Contents of volume LXIX, number 2

B. Evans, Resolving Banach spaces 91-107
S.-Y. A. Chang, A generalized area integral estimate and applications 109-121
O. I. Rebrov, On some Banach ideals of operators 123-131
L. Pişko, S. Sari, Constructions of singular measures with remarkable convolution properties 133-141
B. Carl, Inequalities between absolutely (p, q)-summing norms 143-146
M. Cwikel, C. Peetre, Maximal seminorms on weak L^p 149-154
N. V. Abat, E. A. Gatto, C. Gutiérrez, On the strong maximal function and Zygmund's class $L(\log^+|x|)^p$ 155-158
T. Brzeziński, Zero-one laws for Gaussian measures on metric abelian groups 159-168

STUDIA MATHEMATICA
Managing Editors: Z. Giesiński, W. Orlicz (Editor-in-Chief), A. Pelewski, W. Zelakowska

The journal prints original papers in English, French, German and Russian, mainly on functional analysis, abstract methods of mathematical analysis and on the theory of probabilities. Usually 3 issues constitute a volume.

The papers submitted should be typed on one side only and accompanied by abstracts, normally not exceeding 200 words. The authors are requested to send two copies, one of them being the original, not Xerox copy. Authors are advised to retain a copy of the paper submitted for publication.

Manuscripts and the correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
ul. Śniadeckich 8, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ul. Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at

ARS POLONA
Krakowskie Przedmieście 7, 00-008 Warszawa, Poland

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa, 1980

ISBN 83-01-01355-9
ISBN 0030-3228
PRINTED IN POLAND

STUDIA MATHEMATICA, T. LXIX. (1980)

Resolving Banach spaces
by
RICHARD EVANS (Berlin)

Abstract. In this paper we define a property of a projection algebra on a Banach space which we show to be necessary and sufficient for the existence of a resolution of the space taking values in a Banach lattice with order-continuous norm (proper L-space).

0. Introduction. If K is a compact Hausdorff space and $f \mapsto T_f$ an isometric embedding of $C(K)$ into $B(X)$ for some Banach space X, the question arises whether it is possible to find a norm resolution for X over K, i.e. a mapping $x \mapsto (x)$ of X into some Banach function space over K with the properties (a) $\|x\| = \|x\|$ for all x in X, (b) $\|x + y\| \leq \|x\| + \|y\|$ for all x, y in X, (c) $\|f(x) - f(y)\| = \|f\| \cdot \|x - y\|$ for all x, y in X, (d) $\|x\| \leq (T_f(x), x)$ for all f in $C(K)$, x in X.

In [4] Cunningham showed the existence of such a resolution in the case where the operators T_f have a lattice property similar to that in M-spaces. He also showed how X can then be represented as a space of vector-valued functions over K, the function module representation, in such a way that the operators T_f on X correspond to multiplication by f in the representation. In his doctoral thesis [5] the author showed how to construct a representation of an analogous type, the integral module representation, in the case where the embedded copy of $C(X)$ is a strongly closed algebra generated by L^p-projections, that is projections E which have the norm decomposing property

$$\|x\|^p = \|Ex\|^p + \|x - Ex\|^p$$

for all x, some $p \in [1, \infty]$.

Attempts to extend the concept of L^p-projections by introducing projections with a more general decomposition property have failed, since it turns out that in all but trivial cases the only projections with the apparently more general property are the L^p-projections themselves (e.g. [3]). In this paper we define a decomposition property, not of individual projections, but of a complete projection algebra and show that this is general enough to completely describe the case where X has a resolution taking values in a Banach lattice with order-continuous norm.

1. Projection algebras. A (linear) projection on a Banach space X is a linear mapping $E : X \to X$ such that $E^2 = E$. It follows that $(I - E)^2$
Resolving Banach spaces

92

R. Evans

Theorem 1.1. Let \(\mathcal{A} \) be a projection algebra on a Banach space \(X \) consisting solely of bicontractive projections. Let \(f : T \to \mathcal{A} \) be the algebra isomorphism between the step functions in \(C(K) \) and the operators in \(\mathcal{L}(X) \) (the Stonean space of \(\mathcal{A} \)). Then \(\|f\| \leq \|f\|_{\mathcal{A}} \) for all step functions \(f \) in \(C(K) \), where \(M = \sup_{f \in \mathcal{A}} \|f\| \) is the norm of \(f \).

Note. Since all \(f \)’s are bicontractive, we have \(1 \leq M \leq 2 \).

Proof. Let \(f \) be a positive step function. Then we can write \(f \) in the form \(f = \sum \alpha_i E_i \), where all \(\alpha_i \)’s are positive and \(0 = D_0 \leq D_1 \leq D_2 \leq \ldots \leq D_n \). In this case we clearly have \(\|f\| = \sum \alpha_i \). The step function is then equal to \(\sum \alpha_i E_i \), whereby the projections \(E_i \) correspond to the clopen sets \(D_i \) in \(K \). Since all the \(E_i \)’s have norm 1, we have immediately \(\|T\| \leq \sum \alpha_i = \|f\| \).

Now suppose that \(f \) is an arbitrary step function. Then there is a clopen set \(D \) in \(K \) such that \((2 \mathcal{X}_D - 1) \cdot f \) is positive. Let \(B \) be the corresponding projection in \(\mathcal{A} \). We then have

\[
\|T\| = \|2B - I - (2B - I)T\| \leq \|2B - I\| \cdot \|2B - I\| T \leq M \cdot \|2B - I\| T \leq M \cdot \|2B - I\| = M \cdot \|T\|_{\mathcal{A}} = \|T\| \leq \|f\|.
\]

For the other inequality, let \(f = \sum \alpha_i E_i \) be the representation of a continuous step function in which the \(D_i \)’s are disjoint and nonempty. In this case \(\|f\| \) is clearly the maximum of the \(\|\alpha_i\|’s \), say \(\|\alpha_i\| \). Let \(E_i \) be the projection in \(\mathcal{A} \) corresponding to \(D_i \). Then for \(x \in E_i X \), \(x = 0 \) we have \(\|x\| = \|\alpha_i E_i x\| = \|\alpha_i\| \|x\| \) so that \(\|T\| \geq \|\alpha_i\| = \|f\| \).

Note that the bounds in this lemma are the best possible since the functions corresponding to \(2B - I \), \(B \in \mathcal{A} \), all have unit norm.

The result of Lemma 1.3 motivates the following definition:

1.4. Lemma. Let \(\mathcal{A} \) be a projection algebra on a Banach space \(X \) and \(K \) the Stonean space of \(\mathcal{A} \). The natural correspondence between the continuous step functions on \(K \) and the operators in \(\mathcal{L}(X) \) is an isomorphism. Since we have \(\|2B - I\| = \|2B - I\| \), \(T \) is equivalent to \(\|2B - I\| = 1 \).

A mirror-projection is clearly bi-contractive, since

\[2(Bx) = [2Bx - x - x + 2(Bx - I)x] = 2(Bx) \]

This shows that \(T \) is an isometry if and only if all projections in \(\mathcal{A} \) are mirror-projections.

