-Banach algebru.
Remark. For fe U,(¢) and v @

(as) leflly = Ifely = If*lo = flo-
Now we consider another a *-Banach algebra, which is vital for us.
Since every function f e VN(G) has the “Fourier series”
(a) - fe~ D f@)e,,
. pEG
we can ask when this series is unconditionally eonvergent in the operator
norm || |lyy, 0, which is the same, when the set of Dirac functions {83 eee

is an uncondmoml basic sequence.
Lot B{G] = {f € VN(G): the “Pourier series” of f ~ > f(#) 4, is un-

weld
conditionally convergent in || |lyy norm}. For fel'[G] lot

(as) Iflly == sup {lznfllvw: I eF},

where g, denotes the characterigtic function of the set F and § is the
clags of all finite subsets of @.
Let a denote the closure of L(@) with respect to the || ||l norm. Now

we can gtate our main result:
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TaEoREM 1.2. For every discrete group @, 1'[G] is & »-Banach algebra
and the norms || g and || |l ave equivalent on 1'[G].

Proof. Since a is always a =-Banach algebra with the norm || |,
it suffices to prove that I' [¢] = a. By the Orlicz—Pettis theorem I'[G] < a.
Let fea and {F,} be any increasing sequence of finite scts contained
in supp f. Since functions of finite support are dense in a, it is easy to
see that {fxz } 15 & Cauchy sequence in VN(@); therefore f ' [¢]. Since
the norm || |ig is equivalent to the norm

(o) Iflg = sup {llpfllvi: ol =1} = l1Flllva,

the theorem follows.
Let us observe that we have the following inclusions:

(a;) H@) < PG < 0%(6)

and we have the following natural question: When do these algebras
coincide? In Section 3 we ghall see that for an infinite discrete group ¢
we have I'[G] # O5(@).

The angwer for the first inclusion ig in the following.

ProposItioN 1.3. If @ is o diserete group, then 1(G) = I'[@] if and
only if G is an amenable group.

The proof results from the following characterization of an amenable
groups due to A. Derighetti and A. Hulanicki [7], [14].

(*) @ is an amenable group if and only if [|flly = |f|lyy for every
feL(@) and f>0.

Thus, since L(G) is dense in I' (@) and I'[G], we conclude at once that

. if @ is an amenable group, then I'(@) = I'[G].

Conversely, let I'(@) = I'[G]; then by the OClosed Graph. Theorem

we have

() Il < Cliflly

for every f € L(G) for some fixed constant ¢ > 0.
But then

() ”]m“l Ouf"”m

where the power is the convolution power, for arbitrary integer » > 0.
Taking a positive f in (a,), we obtain

{20) IFIT < CIfIon

Hence

(1) 1F1 << i o

for every f e L(G) and f > 0. But we always have
(@12) Iflla= Wflx  for fell(@),

80 the group G is an amenable by (*).
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Remark 1.4. By the same argument as above we infer that G is
amenable if and only if U,(&) =IH&).

It will be interesting to know when P[G] = U,(G).

2. Properties of I'[¢]. Let I°[G] denote the dumal Banach space
of I'[@], and for f e I”[G] let
(1) Iflle = sup {I<f, 1= ¢ € L(G) and gy = 1}.

Let ¢, [¢] denote the closure of L(G) in I* [G] with respect to the norm
I «. Note that, for every feL(&)

(B2) If I < Hf [Lagey -
Hence we obtain
(8s) A (@)  6[6],

(Bs) B,(6) € I°[G].

First we note the following

PRrOPOSITION 2.1, For a discrete group G, we have

(a) 1[G € 1°(&);

(b) I°[G] is an invariant under the translation ideal in 1™ (&);

(6) 0o [G] is an imvariant under the translation ideal in ¢, (@) and in 1°(G);

(@) 6[G]" = U, (@)

Proof. It ¢ el®[G], then ¢(x) = {p,
»ed.

The proof of {b) follows at once if we recall that for every ¢ €1 (@)
and f e P'[GY, of, of, fe €' [G] for m e G.

Now we show that U,(@) is a dual space. The inclusion ¢, a1 =
follows immediately if we show that

(Bs) 6[G] = VN(@).

But since .4 (@) is dense in ¢[G] and (B,) we get (f;). Now let f e ¢, 2y
and ¢ el®(@); then ¢f €g[G]* = VN(@). This implies that fe U (6).
Conversely, lot f € U,(&) and % e L(G) and B = supp(u), then

<y ud] = | fogamy WD) < Izl el < 1F llor el -
Lcnee f e ¢,[G]" and the proposition follows.
Remark 2.2. Lot # be a subset of G and let I'[G]]; denote the quo-
tient Banach space P[G]/Jy, where Jy = {fel'[G]: f = 0 on H} and
M@y = {f e ' [G]: suppf < B},

then the mapping P[G]5 ¢ - ¢xy €[], gives the isomorphism of
I'[@iz and I'[G], and this space will be denoted by T [E].

