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Convexity, type and the three space problem

by
N. J. KALTON (Columbia, Mo.}*

Abstract. A twisted sum of two quasi-Banach spaces X and Y is a quasi-Banach
space Z with a closed subspace X, o X such that Z/X, o~ ¥.

‘We show that if X is p-convex and ¥ is ¢-convex where p = g, then Zis min(p ¢)
convex. Similarly, if X is a type p Banach space and ¥ is a type ¢ Banach space where
p % ¢ then Z is type min(p, g).

If X and ¥ are Banach spaces, we show that Z is log convez, i.e., for some 0 < oo

& 1
2 el (1+ 8 T ))

k=1

lleg+ .00 2Rl < G(

where ||+ ... + ll#pll = 1. Conversely, every log convex space is the quotient of a
subspace of a twisted sum of two Banach spaces.

If X and ¥ are type p Banach spaces (1 < p < 2) and one is the quotient of
a subspace of some Iy-space, then Z is log type p, i.e.,

1
1 1p
o surr S o b )

where [le}i? + ... -+ |lep|i? = 1. This result is best possible in a certain sense.

We also show that if p < 1 type p implies p-convexity, but if p = I a type I
space need not be convex. '

We investigate which Orlicz sequence spaces and Kothe sequence spaces are
A -spaces, i.e., such that every twisted sum with R is a direct sum.

1. Introduction. A quasi-Banach space Z is a twisted sum of X
and Y if it has a subspace X, == X suchthat Z/X, =~ Y. The so-called three
space problem is to study the properties of Z in terms of those of X and ¥.

In [1], Enflo, Lindenstrauss and Pisier showed that a Banach space
which is a twisted sum of two Hilbext spaces need not be a Hilbert space.
Independently, the author [6], Ribe [15] and Roberts [16] showed that
a twisted sum of a line and a Banach space need not be locally convex.
In [9] the author and Peck showed that these results are related by descri-
bing a general construction which shows that for every p, 0 < p < oo,
there is a twisted sum of 1, with I, which is not a direct sum. In particular,
for 0 << p << 1, there is a non p-convex space which is a twisted sum of
two p-convex spaces.

* University of Missouri. Research done while the author held visiting positions
at Michigan State University and the University of Illinois.
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" In contragt to these.negative results there are a number of theorems
which say that a twisted sum cannot be too bad. In [1] the twisted sum
of two type 2 Banach spaces is shown to be type p for all p < 2. In [6]
it is shown that if X iy a Banach space and ¥ is a type p Banach space
for some p > 1, then a twisted sum of X and ¥ (in that oxder) is convex
(i.c.,a Banach space). Also if X is p-convex (0 < p < 1) and Y iy ¢g-convex
(0 < g < p), then any twisted sum of X and Y (in that order) is again
g-convex.

These saggest a general principle, if we regard p-convexity (0 < p < 1)
or type p (0<Cp<2) as an index of “roundness”. The twisted sum of
two spaces of differing degrees of roundness will retain tho properties of
the less round space; the twisted sum of two spaces of equal roundness
may however be less round than either. The main aim of this paper is to
establish such & pattern, and to examine more precisely the case of equal
Toundness.

First in Section 3, we introduce a new class of quasi-Banach spaces
which we name logeconves. A space X is logconvex if either of the following
two equivalent conditionsy holds for some €, 0* < oo

) 7 1 .
{1.0.1) foy 4 ... @)l <O 2 llee, i (1 +log ———)

llz

wherever @)l + ... +lw,ll =1, @y, ...,2,¢X or

(1.02) lout -+l < 0% Yl (L+-logg).

i=1
Logeonvex spaces play an important role in this paper; they are, in a
sense, the next best thing to being Banach spaces. An example is the space
L1, co) (i.e., weak IL,). '

In Beetion 4 we show that if p < 1, type p is equivalent to p-convexity,
so that we reduce the study of type to the case 1< p < 2.

Section b contains some initial technical results in twisted sums
which contain very little that is new. Lemma 5.2 essentially reproduces
a result of [1] in rather more generality.

In Section 6 we show that if X and Y are p-convex and g-convex,
respectively, where p < ¢, then any twisted sum of X and ¥ or of ¥
and X is p-convex. (One half of this result is in [6], see above). In a similar
vein, if X and Y are type p and type g, respectively, where 1< p < ¢< 2,
then any twisted sum Z of X and ¥ or ¥ and X is type p. Let us remark here
that the methods of [1] (cf. also [13]) show that in cither case if ¢, ..., 2y

€Z
(1.0.3) {fl H D" < 0%1,1,_1/2(21’:1 leal?)™.
0 =i
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The main step in the argument here is to pass from this inequality to
establishing type p (but only for twisted sums where the other space
is type ¢ > p). As shown in [13] (1.0.3) implies type r for » < p. We note
that a type 1 space need not be convex.

In Section 7 we study the case p = ¢. We show that any twisted
sum of two Banach spaces is logconvex, and this result is best possible.
In fact, o space is logeconvex if and only if it is a quotient of some subspace
of a twisted sum of two Banach spaces. The corresponding results for type p
are right if we assume that one of the spaces X and Y is a quotient of
% subspace of a space L, (u). In that case any twisted sum Z is log type p,

i.e.,
»  Yip 1 L \R\e
" < O(HZ badl? (k’g nzm) )

1
(1.0.4) UHZ'S* 2
whenever ledP+ ... 4+ lI2,[? =1, or equivalently

115w

for z,, ..., 2, € Z. Furthermore this is best possible for the twisted sum of
I, and I, (1< p<2) constructed in [9] contains a copy of the Orlicz

space 1, where
1\?
(%) =t"[1 +(Iog 7) ]

near zero, and for this space (1.0.4) cannot be improved.