In this case we can extend the isometry to the closure of \(\mathcal{L}(X) \). However, the product of commuting mirror-projections need not be one. It has been shown (2, Sect. 2) that in the classical Banach spaces \(L^p \)-spaces, \(C(K) \)-spaces, Lindestrauss spaces) all bicontractive projections are mirror-projections. As an immediate corollary of Lemma 1.3 we now obtain:

1.5. Corollary. Let \(\mathcal{A} \) be a projection algebra on a Banach space \(X \) and \(K \) the Stonean space of \(\mathcal{A} \). The natural correspondence between the continuous step functions on \(K \) and the operators in \(\mathcal{L}(X) \) is an isomorphism if and only if all projections in \(\mathcal{A} \) are mirror-projections.

1.6. Proposition. Let \(\mathcal{A} \) be a projection algebra on a Banach space \(X \) and \(K \) the Stonean space of \(\mathcal{A} \). Then \(\mathcal{L}(X) \) is isometrically a bicontractive algebra isomorphism to \(C(K) \) if and only if all projections in \(\mathcal{A} \) are mirror-projections.

Proof. Since an algebra-isomorphism maps idempotent elements into idempotent elements, it is the natural correspondence of Corollary 1.5 (except perhaps for a homeomorphism of \(K \)).
In view of the above results, when \mathfrak{H} consists of mirror-projections, we shall identify $\lim \mathfrak{H}$ and $\mathcal{C}(\mathfrak{H})$ and write π_{f} for the action of the operator corresponding to the function f on the element x in \mathcal{X}.

2. Decomposition properties. Having in the last section obtained an embedding of $\mathcal{C}(\mathfrak{H})$ in $B(\mathcal{X})$ for the case where \mathcal{X} is the Stonean space of a Boolean algebra of mirror-projections, we now wish to obtain a norm resolution for \mathfrak{H} over \mathcal{X}. In general, such a resolution need not exist since the projections in \mathfrak{H} need not decompose the norms of elements in \mathfrak{H} in a consistent manner. Thus we shall need to demand some further property of \mathfrak{H} which will guarantee a consistent decomposition. A seemingly weak property of this nature is contained in the following definition:

2.1. Definition. A projection algebra \mathfrak{H} on a Banach space \mathcal{X} is said to be monotone, if the following condition holds:

If $E_{1}, E_{2}, \ldots, E_{n}$ are pairwise orthogonal elements of \mathfrak{H} with $\bigvee_{i=1}^{n} E_{i} = I$ and for some x, y in \mathcal{X}, we have $|E_{i}x| \geq |E_{j}y|$ for all i, j, then also $|x| \geq |y|$, i.e. if all parts of x are larger (in norm) than the respective parts of y, then x itself is larger than y.

Unfortunately this property is far too stringent for our purpose. Indeed, the author has shown {\[E_{i} = E_{j}\]} that in all but trivial cases a monotone algebra consists only of F_{p}-projections for some fixed p. We can weaken Definition 2.1 by requiring only that $|x| \geq |y|$ whenever $|E_{x}| \geq |E_{y}|$ for a larger number of projections than merely a single projection of the identity. Since it itself is in \mathfrak{H}, it is clearly vacuous to demand $|E_{x}| = |E_{y}|$ for all E in \mathfrak{H}. The required modification is the subject of the following definition:

2.2. Definition. A subset A of a Boolean algebra \mathfrak{H} is said to be co-final in \mathfrak{H} if for all $E \in \mathfrak{H}$, $E \neq 0$, there is an E in A with $0 < E \leq F$.

A projection algebra on a Banach space \mathcal{X} is said to be uniformly decomposing if and only if $|x| \geq |y|$ whenever the set $\{E \in \mathfrak{H} : |E_{x}| \geq |E_{y}|\}$ is co-final in \mathfrak{H}, $x, y \in \mathcal{X}$.

Note. It then follows that $|E_{x}| \geq |E_{y}|$ for all E in \mathfrak{H}.

In the case of complete projection algebras there is another formulation of the uniformly decomposing property which turns out to be more useful for the construction of a norm resolution.

2.3. Lemma. Let \mathfrak{H} be a complete projection algebra on the Banach space \mathcal{X}. The following two statements are equivalent:

(a) \mathfrak{H} is uniformly decomposing;

(b) For all x, y in \mathcal{X} there is an E in \mathfrak{H} such that $F \leq E \Rightarrow |E_{x}| \geq |E_{y}|$ and $F \perp E \Rightarrow |E_{x}| \leq |E_{y}|$ for F in \mathfrak{H}.

Proof. (a) \Rightarrow (b) Let x, y be given. Set $E = \bigvee \{F : \text{if } F \in \mathfrak{H}, |F_{x}| \geq |F_{y}| \text{ for } F \leq E\}$. Since \mathfrak{H} is uniformly decomposing, we clearly have $|F_{x}| \geq |F_{y}|$ for all $F \leq E$. Suppose $F \perp E$ and $\tilde{F} \in \mathfrak{H}$, $\tilde{F} \neq 0$. Then either there is an $\tilde{F}' \leq \tilde{F}$ with $|F_{x}| \leq |F_{y}|$ or we have $\tilde{F} \perp E$ which then means $\tilde{F} = 0$ since $F \perp E$. In the latter case set $\tilde{F} = \tilde{F}'$. Either way we now have $\tilde{F} \leq \tilde{F} \Rightarrow |F_{x}| \geq |F_{y}|$ with $|\tilde{F}_{x}| \leq |\tilde{F}_{y}|$. Thus the set of all $\tilde{F} \in \mathfrak{H}$ with $|\tilde{F}_{x}| \leq |\tilde{F}_{y}|$ is co-final in \mathfrak{H}. Since \mathfrak{H} is uniformly decomposing, we have $|F_{x}| \leq |F_{y}|$ as required.

(b) \Rightarrow (a) Suppose that $|x| < |y|$ for some pair x, y in \mathcal{X}. Choose $\varepsilon > 0$ with $|x| < |y|$ and use (b) to find an E in \mathfrak{H} with $F \in \mathfrak{H}$, $|F_{x}| = |F_{y}| \geq |F(1-\varepsilon)y|$ and $F \perp E$, $|F_{x}| = |F(1-\varepsilon)y|$. Let \tilde{F} be the carrier projection of x, that is, the smallest projection which maps x onto itself. Then $\tilde{F} \perp \tilde{E}$ since $|x| < (1-\varepsilon)|y|$. Thus $\tilde{E} \perp (1-\varepsilon)E$. Let $\tilde{E} \leq \tilde{E} \perp (1-\varepsilon)E$, $\tilde{F} \neq 0$. Then $|\tilde{F}_{x}| = |\tilde{F}_{y}|$ and $F \perp E$ so that $|F_{x}| \leq |F(1-\varepsilon)y| < |F_{y}|$. Thus the set $\{F : F \in \mathfrak{H}, |F_{x}| \geq |F_{y}|\}$ is not co-final in \mathfrak{H}.

Thus a complete uniformly decomposing projection algebra contains, for each pair x, y, a projection which divides the space into the part where x is larger (in norm) than y and the part where y is larger. This is clearly a necessary condition for the existence of a norm resolution whose values lie in a lattice with order-continuous norm. We shall see in the next section that it is also sufficient.

