Method of orthogonal projections and approximation of the spectrum of a bounded operator II

by

ANDRZEJ POKRZYWA (Warsaw)

Abstract. A necessary and sufficient condition is given in order that a compact subset of the complex plane be a limit of spectra of operators $A_n = P_n A |P_nH$, where A is a given bounded operator on a Hilbert space H and (P_n) is a sequence of orthogonal projections converging strongly to the identity operator on H. This paper is a continuation of the study of asymptotical behaviour of spectra of operators $A_n = P_n A |P_nH$, where P_n is a sequence of orthogonal projections in Hilbert space H converging strongly to the identity operator and A is a bounded operator in H. We use the same notations as in the first authors paper [4] on this subject.

The main result is the following theorem, which completes Theorem 1 in paper [4].

Theorem. If A is a bounded operator on a separable Hilbert space H and its essential numerical range $W_e(A)$ contains an interior point, then for any sequence (E_n) of finite nonvoid subsets of the interior of $W_e(A)$ there exists a sequence (F_n) of orthogonal projections of finite rank such that $F_n \rightarrow 1$ strongly and

$$E_n \subseteq \Sigma(A_n) \subseteq E_n \cup (\Sigma(A) \setminus W_e(A)),$$

where

$$A_n = P_n A |P_nH \in L(P_nH).$$

Before proving this theorem, we need some auxiliary lemmas. The idea of conformal mapping in the proof of Lemma 1 is taken from Herrero's paper [3].

We start with the following simple example.

Example. Let H stand for a separable Hilbert space, the operator S satisfying the relations $R_n = \sigma_n$ (where (σ_n) is a fixed orthonormal basis in H) is called the bilateral shift. It is known that S is a normal operator and that its spectrum $\Sigma(S)$ is a unit circle $S(0, 1)$. Define a sequence
is a selfadjoint projection in \(H \times H \). This shows that \(N = QR(\mathbb{S}^{1} \times \mathbb{S}^{1}) \), where

\[
R = \bigoplus_{j=1}^{m} \left[\begin{array}{cc}
\mu_{j} & -\mu_{j+1} \\
\mu_{j+1} & \mu_{j}
\end{array} \right] \in L(H \times H), \quad Q = \bigoplus_{j=1}^{m} \left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array} \right].
\]

Note that \(R \) is a normal operator with \(\Sigma(R) = \Sigma(N) \), and all normal operators which satisfy this relations are unitary equivalent, note also that the operators \(P_nR \) are orthogonal projections of the rank \(n \).

In this way we have proved the following lemma.

Lemma 2. Let \(x_{n} \) be an interior point of a convex polygon \(\Omega \) with extremal points \(\{\mu_{j}\}_{j=0}^{n} \). If \(R \in L(H) \) is a normal operator with \(\Sigma(R) = \Sigma(N) \), then there exists a sequence \(\{P_{n}\} \) of orthogonal projections in \(H \) such that

\[
\dim P_{n} = n, \quad \Sigma(P_{n}R_{1}P_{n}) = \{x_{n}\},
\]

\[
\text{dist}(\Sigma(P_{n}R_{1}P_{n}), \Omega) \to 0, \quad \text{with} \quad n \to \infty.
\]

Lemma 3. Let \(H \) stand for a Hilbert space with orthonormal basis \(\{e_{n}\}_{n=1}^{\infty} \). Let \(x_{n} \) be an interior point of the triangle \(\{\mu_{1}, \mu_{2}, \mu_{3}\} \). Define the operator \(A \in L(H) \) by the relations \(A_{e_{n}} = \mu_{n}e_{n+1} \), \(n = 0, 1, 2, \ldots \) Then for any \(\varepsilon > 0 \) there exists a projection \(P \in P_{1}(H) \) such that

\[
\Sigma(\lambda_{1}P_{1}P_{1}) = \{x_{n}\}, \quad \left\| e_{n} - P_{1}e_{n} \right\| < \varepsilon.
\]

Proof. By Lemma 2 there exists a \(Q \in P_{1}(H) \) such that \(\Sigma(QA_{1}P_{1}) = \{x_{n}\} \) and \(\text{dist}(\Sigma(QA_{1}P_{1}), \Sigma(A)) < \varepsilon/4 \), where \(\varepsilon = \delta(\mu_{1}, \mu_{2}, \mu_{3}) \) (>0), so there exists a unit vector \(x \in H \) such that \(\delta(x, x) < \varepsilon/4 \).