In Section 8 we examine twisted sums of R and I, more closely,
showing in particular that the examples in [6] and [15] are non-equivalent
but both are best possible in a certain sense.

In Section 9 we classify those non-locally convex Orliez spaces Ll
which are # -spaces, i.e., for which every twisted sum of R and I, is a direct
sum. In particular, this applied to examining “galb” conditions of the
type ( Sf(lwl) < oo = X u; converges) which are preserved under
twisted sums with R. It is shown that if f is submultiplicative, this condi-
tion will be preserved if and only if f(z) > ¢x® for some p < 1.

In Section 10, we examine those locally convex F-spaces X which
are not locally bounded, but are o -spaces, so that they have the property
that if ¥ is locally convex any twisted sam of ¥ and X is locally convex.
It is shown that every nuelear space is a 2#-space, and Kéthe spaces
which are ./-spaces are characterized exactly.

(1.0.5)

Pdt}lfp < o* (Z"‘ [lzhllp(l +10g7{;)1’)1,p
k=1

2. Quasi-Banach spaces. Throughout this paper all vector spaces
will be real, although most arguments may be modified without difficulty
to the complex case.
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A quasi-norm on a real vector space X is a map 'z — o) (X - R)
such that for some K << oo,

(2.0.1) el >0, @0, wzeX,
(2.0.2) ftell = 1t loll, teR, zeX,
(2.0.3) le+yll < K(llell+lyl), @ yeX.

A quasi-norm induces a locally bounded topology on X and conversely
any locally bounded topology is given by a quasi-norm. A complete quasi-
normed space i called a quasi-Banach space. If in addition we have for
gome 0 << p <1

(2.0.4) le+yIP < ol + lyiP, #,yeX,

then X is called a p-Bamach space (or if p = 1 a Banach space).
A quasi-Banach space X is said to be p-conwvew for some 0 < p <1
if there is a constant A such that

(2.0.5) ey + o+ o 43, < Al lP+ oo+ o P)MP

for @y, ..., #, € X. It X is p-convex, it may be equivalently quasi-normed
to be a p-Banach space. A theorem of Aoki and Rolewicz (see [17]) states
that every quasi-Banach space is p-convex for some p > 0. We shall
repeatedly exploit this by assuming the quasi-norm on a given space
satisfies (2.0.4) for some p > 0.

We denote by (¢,: » € N) a sequence of independent random variables
(or measurable funetions) on [0, 1] such that A(e, = +1) = A(e, = —1)
= { where 4 is Lebesgue meagure. We then say that a quasi-Banach space
X ig type p (0 < p < 2) ([12], [13]) if for some constant K < oo we have

(2.0.6) (ﬂ‘ﬁﬁ'(ﬂ”ﬁ 1pdt)m’< K(Z” ”w‘”p)l/p'
0 i=1 =1

If X is p-convex, then X is certainly type p.
We remark here that Kahane [4] shows that for a Banach space X
and 0 < p < g < oo there is a constant K = H(p, q) such that

@on) [ Zuala” < {f] Seafraf
<x{f] Susl

This means that we can change the exponent on the left of (2.0.6) without
altering the definition. -

In fact, (2.0.7) holds for quasi-Banach spaces; the modifications is
Kahane’s argument are minor but we include a proof for completeness.

» dt}”” ,
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TrmoREM 2.1. Let X be a quasi-Banaok space. Then (2.0.7) holds.

Proof. Let L,(X) be the space of X-valued simple functions on
[0, 1] equipped with the topology of convergence in measure. Let Rad (X)
be the subspace of functions of the form s®+ ... +e@, for @y,..., 3,6 X
and » € N. We show that on Rad(X), the Ly-topology coincides with the
stronger topology induced by any quasi-norm

F~{ firt) IPai}".

‘We see this, we need only show that the set of f e Rad(X) with A([Ifll > 1)
< is bounded in each L,-norm.

Suppose f = s+ ... +¢,2, and

A(fll > 7} = a.
Let

k
M(t) = max ”Z‘e,(t)m,. , 0<t<1,

1<k<sn U {23

N(t) = max Hj s,-(t)m,»j

I<ksn U5y

Let 4, (1< %< n) be the set of ¢ such that

, 0t

| Setom]< £, 1<i<io1,
f=]

k
| 3 ettra;

(where K is the modulus of concavity of the quasi-norm given by (2.0.3)).
" Since f has the same distribution as

> Kr

F* =it . Fom— e @ — - —Ea0,
and .
MAgn(If +7*1 = 2En) < 4 {An(F 1= )+ A (A (IFf 1 = )
=22(4,0(Ifll = 7))
and hence

A(Ay) <22 (4a(Ifll = ),

80 that, summing over %,
AM > Er) < 2a.

Similarly, A(¥ > Er) < 2a.
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Now if te 4, and ||fl|= 2K,

. k
H 2 £1%;
i=1

and

).

k-1
i==1

“j W'i” > Kr (sincel
=% :

Henee

Afdn(ifl = 2K27)) < Z(Akﬂ(”ﬁ: ;|| = ')) < 2aA(4,)
izl )

since these sets are independent. Suniming over

Al = 2KPr) << dat.
Thus if
Mifl = 1)< 4,
AIFll = (2R < 4" < (3)

271
and

f lPa< 14 3 @I = 8, < oo.

n=0
The galb G(X) of a quasi-Bzmmch space is the space of all sequences
{a,} such that if o, < 1, then {2 " ) is bounded. G(X) is a quagi-
ks!
Banach space when quasi-normed by

X is said tobe yalbed by a space of sequences I if, given [z,) < 1, and

ey, tby, .. )l = sup supHZ [ %

llepll<l” n

{a,} € H, then Y‘a,bm, is bounded (sce Turpin [17] for a, more defailed
e

study of these nomons)

An P-space is a complete metric topological vector space. A twisted
sum of two F-spaces X and ¥ is a space Z which has a closed subspace
X, == X such that Z/X, = Y. Thus there is & short exact sequence
0—>X -»2Z Y 0. If overy twisted sum of X and Y is a direct sum
(i.e. Z = X @Y in the natural way) then we say that (X, ¥) splits (the
order is important here). If (R, X) splits, then X iz a 2'-space ([8]).