Since Proposition 1.6 refers to projection algebras consisting only of mirror-projections, it would seem that we must in future demand of \mathfrak{H} that it is complete, uniformly decomposing and consists only of mirror-projections. The following simple lemma shows that the latter is redundant.

2.4. Lemma. Let \mathfrak{H} be a (not necessarily complete) uniformly decomposing projection algebra on the Banach space \mathcal{X}. Then \mathfrak{H} consists solely of mirror-projections.

Proof. Let E be a projection in \mathfrak{H} and x an element in \mathcal{X}. For x and $(2E-I)x$ we have:

for $F \leq E$, $|F_{x}| = |2F_{x} - F_{x}| = |2FE_{x} - F_{x}| = |(2E-I)x|$

for $F \perp E$, $|F_{x}| = |F_{x} - 2F_{x}| = |F_{x} - 2E(I-E)x| = |(2E-I)x|$

and since the set $\{F : F \leq E \text{ or } F \perp E\}$ is co-final in \mathfrak{H}, we have $|x| = |(2E-I)x|$. Since x was arbitrary, $2E-I$ is an isometry.

Note that although a sub-algebra of an algebra consisting solely of mirror-projections naturally also consists solely of mirror-projections,
a sub-algebra of an uniformly decomposing algebra need not be uniformly decomposing. Indeed we have the following proposition.

2.5. Proposition. If \(\mathcal{A} \) is an uniformly decomposing projection algebra on a Banach space \(X \) such that every sub-algebra of \(\mathcal{A} \) is also uniformly decomposing, then \(\mathcal{A} \) is monotone.

Proof. Let \(E_1, E_2, \ldots, E_n \) be pairwise orthogonal projections in \(\mathcal{A} \) with \(\sum E_i = I \). Let \(\mathcal{A}_1 \) be the sub-algebra of \(\mathcal{A} \) generated by the \(E_i \)’s. \(\mathcal{A}_1 \) is atomic and its atoms are the \(E_i \)’s. Suppose that for some \(x, y \in X \)

\[\langle E_i x, x \rangle > \langle E_f y, y \rangle \]

for all \(i \). Then \(\{ E_i \} \) in \(\mathcal{A}_1 \), \(\| E x \| > \| E y \| \) is co-finite in \(\mathcal{A}_1 \), which is supposed uniformly decomposing. Thus \(\| x \| > \| y \| \), which implies that \(\mathcal{A} \) is monotone.

As already noted, in all but trivial cases a monotone algebra consists solely of \(p \)-projections for some fixed \(p \) and for these algebra the problem of constructing a norm resolution has already been solved.

3. A norm resolution. We now turn to the construction of a norm resolution for the case where \(\mathcal{A} \) is a complete uniformly decomposing projection algebra. The first step in this direction is the following proposition, which relies heavily on Lemma 2.3.

3.1. Proposition. Let \(\mathcal{A} \) be a complete uniformly decomposing projection algebra on the Banach space \(X \). For each \(x, y \in X \), \(y
eq 0 \), the quotient \(\| E x \| / \| E y \| \) converges (possibly to \(\infty \)) along each ultrafilter \(U \) containing the carrier projection of \(y \).

Proof. Let \(x, y \) be elements of \(X \) and \(U \) an ultrafilter in \(\mathfrak{A} \) containing the carrier projection of \(y \). Then \(\| E y \| > 0 \) for all \(E \) in \(U \) so that the quotient \(\| E x \| / \| E y \| \) is defined. Let us assume that \(\| E x \| / \| E y \| \) does not converge along \(U \) so that we can find two co-finite nets \((E_\alpha)_{\alpha \in A_1}, (E_\alpha)_{\alpha \in A_2} \) in \(U \) with

\[\| E_\alpha x \| / \| E_\alpha y \| > \lambda_1, \quad \| E_\beta x \| / \| E_\beta y \| > \lambda_2 \]

whereby \(\lambda_1 > \lambda_2 (\lambda_1, \lambda_2 \) possibly \(\infty \)).

Let \(\lambda \) be a finite number with \(\lambda_1 > \lambda > \lambda_2 \). Then by Lemma 2.3 there is a projection \(E_\lambda \) in \(\mathfrak{A} \) such that \(\| E_\lambda x \| \leq \| E_\lambda y \| \) for \(F \leq E_\lambda \) and \(\| E_\lambda x \| \leq \| E_\lambda y \| \) for \(F \perp E_\lambda \). There are now two possibilities:

(a) \(E_\lambda \) lies in \(U \), but then \(E_\lambda \leq E_\lambda \) co-finitely for \(\gamma \in \Gamma \) so that

\[\| E_\gamma x \| / \| E_\gamma y \| = 1 \lambda \| E_\gamma x \| / \| E_\gamma y \| \] is \(\lambda \) co-finitely.

(b) \(E_\lambda \) does not lie in \(U \), but then \(E_\lambda \perp E_\lambda \) co-finitely in \(\Gamma \) so that

\[\| E_\gamma x \| / \| E_\gamma y \| = 1 \lambda \| E_\gamma x \| / \| E_\gamma y \| \] co-finitely.

In either case we have a contradiction, so that we may conclude that our assumption that the quotient does not converge was false.

Note. If \(K \) is the Stonean space of \(\mathfrak{A} \) the points of \(K \) are strictly speaking the ultrafilters in \(\mathfrak{A} \), nevertheless we shall write \(k \) for a point in \(K \) and \(U_k \) for the corresponding ultrafilter, with the interest of clarity.

For \(x \in X \), \(\text{sup} x \) will denote the clopen set in \(K \) corresponding to the carrier projection of \(x \), this is the same as \(\{ k \mid U_k \text{ contains the carrier projection of } x \} \).

The above proposition allows us to make the following definition:

3.2. Definition. Let \(\mathcal{A} \) be a complete uniformly decomposing projection algebra on the Banach space \(X \) and \(K \) the Stonean space of \(\mathfrak{A} \). For \(x, y \in X \), \(y \neq 0 \), we define

\[\text{supp} x = \lim_{E \to X} \| E x \| / \| E y \| \]

for \(k \) in \(\text{supp} y \). Then \(x / y \) is continuous and finite almost everywhere for all \(k \in X \) and the mapping \(x / y \) from \(X \) into \(C(K) \) (resp. \(\text{supp} y \)) is sub-linear and absolutely homogeneous with respect to \(C(K) \) (resp. \(\text{supp} y \)).

Proof. Suppose \(x / y(k) = \lambda \), with \(0 < \lambda < \infty \). Let \(\mathcal{A} \) be arbitrary between 0 and \(\lambda \). Then by 2.3 there is a projection \(E_\lambda \) in \(\mathfrak{A} \) such that

\[\| E_\lambda x \| = \| E_\lambda y \| \| \lambda \| \| y \| \]

and a projection \(E_\lambda \) in \(\mathfrak{A} \) with

\[\| E_\lambda x \| = \| E_\lambda y \| \| \lambda \| \| y \| \]

for all points \(k \) for which \(E_\lambda \) contains \(E_k \) in \(\mathfrak{A} \), then we have \(\lambda = \| y \| \) \(\leq \lambda + \epsilon \). These \(k \) form a clopen set containing \(k \). For \(\lambda = 0 \) or \(\infty \), an analogous argument with one projection suffices. In either case we have that \(x / y \) is continuous at \(k \).