Note that \(x = \sum_{i=1}^{m} a_{i}y_{i} \), where \(\|y_{i}\| = 1 \), \(Ay_{i} = \mu_{i}y_{i} \), \(a_{i} \geq 0 \), \(i = 0, 1, 2 \).

Hence \(1 = \|x\|^{2} = \sum_{i=1}^{m} a_{i}^{2} \), \(\langle A_{1}x, x \rangle = \sum_{i=1}^{m} a_{i}^{2} \mu_{i} \) because \(y_{i} \) are orthogonal.

Therefore

\[
\|x\|^{2} > \mu_{3} - \langle A_{1}x, x \rangle = (1 - a_{3}^{2}) \mu_{3} - a_{3}^{2} \mu_{2} + \frac{1}{2} \mu_{1}^{2} > (1 - a_{3}^{2}) \lambda;
\]

so \(1 - a_{3}^{2} < \varepsilon/4 \) and

\[
\|x - y_{3}\|^{2} = \|(a_{0} - 1)y_{0} + a_{1}y_{1} + a_{2}y_{2}\|^{2} = a_{0}^{2} \leq \frac{\varepsilon^{2}}{1 + a_{3}} < \frac{\varepsilon^{2}}{2}.
\]

Let \(U \) stand for the unitary operator satisfying the relations \(Us - x \) for \(s \) orthogonal to \(e_{0} \) and \(y_{i} \), \(Ue_{0} = x_{1} \), \(Uy_{i} = e_{i} \). It is obvious that \(U^{*} = 1 \) and \(A = UAU \), let \(R = UQ_{1}U \). The operators \(Q_{1} \) and \(P \) are unitary equivalent, and \(\Sigma(P_{1}P_{1}) = \{x_{n}\} \). Now the lemma follows.
from the inequality
\[\left\| e_0 - \frac{P_{\mathcal{P}_0}}{\|P_{\mathcal{P}_0}\|} \right\|^2 < 2 \|y_0 - Qy_0\|^2 \leq 2 \|y_0 - Qy_0\|^2 = 2 \inf_{\varphi \in \mathcal{P}} \|y_0 - \varphi\| \leq 2 \|y_0 - x\| < \varepsilon. \]

Lemma 4. If \(\Omega \) is a convex subset of \(C, \quad E(\mu, \Omega) < \varepsilon, \) then \((1 - \varepsilon)\mu + \varepsilon \in \Omega. \)

Proof. There exists a \(\lambda \in \Omega \) such that \(|\mu - \lambda| < \varepsilon. \) Let
\[\varepsilon = \frac{1}{1 - \varepsilon} |\mu - \lambda|; \]
then \(|\varepsilon| < \delta \) and \(s + \varepsilon \in \Omega, \) this implies \((1 - \varepsilon)\mu + \varepsilon \in \Omega. \)

Lemma 5. If projections \(P, Q \) in \(H \) are defined by the formulas
\[P = \sum_{i=1}^{n} \langle x_i, x_i \rangle x_i, \quad Q = \sum_{i=1}^{n} \langle y_i, y_i \rangle y_i, \]
where \(\{x_i\}_{i=1}^{n}, \{y_i\}_{i=1}^{n}, \) are two orthonormal sets such that \(\langle x_i, y_i \rangle = 0 \) for
\(i \neq j, \) \(|x_i - y_i| < \varepsilon, \) \(j = 1, 2, \ldots, n, \) then \(\|P - Q\| < \varepsilon. \)

Proof. Note that there exists an orthonormal set \(\{x_j\}_{j=1}^{n} \) such that
\[y_j = a_jx_j + b_jx_{j+1}, j = 1, 2, \ldots, n, \]
where
\[|a_j|^2 \leq \|x_j - y_j\|^2 \leq \varepsilon^2. \]

The following identity holds:
\[(P - Q)x = \sum_{j=1}^{n} b_j (\langle x, x_j \rangle x_j - a_jx_{j+1} + \langle x, y_j \rangle y_{j+1}); \]
so
\[\|P - Q\|^2 < \varepsilon^2 \sum_{j=1}^{n} (\langle x_j, x_j \rangle |a_j|^2 + \langle x, y_j \rangle |b_j|^2) \leq \varepsilon^2 \|x\|^2, \]
which follows from the Bessel inequality since the vectors \(\{b_jx_j - a_jx_{j+1}, y_j\}_{j=1}^{n}, \)
\(x_j, y_j \)} form an orthonormal set.