T X is a locally convex #-space, then every twisted sum of ¥ and

X with ¥ locally convex is also locally convex ([6], Theorem 4.10) and this

property characterizes locally convex 2 -spaces.

iom°
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3. Logconvex spaces and related classes. Let ¢ denote the Orlicz.
funetion

- 1
1 —
N L K

£, t>1

(where 0 log oo = 01log0 = 0 by convention). Then 1, 18 a locally bounded
but non-locally convex Orlicz sequence space. The guasi-norm inducing
the topology on I, may be given by ‘

]
loll, = sup {&: >'p(6 ) < 1).
iz
Our first result gives an equivalent quasi-norm.
~ TemoreM 3.1. An equivalent quasi-norm on 1, is given by

lletly

lolly =l + 5’[ 111 og -

where |oll, = 3 |,
i=1

. 1;Proof. Since ||-|I} is easily seen to be homogeneous, it suffices to show
a

0< in(lIwHZZ; lzll, = 1) < sup (Il foll, = 1) < co.
If Jlwll, =1, then 3 p(lz;|) = 1 and hence

Z]mi (l+10g ———) =1

fi]

Hence |z|l, <1 and

lify < fimlly + 2 l;|log _];—I = [lzll, =1
=1 g

Conversely,
h
lelly == liwlly, — el log wl, = 1 —|wll,log lzll, > 1— ’y

since 0<C Jlof, <1

DypINITION 3.2. A quasi-Banach space X is logeonvex if it is galbed
by 1,, i.e., whenever x, ¢ X and

2 ellal) < oo

then ' », converges.
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Exampre, The space [, itself is logconvex; thig follows easily from
the fact that ¢ is submultlphca,mve at 0 (cf. Turpin [19], p. 79).

THEOREM 3.3. A quasi-Banach space X is logeonves if and only if
for some constant C and any Bygeooy W, €X

(8.3.1) o+t .o A8l < [Z e (”mg ) )]

i=1

where 8 = \" oz |1

1.-

Remark. (3.3.1) is equivalent to

. 1
(3.3.2) oy ...l < 0(1"‘; Iellos Ilw.-ll)

whenever |jz[[+ ... +lw,ll<1

Proof. Let I be an infinite set with |I| = |X| and let (#;: ¢el)
be the unit ball of X. If X is logconvex the map 7': 1,(I) - X (where [, (I)
is the generalized sequence space of all (&: i eI) such that X (l&]) < oo

defined by
T(§) = D) &

tel
is well-defined and continunous. Hence for some O < oo
I1ElL
1
7@l < (HE!H—ZIEI og 1)

and (3.3.1) follows easily.
Conversely, if (3.3.1) holds and

Dozl <1,

=l

then

R 1
o (1 +log --;]) <1,

n=

A

and hence

1 1
1
h 2 &y, <C 2 Ha::n][(l—)- W) -0 as I,1 — oo

n=x+1 n=k-1
8o that 3, converges.

icm°®
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L(1, o0) denotes the space of measurable functions on [0,1] such
that

Ifll = sup2A(|f] > &) < oo.

TEROREM 3.4. The space L (1, co)is logconves. [Added in proof: see [20].]
Proof. Suppose 2,,...,2, e L(1, o) and let

f=a+... +,.

Suppose also |lwyll+ ... 4+l = 1.

Fix 71,0 <7<1 and let 4 = (0,1) be a set of measure r. For each
i=1,2,...,n let

B; = (lo] > 277%).

The A(E;) < }ilz;l; hence if B = B, U ... UE,, then A(H)< }r. Now

intlf(0i < int [f01<— [ Ifa
ted T

teANFE
N\F Az

\% f|w ) di < —Z f]ac,.(t)ldt

i=1 AN\E =1 ANE;

2 LH . _ 2 >y . 2,
<?%jm([m,-(t)|,2r 1)dt<72fmm (”—u'—,zrl) au

i=0 0

2\ © 2 O 2
<7 D iwa+ [ T‘Z“)=7 Q(ilm I+ ldtog —— "}

i=1 1/21||:ci[| . =1

1
T

2log2 +24-2
( ° =~ [Iw I

Hence

IfI< (210g2+2) +2 2 loiflog - “

and so L(1, oo) is logconvex.

Examrrs. Let (g,: n =1,2,...) be a sequenée of independent
random variables each with the Cauchy distribution (i.e., with probability
density function
1 1
'

fl@) = T

—o0 L o < 0o,

5 — Studia Math, 69, 3
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Then (|g,|:
verges in L(1,

n € N} is bounded in L(1,
oo) if

co) and %o if @, 0, 3'a,lg,| con-

1 1
(3.4.1) T\‘{ a, (1+10g T) < oo
and then
(3.4.2) 2%|9n(t)| < co a.e.

L)
L. Schwartz [18] shows that (3.4.1) is equivalent to (3.4.2). See Ka-
hane [47] p. 97 for a similar example.
We now give another characterization of logconvex spaces; for this
we require the following lemma.
LumMMA 3.5. Suppose & >0 and

* 148 ’
0, =tog| 3 (4;—) | (=1ogea-o.

If &4z 6> £,20 and
§1+§2+ -'I"E;b:l
then
(3.5.1) V g logh < 2 fulog - ~——< (1+2) Z £,logh+C,.