&> 8o |p(@)l <

llplle for every

U,(@)
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PROPOSITION 2.3. Let G be a discrete group. G is amamenable group
if and only if there exists @ non-sero continuous functional m on I [¢F] invariant
under translation of © €@ (4.6. m(wf) = m(f) for f e 1®[G] and © e @).

Proof. If @ is an amenable, then by Proposition 1.3 I'(@) = I'[¢];
hence I®°(@) = I®[G] and from the definition of‘amenability we have
the existence of an invariant mean on I°[G] = I*(6).

Conversely, let m e I®[G]*, m 5% 0, m being invariant; then

A A (> aa,f) = ;‘ &) m(f).
=1 s
But observe that
(8 (Y et )| < || 3 0| 15
i=1 =1

So if o, > 0 and if m(f) # 0, we get

2 Sl = Zutef <] S,

where A = |m|*[|fl«-\m(f)|"'. The last inequality implies that (&)
= I'[(] and this, by Proposition 1.3, is equivalent to the amenability of &.

!

3. Lacunary sets. Let  be a subset of a discrete group @; then we
have the following inereasing sequence of Banach spaces:

() H(B) < VB £ O(6) < P(A).

‘We recall the definitions of special lacunary sets which were intro-
duced by A. Figa-Talamanca and M. A. Picardello [11], [19].

B is called a Sidon set it 1'(B) = 0*(@)z,
and

B is called a Loinert set if 1*(H) = O (@)p.
Now we would like to propose the following two classes of sets:

Eis called an unconditional Sidon set or a U-Sidon set, it I'[H] == 5 (@)
and

E is an amenable set if I'[B] = I1(B).
By Proposition 1.3 we see that if the group @ is an amenable, then every

set in @ is an amenable set and every unconditional Sidon get is a Sidon. set.
Now we present the following characterization theorems:

TrEoREM 3.1. Let B be a subset of a disorete group G then the following
statements are equivalent:

(a) B is an unconditional Sidon set;
(b) Given @ el™(E), there is a p e M{A(G) such that () = (o)

icm°
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for @ &€ B and W) < * llpll,, for some positive x;
(e) 1°[B] = B,(1); :
(d) co[H] == A(I);
() R[H] = VN(@)z;
(£) There is a constant x > 0 such that for every fel(@y

I llo << 20 lvws

(g) For eaoh function &: H->{L, ~1}, there cwisis a u e M(A (@)
such that |[wlna@) < K and

sup (o) — (@) <1 -3 (8>0)

where K and & depend only on H;

The proof follows by the standard considerations. ]}‘01 amenable
groups the proof was given by J. Oygan [B] and M. A Picardello [19].

Tumons 3.2. Let T be a subset of a discrete group G ; then the following
statements are equivalent:

(a) B is an amenable set;

(b) The restriction algebra A(L) hos a bounded approwimate wnit;

(¢) The Leptin constamt Q(B) is fonite, where

Q(B) = sup{w(K): K < F and K is finite}

and »(K) =int{{EV|/|V|: V is finite and V¥ = @},
(d) B(B) = B,(B).
(e) There is a constant a > 0 such that

Ifl,< alflly  for fel(@)g.

Tor the cage where B = G the above statements are well knoym
(see [12], [171, [18]). The proof of our theorem follows by the a@optxon
of the corresponding theorems in the amenable case, and so we omit iti. .

We recall that the set B in o discrete group G is a weak Sidon set if
1°(H) = B(E). Now we can sbate

PROPOSITION 3.3. (a) Hvery weak Sidon set is o U-Ridon set.

(b) Every Leinert sel is a U-Sidon set.

Proof. (a) This follows from Theorem 3.1 (b) and the fact that
B(@) = M(A(6). .

(b) is a consequence of Theorem 3.1 (f) and the following a;rgumonp:
Let f have a finite support in ; then, since ¥ is a Leinert set, we obtain
for f e L(@)y
(va) Il < OlIf lla
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for a fixed constant ¢ > 0. But also supp |f| = B, and so we get

(vs) Ifllo = Wf v < CHAMa = Cllflla-

Since for every fe VN(G) we have

(Ya) 11l << v
this implies that
(¥s) 1flly < Clif owns

go I is a U-Sidon set.
Now we show some simple facts about the union:

PROPOSITION 3.4. Let G be a discrete group and B, F < G. Then:

set;
(b) If B and F are amenable sets, then BOF is also an amenable set.
Proof. (a) By [11], if ¥ iy a Leinert set, then I°(&) = M(A()).
Now take a U-Sidon set F'; without loss of generality, we can assume that
EnF =@. Let ‘
@ el®(BUF), and

(e P1 =Xr¥ P2 = XpP-

Since I ip a U-Sidon set, by Theorem 3.1 there cxists a vy, € M| (A (G))
such that 9, = ¢, on F. On the other hand, since F is a Leinert set, we
can see that, by the strong property of a Leinert set, if we take 1, = @, —
—%zV1, then vy, e M{A(F)). Therefore p = y;+y, e M(4A(G), but y = ¢
on BEUR.