Lemma 6. If \(P, Q \in L(H), P = P^2, Q = Q^2, PQ = QP \) and \(\|P - Q\| < 1, \)
then \(P = Q. \)

Proof. Note that \((P - Q)^{r} = (P - Q)^{2} \) and \(\|P - Q\|^2 < 1. \) Therefore
\((P - Q)^{2} \) is a projection with a norm strictly less than 1; hence \(0 = (P - Q)^{2} = P - Q - 2PQ. \) Multiplying this identity first on \(Q, \) then on \(P, \) we obtain \(P = PQ = Q. \)

Proof of the Theorem 1. It follows from Lemma 7 of [4] that it is enough to prove the theorem in the case where \(\mathcal{B} \) is one-point sets, therefore in the sequel we assume that \(\{x\} = \mathcal{B}. \) Then there exists a sequence \(\{b_n\}_{n=1}^{\infty} \) of positive numbers such that \(\mathcal{E}(\mu_n, \mathcal{B}) \cap \text{Int} W_+(\mathcal{A}), \quad 0 < \varepsilon, \)
\(0 < \varepsilon < 1, \) and \(b_n \rightarrow \mathcal{E}(\mathcal{A}) = 0, \) where \(\mathcal{E} = W_+(\mathcal{A}) + (\mathcal{A}). \)

2. Let \(Q_n = E(C \setminus \mathcal{G}_n \setminus \mathcal{A}), \) and \((\mathcal{P}_n)^{m_n} = P_f(H) \) be a sequence strongly

convergent to the identity operator. Let \(P_n \) stand for the orthogonal projection on the subspace \(\mathcal{P}_n = \mathcal{P}_n + \mathcal{Q}_n + \mathcal{Q}_n^*H. \) As \(\mathcal{P}_n \rightarrow 1 \) strongly with \(n \rightarrow \infty, \) it follows from Theorem 1 of [6] that there exists a sequence \(\{a_n\}_{n=1}^{\infty} \) such that
\[|Q_n - E(C \setminus \mathcal{G}_n \setminus \mathcal{A})|_{P_{\mathcal{P}_n}, \mathcal{P}_n} < 1, \quad n \geq n_0. \]

For simplicity assume that \(\mathcal{P}_n = P_{\mathcal{P}_n}. \) Since \(Q_n \) commutes with \(A \) and \(\mathcal{P}_n, \)
so it commutes also with \(\mathcal{P}_nA \) and therefore \(\mathcal{Q}_n \) commutes also with \(E(C \setminus \mathcal{G}_n \setminus \mathcal{A})|_{\mathcal{P}_n}, \)
Lemma 6 shows that \(Q_n = E(C \setminus \mathcal{G}_n \setminus \mathcal{A})|_{\mathcal{P}_n}. \)

3. Now we fix \(n. \) Let \(\bar{Q}_n \) stand for the orthogonal projection with range \(Q_nH; \) then \(\bar{Q}_n Q_n = Q_n, \quad \bar{Q}_n \bar{Q}_n = \bar{Q}_n, \) and \(\bar{Q}_n < \mathcal{P}_n. \) The following identity holds:
\[\mathcal{P}_n A \mathcal{P}_n = Q_n \mathcal{P}_n A \mathcal{P}_n + Q_n \mathcal{P}_n(\mathcal{P}_n - \mathcal{Q}_n)A(\mathcal{P}_n - \mathcal{Q}_n). \]
so the operator \(\mathcal{P}_n A|_{\mathcal{P}_n} \) may be represented by the operator matrix
\[\begin{bmatrix} Q_n A Q_n & Q_n A(\mathcal{P}_n - \mathcal{Q}_n) \\ \mathcal{P}_n - \mathcal{Q}_n A(\mathcal{P}_n - \mathcal{Q}_n) & \mathcal{P}_n - \mathcal{Q}_n A(\mathcal{P}_n - \mathcal{Q}_n) \end{bmatrix}. \]

By a theorem on a triangular matrix form ([1], p. 107) there exists an
orthonormal set \(\{x_1, \ldots, x_1, \ldots, x_k\} \) such that
\[\bar{Q}_n = \sum_{j=1}^{k} \langle x_j, x_j \rangle x_j, \quad \mathcal{P}_n - \mathcal{Q}_n = \sum_{j=1}^{k} \langle x_j, x_j \rangle x_j \]
and
\[\langle \bar{x}, x_j \rangle = 0 \quad \text{for} \quad i < j. \]