Ic=1 k=1 Fe=1

Proof. Bince &, << 1/k the first inequality is clear. To prove the
second, fix » and let ¢, be the maximum of

P&y, buyens &n Zéklog—— 146) Zsklogk
=1 V=1
subject to &> ... &, >0 and &+ ... +£, = 1. Then for some (u,, ...

cey Uy)y F(Uyye.oym,) = C,.

We claim first that w, > 4y > 43 > ... > %, > 0. For if I < n in the
firgt index such that w, = 0 then a small increase in %, and decrease in
...y increases F; a similar argument shows that w, # u; if ¢ s j. It follows
that (uy, ..., u,) is a local maximum of P subject to the single condition
&1+ ... &, = 1. Hence there iz a Lagrange multiplier A such that

or

3%, i (Uayeeey Uy) =4,

ie.,

1
log —— —(1+2)logh = A+1.
]

icm°®
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1 14e
Here u;, = ¢'7* (]— and so
4

n

St

k=1

7’”’71) = (]‘_1) =(,

n?

F(ty,...

and hence C, < €, and the result is proved.

THEOREM 3.6. A quasi-Banach space X is logeonvew if and only if
Jor some O < co, whenever »y,...,x,€X

n
(3.6.1) eyt .. @l <€ D limel (1+logh).
E=1

Proof. This follows immediately from the preceding lemma and
Theorem 3.3. .

Remark. This theorem essentially means that the Orlicz space [,
is identical to the Lorentz space of all sequences (a,) such that S’a (1+
+logn) < co where (aj) is decreasing re- -arrangement of (|a,]) See [11]
for similar results for comwver Orlicz spaces and Lorentz spaces.

4. Type in quasi-Banach spaces.

THEOREM 4.1. Suppose 1< p<<2
type p is convex.

Proof. Clearly if

b, = sup inf |ow, +o.2,+ ...

llzgli<l oy=1

; then a quasi-Bamach space of

+ o, 2,ll,

then b, = o(n), and the result follows from Theorem 2.5 of [6].

TewoREM 4.2. Suppose 0<p << 1; then a quasi-Banach space X of
type p is p-convex.

Proof. We can and do suppose X is an r-Banach space where 0 < #
< p. For each » e N, let d, be the least constant such that

oy 4 oo + @, < G (P + oo [, |2)M2

for @, ..., %, e X. Suppose for any =

] {fl”j & (t)m; Ip dt}llp <C (an l]mi”p)llp'
0 iz1 i=1

x, € X there exists o; = 41 (1 <4

> nwinp)””"‘

d==1

Then for any @, ..., < n) such that

oyt~ ... +o,m,)l < C
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7
We may suppose that if F = {i: 0, = —1} then J [wIP <} 3 lmfP.
Then i ey N

| S < 20, (3 )
ek =l

and hence

Hé’?w < é;aiw,-“r +or 2;40 "< (O 2ru gy (%; 7)™
i &, < 0" 2100y
80 that

d% € T

As {d,} is bounded, X is p-convex.
Remark. As is easily seen the hypothesis actually used in the proof
is that X satisfies

min Jjoy8, 4 ... + 00, < O(lel? + ... +lla,P).

gyl

The same argument shows that if b,(X) = O®'?) (p < 1) then
a,(X) = O(n*?) where

b, (X) = sup min fjo,w4 ... + 0,%,/,
gl op=d=1 .
a,(X) = sup |oy+ ... +2,0.
It

We do not know, however, if a, = O(n'?) implies X is p-convex when
Pp<l

When p =1 the above proof breaks down and we shall gee later
that a type 1 space need not be convex. It ig tempting to conjecture that
a type 1 space must at least be logeconvex in view of the following theorem
(the converse is clearly false-consider /).

THEHEOREM 4.3. Let X be g type 1 quasi-Banach space isomorphic to
a subspace of L. Then X is log conves.

Proof. By Nikisin’s theorem ([7], [14]), X embeds in L(L, o).
Now apply Theorem 3.5.

We have not been able to substantiate this conjecture and have
only the following, whose proof we omit. It depends on rather more delicate
handling of the argument in Theorem 4.2.

icm
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TEHROREM 4.4. Suppose X is a type 1 quasi-Banach space; then for
some O < oo and any %y, ...,2, € X

loy+ ... A a,)l < O+ logn) (sl + ... + ll,])-
In view of the above regults we shall only congider type when1 < p < 2.

5. Twisted sums. Suppose X and Y are guasi-Banach spaces and Z
is a twisted sum of ¥ and X, so that Z has a subspace igomorphic to ¥
such that Z]Y cz X. Then (cf. [6], [8]) there is a map F': X — Y satisfying
(5.0.1) P(tw) =1tH(z), teR,veX, '
(5.02) @y +2) — B (@) — I ()| < K (]l 4 llog]),
where X is independent of #,, @, such that Z i isomorphic to the space
Y @®p X, Le., the Cartesian sun ¥ @X quasinormed by

Iy, @)l = lly —F (@)} + lle]l.

Conversely, given any such quasilinear map F satisfying (5.0.1) and
(5.0.2), then Y @,X is & twisted sum of ¥ and X.

Suppose then F: X - ¥ is a fixed quagilinear map. We define for
a finite subset {xy,..., o} of X

%y, 0y X,

A(yye.ny @) = Floy+ .. +a,)— D) Flay).

L=l
We now state the properties of 4.

LemMA 5.1, (1) If 4y, 4,,..., A,, are disjoint subsets of {1,2,...,n}
such that Asu ... vd, = {1,2,...,n} and

shen
. m
A(@yy oony @, ) == AUy, ug,...,um)—{-z Alw;:j e Ay).

feml

(2) A(z) ==

(8) 142y, @)l < K (Jlry i+ llmall) .