(b) Now let B and F be amenable sets, and let fe'[EUF]; then
we can decompose f = f;+f,, where f, e'[E], f, e P'[F] The above
decomposition follows from the well-known. fact that, if the series is uncon-
ditionally convergent in a Banach space, then every subseries of it is
also unconditionally convergent. Since f, € *(H) and f, e I*(¥F), we have
fel'(BUF) and this implies that FUF is an amenable set.

M.A. Picardello has considered A(2n) sets, i.e. L* (&), = IF(H) and
he has proved that every weak Sidon set is a 4(2x) set (see [19]). We
have slightly improved this theorem.

ProOPOSITION 3.5. If B is a U-Sidon sel, then B is a A(2n) sel for every
n < oo,

The proof is similar to the corresponding proof of an analogous the-
orem of M. A. Picardello [19], and so we omit it.

Now we present an application of the above proposition.

PROPOSITION 3.6. Let G be a disorete group, then [G] = O () if and
only if @ is a finite group. _

icm
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Proof. We use the following theorem of N.W. Rickert [21]:

If a group G is discrete and A (G) = P(®), then G is a finite group.
In our case ¢ is a U-Sidon set, 8o by Proposition 3.5 G is a A(4) set and
this implies that A (@) = *(@), and so by the theorem of N. W. Rickert
@ is a finite group.

When the group G is finite, it is obvious that I [(] = O3(@).

Remark 3.7. If & is & free group on two generators ¢ and b, let
B == {a"b", 0™ 1,2, 3, ...}, then by Proposition 3.4 (a) B is a U-Sidon
st but it is not cither Hidon sot nor a Leinert seb.

4, Construction of an wvnconditional Sidon set. In this section we
give a gufficient condition for a set to be o U-Sidon set. We use the pseudo-
norms introduced by . Akemann and Ph. Ostrand [1],

Durinteion. Let sappf = # be o finite set, for £ =1, 2, ...,

(8) Ny (f) = sup{lf+gls: suppg = (B B)}.

For a set B s @, let B™ = B(BE)™. Note that

(82) No(f) < Nigys (F) < If vy -

Let us first prove
LumMA 4.1, Let B = {y, @y, ...} be o fiwved countable set in a discrete

o
grouwp G and lot By, = {®y, &y, ..., v,} and take &, = 0 such that 218" < o0,
then there emists a sequence of integers {ky}mw, such that n=

(%) N, (f) 2 (L —2,) [f llvx

for every fumction f with support in B,.
Proof. It was observed by C. Akemann and Ph. Ostrand [1] that
for every ¢ e L (@) weo have

(3,)

But it we consider the set P, = {f € L(F)y,: vy = 1.}, then P, i @
compact set, henco by the elaggical Dini theorem the limit in formula (8,) is

uniform on ,. But this is our lemmsa.
Now wo prove the following simple lemma which gives the construc-

tion of a U-Sidon set.
LA 4.2. Lot I be a findle sot and lot w ¢ F(F~F)™; then, for every
Sunotion f such that suppf < I and an arbitrary complew a, we have

(3:) Nyp(f+ady) 2 Ny(f).

gl = h’lank(ﬂ) .
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Proof. First we observe that if suppfc ¥, and suppg < (1

- and & ¢ F(F1F)%, then by the Pythagorean theorem we have
(36)
But
(8)

o

I(f+ady) kgl = I+ gl -+ laglz = If*gllz.
Ni(f+ady)
= sup{|lf+g+ adxglh:
Hence by the inequality (3,) we get our lemma.
DrrINirioN. Let G be a discreto group; a countable set B == {v,, @,, ...}
in G is said to be strong dissociate if
(%) By, ¢ (BN {z,}) 0

for every 0 <m < n and every n =1,2,... (B, = {g, @, ..., o,}) and
{k,} is a sequence from Lemma 4.1 for ¢, = 1/nk

THEOREM 4.3. Hvery strong dissociate set tn a discrete group @ is an
U-Sidon set.

Proof. Sinee the norm || ||y is equivalent to the norm ||-lly on L(G)
by Theorem 1.2, we would like to show thatsfor a strong dissociate set I

(3,) I1fls < Clif lyw
for every feL(G)g.

Let suppf = B, = {o,, %, ..., 2,} < H and let I == {1y Dys 0y 0}
be an arbitrary subset of #,. Then by Lemmas 4.1 and 4.2 we have .
(810) Iflvw = N, () = (L —6;) (L —g;,) - ... “L—2) lgnf lox-

Since s, =1/n* and []1/(1—e,) =2, we get [flls < 2 [fllvxe for

n=1

every f e L(()g.

gl =1, g e L(&), suppy = (F~'F)"}.
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