Now let \(D \) be the clopen set \(\{ k \mid \text{supp} x \cap \text{supp} y \neq \emptyset \} \). Then for each natural number \(n \), \(\| E_k x \| > n \| E_k y \| \) is co-finite in \(\mathfrak{A} \) since \(\| E_k x \| / \| E_k y \| \to \infty \) along each ultrafilter \(U_k \) with \(k \in D \). Since \(\mathfrak{A} \) is uniformly decomposing, it follows that \(\{ x \} \geq \{ x \} \{ y \} \) for all \(x \) and thus that \(\text{supp} x \cap \text{supp} y \neq \emptyset \). Since \(D \leq \text{supp} y \) it follows that \(D = \text{supp} y \). Thus \(x / y \) is finite almost everywhere.

That the mapping \(x \to x / y \) is sub-linear follows immediately from the sub-linearity of the norm. To check absolute homogeneity let \(x \) be an element in \(X \) and \(f \) a function in \(C(K) \). We must show that for all \(k \in \text{supp} y \)

\[(x / y(k))(k) = |k| (x / y(k))(k) \]

whenever \(x / y(k) \) is finite. Let \(k \) be a point in \(\text{supp} y \) and \(a = (x / y(k))(k) \).

\[|E_k x| - |E_k a| = |E_k (x - a) u_a| \]

since the operator \(f \) lies in \(\text{lin} \mathfrak{A} \) and therefore commutes with \(E_k \). If \(D \) is the clopen set in \(K \) corresponding to \(E_k \) we have

\[|E_k (x - a)| = |\bigcap_{k \in D} |E_k (x - a)| \]

by \(\text{supp} y \).
Since $a = f(b)$ and f is continuous at b, we have $\|b(f - aI)\|_{\mathcal{C}_0} = 0$. It follows that
\[
\lim_{v_k \to 0} \frac{\|E(f - aI)\|_{\mathcal{C}_0}}{\|\alpha E\|_{\mathcal{C}_0}} = \lim_{v_k \to 0} \frac{\|E\|}{\|\alpha E\|_{\mathcal{C}_0}} = 0
\]
at each point k where $x/y(k) = (\lim_{v_k \to 0} \|E\|)/\|\alpha E\|_{\mathcal{C}_0}$ is finite. Since
\[
\lim_{v_k \to 0} \frac{\|E\|}{\|\alpha E\|_{\mathcal{C}_0}} = (fz/y)(k) \quad \text{and} \quad \lim_{v_k \to 0} \frac{\|\alpha E\|_{\mathcal{C}_0}}{\|\alpha E\|} = (z/y)(k) = (z/y)(k)
\]
this is the required identity.

The mappings x/y for each y thus have the properties of a norm resolution except for the norm preserving property since the range space $C\mathcal{B}(supp\Gamma)$ is not normal and in general not even normable (as a lattice). We can however construct a Banach function lattice in $C\mathcal{B}(supp\Gamma)$ which is large enough to contain the functions x/y. This is the purpose of the following definitions and results.

3.4. Definitions. Let X be a Banach space and \mathcal{M} an arbitrary Boolean algebra of projections on X. We define the ordering \geqslant (or \supseteq) on \mathcal{M} if \mathcal{M} is clear) by $x \geqslant y$ if there is an E in \mathcal{M} with $Ex = y$, i.e. x is larger than y if and only if it is an extension of it. This is clearly a partial order on X.

Let X be a Banach space and \mathcal{M} a complete uniformly decomposing Boolean algebra of projections on X with Stonean space K. Suppose $\Gamma \subseteq X$ is a subset which is directed by \geqslant. The support of Γ is the set $supp\Gamma := \bigcup_{C \subseteq supp\Gamma} C -$ a clopen subset of K. We define the mapping m_j from $C(supp\Gamma)$ into $[0, \infty]$ by virtue of
\[
m_j(f) := \sup_{C \subseteq supp\Gamma} \|f\|_{C}
\]
and $C \subseteq C(supp\Gamma)$ by
\[
C := \{ f \in C(supp\Gamma), (f)_{\geqslant} \text{ is Cauchy} \}.
\]
Finally we define $M \subseteq C(supp\Gamma)$ as the set
\[
\{ f \in C(supp\Gamma), \text{the increasing net of positive } C \text{-functions which are majorized by } (f) \text{ is } M \text{-Cauchy} \}
\]
and extend m_j to M by means of
\[
m_j(f) := \sup_{C \subseteq supp\Gamma} \|m_j|_{C} = 0 \leqslant \|f\|, g \leqslant C_j,
\]
If Γ consists solely of one element y, we shall write M_j and m_j instead of M and m_j.

3.5. Proposition. M_j is an order ideal in $C\mathcal{B}(supp\Gamma)$, m_j is an order-continuous lattice norm for M_j and Γ is complete in m_j. Thus M with m_j is a Banach lattice with order-continuous norm.

Proof. It is clear from the definitions that M_j is an order ideal in $C\mathcal{B}(supp\Gamma)$ and that m_j is a lattice norm. It remains to show that m_j is order-continuous and that Γ is complete. Let $\{f_n\}$ be a downwards directed net in M_j, whose infimum is 0. We may suppose without loss of generality that $|f_n|$ has a largest element, say f. Since f lies in M_j, there is an f_0 in C_j with $0 \leqslant f_n \leqslant f$ and $m_j(f - f_0) \leqslant \varepsilon/5$ for a given $\varepsilon > 0$. For each α we define $D_{\alpha} := \{ f \in \mathcal{M}, (f)_{\alpha} \leqslant (f_0)_{\alpha} \}$ and $D := \{ f \in \mathcal{M}, (f) \leqslant (f_0) \}$.

We then have $\int (f_0 - f)_{\alpha} \leqslant m_j(f_0)$ for all α. Since the net converges in order to 0 and $f_0 - f_0 \alpha f$ is positive, we have $f_0 - f_0 \leqslant 0$. As f_0 lies in C_j, there is an f_0 in C_j such that $\|f_0(y - y)\| \leqslant \varepsilon/5$ for $y \in C_j$. \(1 - \chi_0 f_0 y\) is 0, therefore by the completeness of M there is an a_0 such that
\[
a \geqslant a_0 = \|1 - \chi_0 f_0 y\| \leqslant \varepsilon/5
\]
and then for $y \geqslant y_0$ we have
\[
\|1 - \chi_0 f_0 y\| \leqslant \|1 - \chi_0 f_0 (y - y_0)\| + \|1 - \chi_0 f_0 y_0\| \leqslant \|f_0(y - y_0)\| + \|1 - \chi_0 f_0 y_0\| \leqslant \varepsilon/5 + \varepsilon/5 = 2\varepsilon/5.
\]
We thus have $m_j((1 - \chi_0 f_0)_{\alpha}) \leqslant 2\varepsilon/5$. But then
\[
m_j((f_0 - f_0)_{\alpha}) \leqslant m_j(1 - \chi_0 f_0)_{\alpha} + m_j(\chi_0 f_0)_{\alpha} \leqslant m_j(1 - \chi_0 f_0)_{\alpha} + m_j(f_0)_{\alpha} \leqslant m_j(f_0)_{\alpha} + 2\varepsilon/5 + \varepsilon/5 \leqslant \varepsilon + \varepsilon < \varepsilon
\]
for $\alpha \geqslant a_0$.