(4) For some 8, 0 << 81 and M << co

14 (@50, @IS M (J0ull + <o+ g
for y,...,», € X.
" Proof. (1)~(3) are obvious and (4) is shown in [6].

Now suppose that W ig any quasi-Banach space. We define d, = d, (W)

to be a least congtant such that

lwy =+ oo Fwgll < dg(loosll+ - A lwal)
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whenever w,, ..., w, € W. We also define 8, = 6,(W) to be the least
constant such that

(1.3 el < 3 v

The sequence {4,} has been studied for Banach space in [1], [2] and [13].
It is easy enough to see that both sequences {d,} and {8,} are submulti-
p]l(‘a.tlv‘e (dmn = <d d’n! émw 617L61:,)

For a quagilinear map F: X - Y we dofine 0y ==
constant such that

4@y oy @) < G (gl - oo ), @y eeey @€ X
and y, = y,(F) to be the least constant such that

¢, () to be the least

1
U 14y, oaa, oy ) P < (ol + ool Y2,y o, w, e X
[

Our first result is simply a gencralization of a result of Inflo, Linden-
strauss and Pisier.

THEOREM 5.2. Suppose 0 < v <1 and ¥ is an r-Banach space. For
m,neN
(5.2.1) O < S (X)) + b (Y,
(522) ymn J/m(S (X —{“Vn ( )

Proof. (5.2.1). Suppose @y, &y, ..., T, € X. Letb
in

Uy = 2 Ly,
(i—1)n+1

1 =1,2,...,m.

man

m
Then 4w, -y )| < 6n D tell < 6,8, (X) 3 Il and
1=1 =l

m

HZA(wj: (i—=ln<j<in H Z“A mpz (E—1)n < § < dn)|
1=l =1

mn

e ), gl
=1

and (5.2.1) follows from Lemma 5.1.
(5.2.2). Let
in
wt)= > gb)a;.

(Z=1)n-+1
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Then

f||11u1 y Un(B)y eyt (1)) |0 :.‘ij/l (e () (1), -y £ (8) 10y (1)) || dsclt

(by symmotry)

e
2
jy,,w g (1)IPlt < 2,82 (X) Y‘ el
lr-l
Also, by w similar wrgument,

7'1 7I

f” gt (=10 << § 7 im H at =5 82, (X)) 9% 2 ||50 I

and (5.2.2) now follows from Lemungw 5.1 and the convexity of the Ly,-norm.
Lemmw 5.3, If p =0, there ewists o = a(p) 220 and ¢ == C(p) such
that for @y, ..., m, € X

(5.3.1) 14 (@, ..., @ (27”“” Py
=1

Proof. By Lemma 3.1 we can find s > 0 and M < oo such that

A (i, -y @) < (Vllr )"

Josa )

Thuy for 0< p s, a =0 will suffice. Now suppose s< p < oo, and

o
choose 6 > 1. Let ¢ = ( 3%%)7". Then Yc/c“" = 1 and hence
Te=1 I.==1
S o - Us < opjs\ e
(Dl = (3 el ol 1) < ( 3 ety >w")
Tpoal o=l k=1

and hence a == 0(p/s—1) will suffice.

6. Twisted sums with wnequal comvexity.
Lsmya 6.1, Suppose p v 0, and ¥ ds an r-Banach space.

(6.1 I d,(Y) - Om" and dy(X) == O(n"), then ¢, = O(n").
(6.1.2)  If 8,(Y) = O(n") and 6,(X) = O(ny), thon y, = 0(n").

Remark. The roles of X and ¥ may be interchanged in this lemma.
Proof. Suppose d,(Y)<an” and ,(X) < bn’. Sclect N so that
bN""# < 1. Lot O s ((;,\,IEN"”"'“)". Then -

ot 5 sy (X) 4 01 (¥)
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so that
6, < (BN )01+ aby

and hence {0,} is bounded. Hence ¢, = O(n*).

(6.1.2) has a similar proof.

THEOREM 6.2. Suppose that 0<p,q<1 and p # ¢, and that X
s a p-convexr quasi-Banach space and Y is a g-convex quasi-Banach space.
Then any twisted sum ¥ ®pX of ¥ and X is min(p, g)-conves.

Proof. The cage ¢ > p is proved in [6]. We therefore assume that
¢ < p and that Y is n g-Banach space and X is a p-Banach gpace. Then

d,(Y)<nit, 4, (X) <t

and hence for any quasilinear map ¥: X - ¥
¢, (F) < Ontle=?

for some C.
Now suppose &, ..., %, € X is non-zero and

loall?+ ..o+ llegl? = 1.
Let 4, ={i: 2" < |l <227}, m =1,2,8,...
Ay, ..., Ay partitions {1,2,...,n}. Let

Uy = 20&

iedy,

Then, if we make the convention 4(@) =0 and Yz =0,
[}

Then for some XN,

N
14(@3, ey BIE S (A0, ooy un) A+ DT 1A (5 € A

=1
Now
14 (o, j e Al < OLAP 3yl < 204,727,
jed
so that '
14 (52 j e A)IT< (20)21441277 < (200 D) [yl
. Jjed;
Hence :
N )
DAz § e A< (20)2 3wt = (20).
i=1 qeal

Now by Lemma 5.3 there is a constant M and a > 0 so that

1
14wy .oy )P < M D KNP, 03,00y € X

Rl

H ©

icm
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Hence
N N
7
1A (s )P < I3 WP < L DR D ol

Te1 Tem=1

"
2 a
<t Y f (lo w—)
; & T
where M* == M [log2.