Let \(\tilde{b}_j = \langle \bar{x}, x_j \rangle; \) so \(\tilde{b}_j \) is a spectral measure. Since \(\bar{Q}_n A \bar{Q}_n \mathcal{P}_n = A|_{\mathcal{P}_n}, \)
we have
\[\tilde{b}_j \mathcal{P}_n = \mathcal{P}_n A|_{\mathcal{P}_n}, \]
Since \(Q_n = E(C \setminus \mathcal{G}_n \setminus \mathcal{A})|_{\mathcal{P}_n}, \) we have
\[\tilde{b}_j \mathcal{P}_n = \mathcal{P}_n A|_{\mathcal{P}_n} \cap \mathcal{G}_n, \]
therefore
\[(1) \quad d(\mu_1, W_+(\mathcal{A})) < \varepsilon^* \quad (1 < i < r). \]
Now let
\[\mu_j = \begin{cases}
\nu_k, & -s \leq j \leq 0, \\
(1 - \delta_n)\nu_k + \delta_n\nu_n, & 1 \leq j \leq r.
\end{cases} \]
It follows from Lemma 4 and (1) that \(\mu_j \in \text{Int} W_r(A) \), whence \(1 \leq j \leq r \).

Lemma 7 of [4] implies that there exist vectors \(\tilde{\delta}_j \) (for \(j = r+1, r+2, \ldots, 2r \)) such that \(\langle \tilde{\delta}_j, \tilde{\delta}_i \rangle = 0 \), and
\[\langle A^*\tilde{\delta}_j, \tilde{\delta}_i \rangle = 0 \quad \text{for} \quad j > r, j \neq i, \]
\[\langle A\tilde{\delta}_j, \tilde{\delta}_i \rangle = 0 \quad \text{for} \quad j > r, j < 2r. \]
Now put
\[s_j = \frac{\tilde{\delta}_j}{\sqrt{1 - \delta_n^2 + \delta_n^2 + \delta_n^2 s_j}}, \]
\[1 \leq j \leq r \]
and note that:
\[\langle s_j, s_i \rangle = \delta_n, \quad \langle A^*s_j, s_i \rangle = \mu_j, \quad \langle As_j, s_i \rangle = 0 \quad \text{for} \quad i < j. \]

Let an orthogonal projection \(P_\lambda \) be defined by the formula \(P_\lambda = \sum_{j=0}^s \langle s_j, s_j \rangle s_j s_j^* \).

It follows from (2) that
\[\Sigma(P_\lambda A)[\lambda] = \{ \mu_j \}_{j=0}^r, \quad \Sigma(A) \cap G_\lambda, \]
\[\{ \mu_j \}_{j=0}^s = W_r(A). \]

From the definition of \(\delta_n \) we see that \(\|s_j - \tilde{\delta}_j\| \leq \delta_n \) hence by Lemma 5
\[\|P_\lambda - P_\mu\| \leq \sqrt{\delta_n}. \]

4. There exist complex numbers \(\mu_j \) (for \(j < k < 3r \)) such that: \(\mu_j \in \text{Int} W_r(A) \) and \(s_n \) is an interior point of the triangle \(\{ \mu_j, \mu_{j+r}, \mu_{j+2r} \} \)
\[1 \leq j \leq r \] (In the case where \(\mu_j = s_n \) we put \(\mu_{j+r} = \mu_{j+2r} = s_n \)).

Let \(\mu_{j+r} = \mu_j, k = 1, 2, \ldots \) By Lemma 7 of [4] there exist unit vectors \(s_j \) (for \(j < k < 3r \)) such that:
\[\{ s_j \}_{j=0}^k \] is an orthonormal set in \(H \),
\[\langle A^*s_j, s_i \rangle = \mu_j \quad (-s \leq j \leq 0), \]
\[\langle As_j, s_i \rangle = 0 \quad \text{for} \quad j > r, j \neq i. \]

Now define orthogonal projections \(R_j \) (for \(0 \leq j \leq r \)) by the formulas:
\[R_0 = 0, \quad R_j = \sum_{i=0}^j \langle s_j, s_i \rangle s_i s_i^* \quad (1 \leq j \leq r). \]