Thus $(m_j(f_0))_{\alpha} \to 0$. This shows that m_j is order-continuous.

In order to show that M_j is complete, let (f_n) be a monotone increasing Cauchy sequence of positive functions in M_j. Let f be the supremum of (f_n) in $C\mathcal{B}(supp\Gamma)$; if we show that f is in M_j, we shall be finished since the order-continuity of m_j implies that (f_n) converges to f. Let $\varepsilon > 0$ be given. Since (f_n) is Cauchy, there is an n such that $m_j(f_n - f_0) < \varepsilon/2$ for all $n > n$. Since f_n is in M_j, there is a g_n in C_j with $m_j(f_n - g_n) < \varepsilon/2$.

But then for g in C_j, $g \leqslant f_n \leqslant f$ we have
\[
m_j(g - g_n) \leqslant m_j(g - g_n) + m_j(g_n - g_n) \leqslant m_j(g - g_n) + m_j(f_n - g_n) + \varepsilon
\]
\[
\leqslant m_j(g) + m_j(f_n - g_n) + \varepsilon < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon
\]
As $3\varepsilon < \varepsilon$, we have $(g - g_n)_{\alpha} \to 0$ in order and thus also in norm. So $m_j(g - g_n) \leqslant \varepsilon$ which implies (since ε was arbitrary) that f is in M_j.
of a norm resolution for \(X \). However, we must first check that the \(M_r \)'s are large enough to contain the functions \(x/y \).

3.6. **Definition.** If \(\Gamma \subseteq X \) is directed and \(\text{supp} \Gamma \neq \emptyset \), then for non-zero \(y, \bar{y} \in \Gamma \), \(y \geq \bar{y} \) the functions \(x/y, x/\bar{y} \) for \(x \in X \) are clearly equal on their common domain of definition. Thus we can define \(x/_{\Gamma} = \sup \text{supp} \Gamma \to [0, \infty) \) as the unique continuous extension to \(\text{supp} \Gamma \) of the functions \(x/y \) on the supports \(y, \bar{y} \in \Gamma \).

Note. If \(\Gamma \) contains a maximal element \(y \), then \(x/_{\Gamma} = x/y \); this is in particular the case when \(\Gamma \) only contains one \(y \).

3.7. **Lemma.** With \(X, \mathcal{A}, K, \Gamma \) as above we have:

(i) \(x + z/_{\Gamma} = \bar{x} + \bar{z}/_{\Gamma} \) for all \(x, \bar{x} \in X \);

(ii) \(f(s/\Gamma) = f(s/\bar{\Gamma}) \) for all \(s \in X, f \in C(K) \).

Furthermore, for every \(x \in X \), \(x/_{\Gamma} \in M_{\Gamma} \) and \(m_{\Gamma}(x/_{\Gamma}) = \|Ex\| \), whereby \(E \) is the projection in \(K \) corresponding to \(\Gamma \).

Proof. (i) and (ii) follow obviously from the corresponding relations for \(x/y \).

Let \(x \) be an element in \(X \) for which \(x/_{\Gamma} \) is finite. We write \(f = x/\Gamma \in C_{(\text{supp} \Gamma)} \). Then \(f(y) = f(\text{supp} \Gamma) = x/y \) for \(y \in \Gamma \). If \(E_x \) denotes the carrier projection of an element \(y \), then we have \(y_x = E_x y \) for \(y, y_x \in \Gamma \); \(y_x \geq y \). Thus
\[
\|f(y) - f(y_x)\| = \|E_x f - E_{x/\Gamma} f_x\| = \|E_x f - E_{x/y} f_x\|.
\]

Since \(E_x f \leq E_{x/\Gamma} \), we have \(\|E_x f - E_{x/y} f_x\| = \|E_x f - E_{x/\Gamma} f_x\| \leq \|f(y) - f(y_x)\| \) as a consequence of the completeness of \(\mathcal{A} \). Thus \(f(y) = f(y_x) \) if \(y_x \) is Cauchy and \(f \) therefore lies in \(C_{\Gamma} \).

3.8. **Lemma.** With \(X, \mathcal{A}, K, \Gamma \) as above let \(\Gamma_b \) be any finite subset of \(X \) with \(\text{supp} \Gamma_b \cap \text{supp} \Gamma = \emptyset \). Then there is a directed set \(\Gamma \subseteq X \) containing \(\Gamma_b \) with \(\text{supp} \Gamma = K \).

In particular, there are directed sets \(\Gamma \) with \(\text{supp} \Gamma = K \) (simply set \(\Gamma_b = \{x\} \) for some non-zero \(x \)).

Proof. By Zorn's Lemma there is a maximal set \(\Gamma \subseteq X \) containing \(\Gamma_b \) such that the supports of distinct elements of \(\Gamma \) are disjoint. Let \(D = \{f(y) \mid y \in \Gamma, f \in C(K)\} \). If \(D \neq \emptyset \), then there is a non-zero element \(x \in X \) with \(\text{supp} x \subseteq K \). This would contradict the maximality of \(\Gamma \). Thus \(\bigcup \text{supp} \Gamma = K \). Let \(\Gamma \) be the set of all finite sums of elements in \(\Gamma, Y \).

Since the sum of two elements with disjoint support majorises both elements in the order \(\geq \), \(\Gamma \) is a directed set containing \(\Gamma_b \) for which \(\text{supp} \Gamma = K \).

3.9. **Theorem.** Let \(X \) be a Banach space and \(\mathcal{A} \) a complete uniformly decomposing projection algebra on \(X \) with Stonean space \(K \). Then there is a norm resolution for \(X \) with respect to \(\lim \mathcal{A} \equiv C(K) \) taking values in a Banach lattice of continuous numerical functions on \(K \) with order-continuous norm.

Proof. Let \(\Gamma \) be a directed set in \(X \) with \(\text{supp} \Gamma = K \). Then by Lemma 3.7, the mapping \(x \mapsto x/\Gamma \) is a norm resolution (since \(E \equiv I \) in this case) taking values in the Banach lattice \(M_{\Gamma} \), which is a lattice of continuous numerical functions on \(K \) with the order-continuous norm \(m_{\Gamma} \).

4. **Cycles and ideals.** With the help of the norm resolutions defined in the last section we can show that the \(\mathcal{A} \)-cycles and ideals have several nice properties. The reader is reminded of the following definitions.

4.1. **Definition.** Let \(X \) be a Banach space and \(A \) a commutative subset of \(B(X) \). A closed subspace \(J \) of \(X \) is called an \(A \)-cycle if \(J \) is an invariant subspace for every operator in \(A \) and an \(A \)-ideal if it is invariant for every operator in \(A_{\text{comm}} \).