Now sup & (log(2/§))* == 0 < co and hence if MY == 6™

Uez gl

iedy

W
14 (s ey )P M D gl == D7
=1
Hence
14 (@g..y ) IF < (M) (20)"
where both M** and ¢ are independent of #4,...,#,. We conclude that.

for any @y,e.., &,

14(@ye.., w)E <D D il

del

Now suppose (y;, #;) € ¥ @pX. Then

[ S Sl = (| D=7 (Z ] +] X

(|3 ve-2(Zaq [+ Z=lf)

< (|3 =@ +] A@se-5 @) [+ X
<2D( I lodt+ 3 lyi— (@)

< 271D 3@, 9ol

and 50 Y @pX i8 g-convex.

THROREM 6.4, Suppose that X is a quasi-Banach space of type p (A< p
< 2) and Y 8 a quosi-Banach space of type g (L<g<2). Then if ¢<p,
any twisted sum Y @& is of type ¢.

Proof, This proof mimies Theorem 6.2. Wo assume that ¥ is an

r-Banach space where 7 1; of course, if ¢ >1, we way take r = L.
We guppose that if @y, ...,4, X and Yy, ..., ¥n € Y, then

1 S etvor <o o)™,
0wl

[ 3wt a < o 3 e},
3

{1

0 T

A

N
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and that

1A @5y 0) < M ( Y R )
k=1

a8 in Lemma 5.3.
We have §,(¥) = 0(n'*) and 4,(X) = O(n**~"*) and hence

Y (F) < Onte= peN.
Suppose @y,...,®, € X are non-zero and
gl + ... = [, F = L.

Let A4, = {i: 27" < |o;l<2-27™} and suppose A,,..., 4y positiong
{1,2,..., N}. As before we make the convention 4(@) = 0 and J ; = 0.

Then if iep
w() = g, 0<i<1, .
Jed;
N
Aler () B1ye ey 8, (O0Ba) = Aua(8) - uyy () + ) Alg; (s § € A,).
qmal

Now by symmetry

1 N 11 N )
fHZA(aj(t)mj: jed)|fa =ff”2.s,(s)4(aj(t)mj: jed,)|f dsa
) i=1l 00 =1
1N
< c“fZHA(aj(t)wj: jed)|ds
0 i=1
N 1
R PR ECERE R s
i=1 0
< o D04 3 o)
i=1 jed;
N n
’ < 992 ga(e Z |4,]27% < o 00(]412 g2 < 221,
' i=1 o=
Also ' l
f 1 N N
la{wa(e), s un @) Pt < 27 [ 3 Wl ) Pd < 2200 > 8 i
J /2 oA

n
2 143
< umu”(lo 2 ) <
= 2 W ) S

icm°
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as in Theorem 6.2, where WM™ is independent of @y,..., m,. Henco

+4 f‘ I i’ Alegoy: je Ay | )™
0 gl )
s (MM 2t

It tollows easily that for any @,..., 2,

! »
H 1A ey @) af" < p{} o} .
[t

Now suppose (¥, 4;) ¢ ¥ OpX (134 s0n). Then
\ ‘Z,H‘ ) 1
UHZ (1) (4, @) H dl}
[

U1 o #{ S| | Setoe oy

= {j H 2.: ety - ¥ (:Zj (:7‘:("/)1[;{)\1& dt}w -4-0(2 ”"qu)l/rz’

“Zsi(t)ydmlf’(z\._] (#i('ﬂ)mt) H | || et s~ F (@) |} 1A @y ey wn)li)

80
{fl | 3 ety o0 |
| <2rto( 3]y~ Fa|! | @D+ (X e)
5 (2 Ho-- D)) 3] (e -+l = F o)
< & 3w w)I)"

Le, YDpX v type ¢ .
Wo now ghow that a tiype 1 space need not be convex.
In 6], [L5] and [16] it is shown that one can construet a nON-convex,
twisted sum of B and & Banach space. This is type 1 by the next theorem.
Turmorym 6.5. Suppose X is a lype p quasi-Banach space cmd Y s
a type g Banach space where ¢ > . Then any twisted swm Y ®pX is type p.
Proof. Here our techniques ave rather different. We use a result
of Kahane [4] that there is a constant K = K(p, q) such that for any

'
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elements ,,...,u, of X

(1| Seanrafe< 2 {f] S amdpaf”.

[For the case p =1, we apply Theorem 2.1.]
Suppose ¢ has the same meaning as in Theorem 6.4. Let 6, be the
least constant such that

k3

{1800,y muamit ™ < 0,3 ™.

dma ]
Suppose {lz® -+ ... + @, ¥ =1 and |z, [P > 1/N. Then
A(e®yy. .., 6,5,) = A(u(t), En(t)mn) + A(ea®yye ey Gy Bpy)
n—1

where u(t) = > ¢(t)z;. Now

i=1

1 1
{14, eutyofa™ < o {f (Juw]?+lo,r)2ra}™
o 0

by the usual symmetrization argument.
Hence

{f [, e (t)m) |Frae)™ < 60F [ f la®)ieat]™ + o, 7]
< op [K7e 2 P+ Nl | < P07
Hence if [P ... +lz,lP =1 and max|u)f > N7,
{ f 14(ex@ss -y 2198 < 0,y (L—1/N) + Kbso.