Note that:
(i) \(R_i R_j = 0 \) for \(i \neq j \);
(ii) \(R_j A_{j+r} = \sum_{i=0}^j \langle s_{j+r}, s_i \rangle s_i s_i^* \mu_{j+r}^2 \) for \(j \geq 1, k = 0, 1, \ldots, \)
therefore the operator \(R_j A_{j+r} \) is normal for \(j \geq 1 \) and
\[\Sigma(A_{j+r}) = \Sigma(A) \cap G_{s_n}, \]
\[(1 \leq j \leq r); \]

(iii) if \(i > j \geq 1 \), then
\[R_i A_{i+r} = \sum_{k=0}^r \langle s_{i+r}, s_k \rangle s_k s_k^* \mu_{i+r}^2 \mu_{i+r} \mu_{i+r} \]
\[= \langle A_{i+r}, s_i \rangle s_i = 0; \]
hence \(R_i A_{i+r} = 0 \) also \(R_i A_{i+r} = R_i R_i R_i A_{i+r} = 0 \), and so
\[R_i A_{i+r} = 0 \quad \text{if} \quad 0 \leq i < r \]

5. By Lemma 3 there exists a projection \(S_j \in P_j(H) \) (for \(1 \leq j \leq r \)) such that:
\[\|s_j - \tilde{\delta}_j\| = \delta_n, \quad \|s_j - \tilde{\delta}_j\| = \delta_n. \]
Put also \(S_j = R_j \) (note that:
(i) \(S_j S_j = 0 \), \(S_j = 0 \) for \(i \neq j \); hence if we define \(P_\lambda = \sum_{j=0}^r S_j \), then \(P_\lambda \in P_j(H) \);
(ii) if \(0 \leq j < r \), then \(S_j A S_j = S_j R_j A R_j S_j = 0 \).

This shows that the operator \(A_{n} = A_{n} A_{n}^{*} A_{n}^{*} A_{n} \) may be represented in an upper triangular matrix form
\[A_{n} = \begin{bmatrix} S_{n} & S_{n} & \cdots & S_{n} \\ 0 & S_{n} & \cdots & S_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & S_{n} \end{bmatrix}, \]

Therefore
\[\Sigma(A_{n}) = \bigcup_{j=0}^r \Sigma(S_j A_{j+r}) = \Sigma(A) \cap G_{s_n}. \]

It remains to prove that \(P_\lambda \to 1 \) strongly. Let
\[P_\lambda = \sum_{j=0}^r \langle s_j, s_j \rangle s_j s_j^* \]
\[+ \sum_{j=0}^r \langle s_j, s_j \rangle s_j s_j^* \]
\[\|P_{\lambda} - P_{\mu}\| \leq \delta_n \] this, with (3), gives \(\|P_{\lambda} - P_{\mu}\| \to 0 \). Since
\(P_{\lambda} \to 1 \) strongly, \(P_{\mu} \to 1 \) strongly; since \(P_{\lambda} > P_{\mu} \), also \(P_{\lambda} \to 1 \) strongly.

This ends the proof.

Remark 1. If \(A \in L(H) \) is a self-adjoint operator, then the operators \(A_{n} = P_{\lambda} A_{n}^{*} P_{\lambda} \) are also self-adjoint. Using the identity
\[d(\lambda, E(A)) = \inf \{ \|E(\lambda - A)\| : \|E\| = 1 \}, \]
which is valid for any normal operator, we see that if \(P_{\lambda} \to 1 \) strongly, \(P_{\lambda} \in P_j(H) \), then for any \(s > 0 \) and \(\varepsilon > 0 \), large enough \(\Sigma(A_{n}) = \Sigma(A_{n}) + \varepsilon \).
In such a case the assumption of our Theorem that \(W_r(A) \) contains an interior point is not satisfied; \(W_r(A) \) is an interval.
However, the asymptotical behaviour of spectra of the operators A_n is not clear in the case where A differs from a selfadjoint operator by a compact one.

Remark 2. If $W_n(A)$ is a one-point set, then (6) A is of the form $\lambda + K$ where K is compact. Then for any sequence (P_n) of projections in H (not necessarily orthogonal) converging strongly to identity $\text{dist}(\sigma(A), \Sigma(P_n, A|\mathcal{P}_n)) \to 0$.