Since \(\mathcal{A} \) itself is commutative, an \(A \)-ideal is an \(A \)-cycle. Also if \(J_0 \) is a family of \(A \)-cycles (resp. \(A \)-ideals), then \(\bigcap J_0 \) and \(\bigcup J_0 \) are also \(A \)-cycles (resp. \(A \)-ideals). In particular, we can define the \(A \)-cycle (resp. \(A \)-ideal) generated by a subset of \(X \) as the intersection of all \(A \)-cycles (\(A \)-ideals) containing it. In our context we are naturally interested in the \(\mathcal{A} \)-cycles and ideals where \(\mathcal{A} \) is a complete uniformly decomposing projection algebra on \(X \). The cycles generated by directed sets turn out to have a very simple form.

4.2. **Proposition.** Let \(\mathcal{A} \) be a complete uniformly decomposing projection algebra on a Banach space \(X \) and \(\Gamma \) a directed subset of \(X \). \(S(\mathcal{A}, \Gamma) \), the \(\mathcal{A} \)-cycle generated by \(\Gamma \), is isometrically isomorphic to the Banach space \(M_{\Gamma} \).

Proof. A simple calculation shows that \(S(\mathcal{A}, \Gamma) = \bigcup f(y) \in C(K) \), \(y \in \Gamma \). Consider the mapping \(f(y) = f(y) \in C(K) \), \(y \in \Gamma \). This is well-defined and since for \(y \geq \bar{y} \) in \(\Gamma \) we have \(f(y) \leq f(\bar{y}) \), \(f(y) \in C_{\Gamma} \) has norm \(\|f(y)\| \). Furthermore, since \(f(y) + f(\bar{y}) = (f(y) + f(\bar{y})) + f(y) \), the mapping is linear. This mapping then
extends to an isometry between $S(\mathcal{M}; J)$ and the closure in \mathcal{M}_Γ of the functions in the form $f \circ \psi$, $f \in C(K)$, $y \in \Gamma$. Inspection of the definitions of G_I and M_Γ shows that this closure is all of M_Γ. Observe that this mapping maps an element x onto a function whose absolute value is x/Γ.

One of the most interesting problems in the general theory of cycles is the question of the existence of a projection in $[A]_\text{closed}$ projecting onto an A-cycle J. The positive answer for cycles of the form $S(\mathcal{M}; J)$ is a simple corollary of the preceding proposition.

4.3. COROLLARY. Let \mathcal{A} be a complete uniformly decomposing projection algebra on a Banach space X and J a directed subset of X. There is a contractive projection from X onto $S(\mathcal{M}; J)$ which commutes with \mathcal{A}.

Proof. Let J be the isometry between $S(\mathcal{M}; J)$ and M_Γ, which was constructed in the preceding proposition. We have $j(z) \leq |j(z)| = x/\Gamma$ for all x in $S(\mathcal{M}; J)$. Since M_Γ is order-complete, we can apply the Hahn-Banach theorem to obtain a linear mapping $T : X \to M_\Gamma$ which extends j and for which $T < x/\Gamma$ for all x in X. Since also $T < F_j + T(-x) \leq (-x)/\Gamma = x/\Gamma$, we have $[T\mathcal{A}] \leq x/\Gamma$. Considering the mapping $j = T$. This clearly maps X into $S(\mathcal{M}; J)$ and for x in $S(\mathcal{M}; J)$ we have $T(x) = j^*(x) = x$. This is thus a projection onto $S(\mathcal{M}; J)$. Since

$$[j^*(x)] = m_j(Tx) = m_j([T\mathcal{A}] < \mathcal{M}[x/\Gamma] = [E\mathcal{A}],$$

it is also contractive (E as in 3.7). Let F be a projection in \mathcal{A}. Then for all x in X we have

$$E_j^*T(I - E)x = \chi_D[j^*(I - E)x/\Gamma] \leq \chi_D((I - E)x/\Gamma) = \chi_D[(1 - \chi_D)(x/\Gamma) = 0,$$

where D is the clopen set in X corresponding to F. Since $E_j^*T(I - E)x \in S(\mathcal{M}; J)$, this implies that $E_j^*T(I - E)x = 0$. Since this holds for all projections in \mathcal{A} and

$$E_j^*Tx = e_j^*TFx = E_j^*T(I - E)x = (I - E)j^*TFx,$$

the projection $j = T$ commutes with \mathcal{A}.

In our concrete case the other subspaces, the \mathcal{A}-ideals, have an even simpler form.

4.4. PROPOSITION. Let \mathcal{A} be a complete uniformly decomposing projection algebra on a Banach space X. A closed subspace J of X is an \mathcal{A}-ideal if and only if it is the range of a projection in \mathcal{A}.

Proof. Clearly the range of a projection in \mathcal{A} is an \mathcal{A}-ideal. Now suppose J is an \mathcal{A}-ideal and let E be the supremum in \mathcal{A} of the carrier projections \mathcal{E}_y of elements y in J. Clearly $J = E\mathcal{A}$; we shall show the reverse inclusion. Take x in $E\mathcal{A}$ and $r \geq 0$. Since $E \subseteq \mathcal{E}_y$, there is a y in J with $[x - E_y] \leq r$. For each z in X let $F_z = [z - E_y]$, $x \in z = [x]$. Clopen D in X, the Stone-

Ian space of \mathcal{A}, and E_y the corresponding projection in \mathcal{A}. Since $E_y \subseteq \mathcal{E}_y$, there is an E_y with $[x - E_y] \leq r$. Set $g = E_yx/y$. Consider the mapping $f \mapsto fE_yx$ for $f \in C(K)$. Since $E_y \leq E_y$ it is well-defined, is clearly linear and continuous with $C(K)$ and thus with \mathcal{A}. Also $fE_yx/y = fE_yx/y = E_y$ for all y. Hence $[fE_yx] = [fE_yx/y] \leq [y]$. The mapping therefore extends to a continuous linear mapping from $S(\mathcal{A}; y)$ into $S(\mathcal{A}; E_y)$. Let F be a projection in $[\mathcal{A}]_\text{closed}$ mapping X onto $S(\mathcal{A}; y)$, then TF lies in $[\mathcal{A}]_\text{closed}$ and $rF = T = E_yx/y$. Since y is in J and J is an \mathcal{A}-ideal, E_yx/y is also in J. But $[x - E_y] \leq r$ and x was arbitrary, so x itself lies in J.

The results of this section generalize 2.10-2.12 of 5, which also form 4.2, 4.4 and 4.5 of 1.

5. A characterization and a representation theorem. This section is devoted to the proof of two theorems. The first is an application of the results of the last section to obtain a Banach space characterization of Banach lattices with order-continuous norm. The second is a representation theorem analogous to the function module representation of Cunningham [4] and our own integral module representation [5].

5.1. THEOREM. Let X be a Banach space. Then the following properties of a complete uniformly decomposing projection algebra \mathcal{A} on X are equivalent:

(i) $[\mathcal{A}]_\text{closed} = \mathbb{N}$;

(ii) \mathcal{A} is a maximal Boolean algebra of bounded projections;

(iii) Every \mathcal{A}-cycle is an \mathcal{A}-ideal.

Moreover, there is such an algebra on X if and only if X is isometrically isomorphic to a Banach lattice with order-continuous norm.