Now suppose |ol?+ ... +lg,)” =1 and max|e) < N-L. Then it is
possible to subdivide {1,2,...,n} into N sets A,,..., A, such that

MmlP<2(N, j=1,2,...,N.

iy
Then let
w(t) = D ez, |
isAj
, N
A (e yeeey 8ny) = Auy (B),..., uy(t) + 2 Alem: i e Ay),
=]

icm°
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and by symmetrization

( }f g ) P ™

il

\%Zﬁmwww
i 0

A

X 1
T LA wy (D))t dt}"/‘zg oz {[
<
1
N .
<0 3 B 3 P < ORE,

] tady

-

712

1
f 14 (052 ieA,)nﬂdz}”“
0

1 N
{Bﬂ’ggmwﬁ i€ )

(by symmetrization)

(adt}”qé 0{
i

=l

< oan{j (Z ”wi”q)plq}lla
7

1=l ded,
& f 2\ p} la
<en{ )] (‘N-) D, lad
4wl iedy
9 \lUp—1la
<5
Henco
. \a o \lp-1a
{ f IIA(slw,,...,enwn)Iladt} < KOy + (-—ﬁ) of,.
0
Thus

1 Ur 1p—1lg
0,, < max {On(l - "ﬁ) 4K Oy0; 0K Oy (f) oB,,} .

It wo choose N go that

Up—a
¢ (%) <1,

this implies a bound on 0,. ‘ . )
The fact that 0, i glound.od implies that ¥ @pX is type p In the

usual way, as in Theorcm 6.4

7. Twisted sums with equal convexity. Since tho twisted sum of two
Banach. spaces may not be eonvex we may agk what clas‘ss it does bel.ong'to.
Tt turns out that we can give & complete angwer to this. We require firgt
the following lemma. We usc the notation of Section 5.


GUEST


268 N. J. Kalton

LevmA 7.0, Suppose u=0 and ¥ is o Banach space.
(7.11)  If 4,(X) =1 and d,(¥Y) =1, then ¢, = O(logn).
(7.1.2)  If 8, (X)<n* and 8,(X) = O(n") (or §,(X) =0 (n"
and 6,(Y) < n¥), thm Y = O0(n"logn).
Proof. We prove only (7.1.2) (as the same argunment then proves
(7.1.1)). T£ 8,(X) < a* and 8,(Y) < On*, then by Theorem 5.2

# _.ymn < Ym Yn
(mm)* T m# n

and hence yn,m"""‘< Cly,n™" and the result follows easily.

TaworeM 7.1. Suppose X and Y are Banach spaces. Thewn amy twisted
sum Y ®pX is logeonver.

Proof. Here we have d,(X) = d,(Y) =1 for all » and hence o,
< C(logn+1). Induction on » as in Lemma 3.2 of [6] shows that

4@y @< M D Tlwll,  @4,... 0, € X,
k=1

in this case, for some M independent of @,..., x,.

Suppose [/l + @l + ... + o, =1 and suppose |wyl = |wal > ..
= ||wnl[ > 0. Let N, be the greatest suffix such that llen, i > 27 E (Ic
=1,2,...) and let

Np

W= @, k=1,2,..
i=Np_1+1

(where N, = 0). Suppose N; = «. Then

!
A(wa,..., &) = A(ul,...,ul)—f—z A(ka__1+11"'7 N

Jom=1
1 [ Ny
| 2 Ay s ) [ <O 3 Lt log(W—My)) 3 el
k=1 k=1 Nyl
! Ny
SC+0DlogN, N .
k=1 Nyoq+1

COlearly, N,27% <1 so that N, < 2/|la] for Nk-—l +l<ig Nk. Hence

1
E @y, 41y @y,)

k=1

< O+ 0log2 +02' Iz, log ~——

- I fu
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Algo
2
Uygoon o M k|| < oo . LA
1401, s ) ,2' bl < oy Z oo
X M A e Z floe |]log-—:}——~
T T
Thus
1A Gy ey )l 2 M- O Clog2. ( )Z latlog 7

whenever E“mi“ = L. ence for general w,,...,»,

ZICRRERIES N ,2* I+ BZ nwiulog»ﬂ--z“
where § == )’ flow, ]l
1::-1

Now it easily follows that ¥ @®,X is logconvex for

| S a] = | (Sl +| S
. MZ 'l ~ I ( 3%) Il + 1 4@y, ..., @, )””}_HZ‘%
Z Itye, al+By D) lodl+Bs ] el log Iw Ik

()

and the result follows from the fact that the function

B(Esynnr &) = Z Zeilogg—l-, iyeees £n 20

is monotone in each &, and |wll < (4, @)l
Remark. If we take X = ¥ =1, and F: 1, ~1; is given on the
finitely non-zero gequences by

I (w) = (mnlog »”w«”)
l ”l
then I, Dyl contains I, (where as usual p(@) = (1 +log(1/m)) near zero).
(See [8].) This shows tha.t the result of Theorem 7.1 is best possible.
TasorEM 7.2, A quasi-Banach space is logeonves if and only if it
18 the quotient of a subspace of @ twisted swm of two Banach spaces.
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Proof. By Theorem 7.1 such a space must be logeconvex. The above
example generalized to I,(I) for arbitrary index sets I enables one to obtain
1,(I) as a subspace of a twisted sum of Banach spaces and hence every
logconvex space as a quotient (cf. [19] or the method of Theorem 3.3).

DEFINITION 7.3. We say a quasi-Banach space X is of loglypep (L <p
< 2) if for some constant ¢ < oo we have

{ of “2 OrAs dt}”” <0 (1 + Z g (mg —”—il—!)p)w

whenever [@,|?+ ... + {o,[7 = 1.
Remark. In order that X is of logtype p it is sufficient that

{of |2 el

To see this arrange x, so that ||| decreases. Then if 3l JIP = 1, [lol®
< k! and hence

(7.3.1)

(7.3.2)

1< 0'{ 3 lmil(1 +logk)?}

1 1
log — = —logk.
Sl ~ 7

We will see later that (7.3.1) and (7.3.2) are equivalent; of course, for
p =1 this is immediate from Section 3, and for 1< p <2 could be estab-
lished directly in a similar manner. However our indirect methods also
establish this result without difficulty.