The case of not necessarily orthogonal projections is easy to settle. Remark 3 and the corollary of Lemma 7 give a characterization of the asymptotical behaviour of spectra of the operators $P_n A|\mathcal{P}_n$.

Lemma 7. If $A \in \mathcal{L}(H)$ and $W_n(A)$ is not a one-point set, then for any bounded set $\Omega \subset C$ there exists an operator $C \in \mathcal{L}(H)$ with $C^{-1} \in \mathcal{L}(H)$ such that $\Omega \subset W_n(C^{-1}A)$.

Proof. If $a, b \in W_n(A)$, $a \neq b$, then there exists a number $r > 0$ such that

$$\Omega \subset K \left(\frac{a+b}{2}, r \left| \frac{a-b}{2} \right| \right).$$

It follows from Lemma 7 of [4] that there exists an orthonormal set $(y_k, \lambda_k)_{k=1}^\infty$ such that: $\langle Ax_k, y_k \rangle \to A$, $\langle Ay_k, y_k \rangle \to b$, $\langle Ax_k, y_k \rangle = \langle Ay_k, y_k \rangle = 0$.

Let Q stand for the orthogonal projection on the subspace spanned by $(y_k, \lambda_k)_{k=1}^\infty$. Define operator $C \in \mathcal{L}(H)$ by the formula

$$Qz = (1 - Q)z + \sum_{n=1}^\infty \left(\langle x_n, y_n \rangle x_n + \langle x, y_n \rangle y_n \right);$$

then

$$(CQ)z = (1 - Q)z + \sum_{n=1}^\infty \left(\langle x_n, y_n \rangle x_n + \langle x, y_n \rangle y_n \right).$$

Let $v_n = \frac{1}{\sqrt{2}} (x_n + e^{i\theta}y_n)$ where $\theta \in R$. $(v_n(t))_{t=1}^\infty$ is an orthonormal sequence in H and

$$\langle CQv_n, v_n \rangle = \langle CQv_n, (C^{-1})v_n \rangle =$$

$$= \frac{1}{2} \left((1 + e^{i\theta}) \langle Ax_n, x_n \rangle + (1 - e^{i\theta}) \langle Ay_n, y_n \rangle \right) \to \frac{a+b}{2} + r e^{i\theta} \left(\frac{a-b}{2} \right) = \lambda(t).$$

This shows that $\lambda(t) \in W_n(C^{-1}A)$. Since $W_n(C^{-1}A)$ is a convex set and

$$\bigcup \{ \lambda(t) \} = S \left(\frac{a+b}{2}, r \left| \frac{a-b}{2} \right| \right),$$

we see that

$$\Omega \subset K \left(\frac{a+b}{2}, r \left| \frac{a-b}{2} \right| \right) \subset W_n(C^{-1}A).$$

Corollary. Suppose $A \in \mathcal{L}(H)$ is not of the form $\lambda + K$ where K is a compact operator on H, then for each bounded set $\Omega \subset C$ there exists a sequence (P_n) of projections in H of finite rank (we do not assume $P_n = P_n^*$) such that:

$$P_n \to 1 \text{ strongly, } P_n^* \to 1 \text{ strongly}$$

and

$$\text{dist}(\Sigma(A_n), \Omega) \to 0, \text{ where } A_n = P_n A|\mathcal{P}_n.$$

Proof. By the previous lemma there exists a $C \in \mathcal{L}(H)$ with $C^{-1} \in \mathcal{L}(H)$ such that $\Omega \cup \Sigma(A) \subset W_n(CAC^{-1})$. Theorem implies that there exists a sequence $(Q_n)_{n=1}^\infty \subset P_f(H)$ such that $Q_n \to 1$ strongly and

$$\text{dist}(\Sigma(Q_nC_{AC^{-1}}|Q_nH), \Omega) \to 0.$$ Let $P_n = C^{-1}Q_nC$, so $P_n = P_n^*$ and it is easy to verify that $P_n \to 1$ strongly, $P_n^* \to 1$ strongly.

Moreover, $A_n = P_n A|\mathcal{P}_n = C^{-1}(Q_n C AC^{-1}|Q_nH) (P_n H)$, i.e., A_n is similar to $Q_n C AC^{-1}|Q_nH$. Therefore $\Sigma(A_n) = \Sigma(Q_n C AC^{-1}|Q_nH)$, this and (4) end the proof.

References

Received April 8, 1973