Proof. Clearly (i) is (ii) and by 4.3, (ii) is (iii).

Assume (iii) and let I be a directed set in \mathcal{A} with sup $\mathcal{A} = K$, the Stone-

Ian space of \mathcal{A}. By 4.4, $S(\mathcal{A}; I)$ is isometrically isomorphic to M_Γ, a Banach lattice with order-continuous norm. However, $S(\mathcal{A}; I)$ is an \mathcal{A}-cycle and therefore also an \mathcal{A}-ideal. By 4.4 $S(\mathcal{A}; I)$ is the range of a projection in \mathcal{A}. Since sup $\mathcal{A} = K$, this must be the identity, i.e. $S(\mathcal{A}; I) = X$. Thus X is isometrically isomorphic to a Banach lattice with order-continuous norm. Note that the projections in \mathcal{A} correspond to the projections $f \mapsto fE_y$ for clopen D and these are exactly the band projections in M_Γ.

Now suppose that X is isometrically isomorphic to a Banach lattice M with order-continuous norm. Then X is itself a Banach lattice with
order-continuous norm in the induced ordering. Let \(\mathfrak{W} \) be the Boolean algebra of band projections on \(X \). Since \(X \) has order-continuous norm, \(\mathfrak{W} \) is a complete projection algebra. Also a simple calculation shows that \(\mathfrak{W} \) is the centre of \(X \) (i.e. all operators \(T \) for which \(-aT \leq T \leq aT \) for some \(a \in \mathbb{N} \)). It follows from Lemma 2.3 that \(\mathfrak{W} \) is a uniformly decomposing since the band projection onto the band generated by \(\langle \epsilon \rangle_{\mathfrak{W}} \) clearly satisfies (b) of the lemma. Let \(T \) be an operator in \(\mathfrak{W}_{\text{non}} \) and \(x \) an element of \(X \). Set \(z = (|T|x - (|T|x))^+ \) and let \(E \) be the band projection onto the principal band generated by \(x \). Then

\[|TEx| = |E| |Tx| \geq |E(\{T\} + 1)x| = (\{T\} + 1)|Ex|. \]

It follows that \(Ex = 0 \) and so also \(z = 0 \). Thus \(|Tx| \leq (\{T\} + 1)|x| \) for all \(x \) and \(T \) belonging to the centre of \(X \) which is \(\mathfrak{W} \). Thus \(\mathfrak{W} \) satisfies (i) and (ii) and completes the proof of the theorem.

The representation theorem is a direct generalisation of the author's integral module representation and shows that a Banach space \(X \) can be considered as a space of vector-valued functions on the Stonean space of any complete uniformly decomposing projection algebra on \(X \). The following definition defines the appropriate type of vector-valued function space.

5.3. Definition. Let \(M \) be a Banach lattice with order-continuous norm consisting of continuous numerical functions on the extremally disconnected compact Hausdorff space \(K \). Let \(\{X_k\} \) be a family of Banach spaces indexed by the points of \(K \).

By \(M(K; \{X_k\}) \) we denote the set of all functions \(x : K \to \bigoplus X_k \) such that:

(i) \(x(k) \in X_k \cup \{\infty\} \) for each \(k \) and

(ii) \(\|x\|_M = \sup_{k \in K} \|x(k)\|_{X_k} \) (with \(\|\cdot\|_{X_k} = +\infty \)).

A lattice module in \(M(K; \{X_k\}) \) is a subset \(\mathfrak{Y} \) for which:

(i) \(x, y \in \mathfrak{Y} \) in \(\mathfrak{Y} \) in \(Y \) with \(\|x\|_\mathfrak{Y} = \|y\|_\mathfrak{Y} \) \(\|x(k)\|_{X_k} \leq \|y(k)\|_{X_k} \) for each \(k \);

(ii) \(x \in \mathfrak{Y} \) in \(Y \) with \(\|x(k)\|_{X_k} \neq \infty \) and \(\|x\|_\mathfrak{Y} = \|x(k)\|_{X_k} \) for each \(k \);

(iii) \(x(k) = \infty \) in \(X_k \) if \(x(k) \) is finite.

Since the equations in (i) and (ii) determine the element \(x \) uniquely, a lattice module carries the structure of a \(C(K) \)-module and \(\mathfrak{Y} \) is a norm for the lattice module \(M(K; \{X_k\}) \) if it is isometrically isomorphic (as a \(C(K) \)-module) to a lattice module in \(M(K; \{X_k\}) \).

Note. In the same way as \([S] \) for \([1] \) one can show that \(Y \) is a lattice module in \(M(K; \{X_k\}) \) which is complete in the norm, then \(Y \) is maximal amongst those subsets of \(M(K; \{X_k\}) \) for which (i) holds, and that we have equality in (ii) without taking the closure, i.e. if \(\mathfrak{Y} \) is in \(\mathfrak{Y} \), then there is an \(x \) in \(Y \) with \(x(k) = x_k \).

5.3. Theorem. Let \(X \) be a Banach space and \(\mathfrak{W} \) a complete uniformly decomposing projection algebra on \(X \) with Stonean space \(K \). There is then a Banach lattice function \(\mathfrak{Y} \) on \(K \) and Banach space \(X \) indexed by the points of \(K \) such that \(X \) has a representation in \(M(K; \{X_k\}) \).

Furthermore, if \(X \) also has a representation in \(N(K; \{X_k\}) \), then \(\mathfrak{Y} \cong N \) as Banach lattices and \(X \) is isometric to \(Y \) whenever both spaces are non-trivial.

Note. \(X \) is a \(C(K) \)-module by virtue of \(C(K) = \mathfrak{W} \), taking values in a lattice \(M \) of continuous numerical functions on \(X \) whose norm \(m \) is order-continuous. Let \(x = [a] \) be such a norm resolution. For each \(k \), \(\gamma \rightarrow \alpha(k) \) is a semi-norm on the subspace of \(X \) where it takes finite values. Let \(X \) be the Banach space obtained by factorising out the kernel of the semi-norm and completing the space in the resulting norm. The mapping \(x \rightarrow \alpha(k) \) from \(X \) into \(M(K; \{X_k\}) \) is defined as follows:

\[\alpha(k) := 0 \quad \text{if} \quad \gamma \rightarrow \alpha(k) = +\infty. \]

Since \(\gamma \rightarrow \alpha(k) \) is simply \(\gamma \rightarrow \alpha(k) \), the functions \(\alpha \) all lie in \(M(K; \{X_k\}) \). It is easily verified that \(\alpha(k) \) is in \(X \) as a lattice module in \(M(K; \{X_k\}) \) and that \(x \rightarrow \alpha \) is an isometric isomorphism.

Suppose now that \(X \) has a representation in \(M(K; \{X_k\}) \) and also in \(N(K; \{X_k\}) \). Each \(x \) in \(X \) is represented as \(\langle \gamma \rangle \mathfrak{Y} \) in \(M(K; \{X_k\}) \) and as \(\langle \gamma \rangle \mathfrak{Y} \) in \(N(K; \{X_k\}) \). Writing \(\mathfrak{Y} := \langle \gamma \rangle \mathfrak{Y} \) in \(M(K; \{X_k\}) \) and similarly \(\mathfrak{Y} := \langle \gamma \rangle \mathfrak{Y} \) in \(N(K; \{X_k\}) \), we have two norm resolutions for \(X \) taking values in \(M \) and \(N \) respectively. Suppose that for a point \(k \) there is an \(x \) in \(X \) with \(\gamma \rightarrow \alpha(k) \) and \(\gamma \rightarrow \beta(k) \) both finite and non-zero. Then the identity

\[\gamma \rightarrow \mathfrak{Y} = \lim_{\gamma \rightarrow \mathfrak{Y}} \|Ey\|/\|Ex\| = \mathfrak{Y} \]

implies that the quotient \(\gamma \rightarrow \mathfrak{Y} \) of \(\gamma \rightarrow \mathfrak{Y} \) is independent of the choice of \(x \). Set \(\mathfrak{Y} \) equal to this quotient. Then the \(\gamma \)'s are defined on a dense open subset of \(K \) and the mapping \(k \rightarrow \gamma \) is continuous since we can retain the same element \(x \) in a neighbourhood of \(k \) and the two norm resolutions are continuous. Let \(f \) be the unique continuous numerical function with \(f(k) = \gamma \) wherever this is defined. Then \(\gamma \rightarrow \gamma \mathfrak{Y} = \gamma \gamma \mathfrak{Y} \) for all \(x \) in \(X \).

Note that \(f \) is invertible since the \(\gamma \)'s are all non-zero. We claim that \(g \rightarrow f \) is a Banach lattice isometry of \(N \) onto \(M \). Clearly the mapping is linear and positive. Also, if \(m \) and \(n \) are the norms of \(M \) and \(N \), respectively, then \(m(\gamma \mathfrak{Y}) = m \mathfrak{Y} = m \gamma \mathfrak{Y} = n \mathfrak{Y} \) so that the mapping is an isometry for elements of the form \(\gamma \mathfrak{Y} \). However, these elements are
order-dense in \(N_4 \) and thus, by the order-continuity of \(s \), also norm-dense.

Since the norm in a lattice is determined by the norm on the positive cone, \(g \to y_g \) is an isometry. That it is surjective follows from the invertibility of \(f \).

To show that \(X_3 \) and \(X_4 \) are isometric if they are non-trivial let \(k \) be a point with \(f(k) \) finite and \(X_3 = \emptyset \). Since either \(f \) or \(f^{-1} \) is always finite and the situation is symmetrical, this does not involve any loss of generality. Let \(D \) be a clopen neighbourhood of \(k \) on which \(f \) is finite, then \(f_I(K) \in C(K) \) for each \(\alpha \). For each \(\alpha \) in \(X_3 \) there is a \(\alpha \) in \(X \) with \(\sigma(\alpha)_M = \alpha \). Set \(T(\alpha) = \langle f_I(K) : \alpha \rangle \). \(T \) is a well-defined since \(\langle \sigma(\alpha)_M \rangle = 0 \) implies that \(\sigma(\alpha)_M = 0 \) and thus that \(\langle f_I(K) : \alpha \rangle \). \(T \) is clearly linear and the identity \(\langle \sigma(\alpha)_M \rangle = \sigma(\alpha)_M \) shows that it is an isometry. It remains to show that \(T \) is surjective. Let \(y \) be in \(Y \) with \(\|y\|_Y = 1 \). Choose an \(\alpha \) in \(\sigma \) with \(\alpha \subseteq D \) and \(\langle \sigma(\alpha)_M \rangle = 2 \) (since \(X_4 \) is non-trivial there is such an element), then \(\langle f_I(K) : \alpha \rangle = 2 \).

Let \(\alpha \subseteq D \) and \(\langle \sigma(\alpha)_M \rangle = \alpha \) and \(\langle \sigma(\alpha)_M \rangle = 2 \). Let \(\sigma \) be the directed set of those clopen subsets of \(D \) on which \(f \) is finite, ordered by inclusion. For \(\alpha \subseteq D \) we have \(\langle f^{-1}(\alpha)_M \rangle = \langle f^{-1}(\alpha)_M \rangle \) for \(\alpha \subseteq D \). Thus \(\langle f^{-1}(\alpha)_M \rangle \) is a Cauchy net in \(X \). Let \(\alpha \) be the limit of this net. Then \(\langle f^{-1}(\alpha)_M \rangle = \langle f^{-1}(\alpha)_M \rangle \) for \(\alpha \subseteq D \). Let \(\alpha \subseteq D \). Since \(\sigma \) is directed, \(\langle f^{-1}(\alpha)_M \rangle \) is a Cauchy net in \(X \). Let \(\alpha \) be the limit of this net. Then \(\langle f^{-1}(\alpha)_M \rangle = \langle f^{-1}(\alpha)_M \rangle \) for \(\alpha \subseteq D \). Thus \(T \) is surjective.

It is straightforward to show that the points of \(X \) for which the component spaces are trivial in all representations are those points of \(X \) any neighbourhood of which contains uncountably many pairwise disjoint open sets (the so-called intrinsic null points, see \[1], 3.11). Let us denote the set of these points by \(X_5 \). Note that \(X_5 \) is determined by the topology of \(X \) and thus by the Boolean algebra structure of \(\mathbb{F} \) and not by its action on \(X \).

Theorem 5.3 now shows that \(X \) and \(\mathbb{F} \) together define an unique non-trivial Banach space \(X_5 \) for each point \(k \) in \(X \).

6. Conclusion. In this paper we have generalised the integral module representation of \([5]\) to apply to a fairly large class of projection algebras. In particular, given a Banach space \(X \) and an embedding \(C(K) \to \mathcal{B}(X) \) we have a criterion for deciding whether \(X \) has a norm resolution over \(K \) taking values in a lattice with order-continuous norm and a method for constructing such a resolution and the associated representation. The key to this was the definition of uniform decomposition. A re-formulation of this property in terms of \(C(K) \) rather than the projection algebra \(\mathbb{F} \) would seem like a sound starting point for a general criterion to decide whether a space \(X \) has a norm resolution with respect to a given embedding \(C(K) \to \mathcal{B}(X) \). This general criterion would have to contain both the present theory and the \(\mathcal{M} \)-structure of Cunningham as special cases.

Theorem 5.3 raises another interesting point. Namely, suppose that \(X \) and \(Y \) are two Banach spaces with isomorphic complete uniformly decomposing projection algebras \(\mathbb{F}_X \) and \(\mathbb{F}_Y \), respectively. Then we have two uniquely determined Banach function lattices \(M_X \) and \(M_Y \) on the common Stonean space \(K \) and two families \(X_5 \) and \(Y_5 \) of non-trivial Banach spaces indexed by the points of \(K \setminus X_5 \). This raises the following question:

If \(X_5 = Y_5 \) for each \(k \) and \(M_X \cong M_Y \) (with respect to the common representation on \(K \)), does it follow that \(X \cong Y \), i.e. do the function lattices and the component spaces determine the space itself?

This problem and other allied ones, such as the sense in which the mapping \(k \to X(k) \) is 'continuous' seem almost insoluble even in fairly simple cases.

References

Received February 18, 1978 (1402)