DEFINITION 7.4. A Banach space X is of exact type p if

2 (lloog I + le2®)

Remarks. If p = 1, this is automatic. If p = 2, it implies that X
is a Hilbert space, for in this case

124> + (12, <

|l — ®alI” - lles + @all” < By, 0y € X

2 (g — a|* + iy + welf)

and hence the parallelogram law holds; then apply a result of Jordan
and von Neumann [3]. For 1< p < 2 it is sufficient that X is a quotient
of a subspace of an L,-space.
THEOREM 7.5. Suppose X and Y are Banach spaces of type p where
< p < 2. Suppose that either X or ¥ is of exact type p. Then any twisted
sum Z = Y ®pX satisfies

{ f1 | 2 ale | af" <0 {f} e+ 3 Il (log )2}
0 q=] fe=1

and hence is of logtype p.

icm°
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Proof. If X ig of exact type p, then

12 ewya” atfe < (3 e
for @y,..., @, 80 that 4, ()<< nM*~" Hence Lemma 7.1 implies that

¥, < B~V (lognm 1),

By Lemmsa 5.3 there exists « >0 and M < oo such that

2 3l

Kl

14 (4 5.

for @y,...,®, € X.

Now suppose @yl -+ ... + o, |P =1 and oyl > ... > [m,] > 0. Let Ny
be the greatest suffix such that [oy,ll>27" and let

Ny
w) = 3 s, k=1,2,..
Ny +1
Suppose Ny == n. Then
Alesyyerry 8,8,) = A (8);-.o, w (D) +
N
-+ Z Aoy, 1%y _y+190 0 85, 0N,) -
Tewal

Now let

1 [
=] {af ” 2 4 (eNk-—l'H me-—l'H’ ey stka)“pdt}llp
Towal

11 -
2l lfp
< B[ D 1(ewyy@pyins -1 o) P

0 fgenl

by the symmetrization argnment, where B, is the type p congtant of Y.
Henco

! N
< BB, | 3 (W — )" [log (N, — ~ NP S el
o] T Np.q 1
) Nl": 1Up
gmg{z [og(Ny—Nyn)+1P Yt}
fewa1 it Ny L

6 — Studia Math, 69, 3
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Now observe

S’ (1 +logh)?

m—H

J (1 +logw)?da

= (n——m)(l—i—logfn)”—pf g—

= (n—m)(L-+logn)? —p (n—m)(L-+logn)?~!

> }n—m)(L+logn)?

provided » > n, where n, depends on p.
Hence there is a constant ¢ such that ¢ > 0 and

Z (1 +logk)?

le=m41
for all n, m. Thus we have
Ny, Ny
> @+logiPllr =27 3 (1logj)?
Np_1+1 Npgr#1
= 27 (N~ Ny_y) (L-+1og Ny, )P

Ny

¢(n—m)(1+logn)"

> 27 (L+log )P D e

Npg—1t1
Thus

a<207BB, {3 llog (1 + Tog by?} .
k=1

Now we shall show that if

b= {f“A(ul(t), vy ul(t))det}lly,
then 0

n
() ilwkll”(1+1Og76)”}l"’
=1
for some D independent of wy,.. . 'We have
N
(1.81)  b<
k=1 Np_y+1
where B; is the type p constant of X. Hence

(7.5.2) < M, {Z X (10g ~~ﬁ”) }‘1/1;

n (1 +logw)*~'dx

{f Z ka”uk(t ”pdt}llp ..Z"I.B {Z B 21 llmmm}l/};
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(for .some consbant M)
n
< M, ( Z ”“’i“"')l’p
Tl
where 4p < ¢<p. Let 6 =g/(p—g)>1. Then

"
b < My X 1y
fomal

< ﬂf-'(z Teljo, “,,)alv (24 k_e)llzn aip? < -Ma( ka”m “7))1/11

Jows ) Jpa=l Tewal
Combining
k1]
1,
b < M, (D) o)
ferml
8o that

{14, s 1Pa" < 3, ( ki, )

ho=1

and this must hold for any @y,..., x, € X. Returning to (7.5.1) it is clear
that (after a symmetrization argmment) we may now take a =1, and in
(7.5.2)

1Up

2
p
{> lmllog .
By Lemmsa 3.5
< M { Yl +logh)}”
k=1

and combining we now have the estimate

{ f 1A (e, .., ePat)’” < 0 3 o -I-Ing)”}”p-
Jesl
We omit the verification this implies the desired property of Z «= ¥ @pX.
Remark., We observe that Theorem 7.5 is best possible, in the
sense that cach p, 1< p < 2, thero is a twisted sum Z, of I, and itgelf
and » constant ¢ > 0 such that i B4 =1 there ave % € Zy,
i =1,2,...,n with [g = & and

{f\rg?wmyu0(14-2'1%"?(10%%'—)”)””'


GUEST


274 N. J. Kalton

Indeed, consider the spaces Z, of [9]. Then Z, = 1, @yl, where F': by —~1
ig defined by

F(z) = (wnlog %).

It o, is the nth basis vector of 7,, then

(pIEEXN 73 40 PIETRA
- (2 Eﬁ(logn;;-)”)”ﬁ»ya (Z sg)w’

1 \\»\ U
=1 4 e .
> (e sl )
Similaxly this implies )

[+ S sl )] < (3 rasmr]”

go that (7.3.1) and (7.3.2) are equivalent.

+

8. Twisted sums of I, and R. We now recall two ways of forming

a twisted sum R @gl,. One method due to the author is by defining F,: 1}
— R by

-
Fy(w) = Za"xnlogn, x>0, '

nml

where (#,) is the decreasing rearrangement of «, and
Fy(@) = Fy(a%) —Fy(27)

where # = #* —~ where ot >0, 2~ >0 and |t |Ale™| = 0; see [6].
The other functional due to Ribe [15] is F,: I — R given by

(o]

N7 [lll
F = 2 log ——-.
' 2 (m) Tpt0g l mnl
(Actually Ribe uses the equivalent functional

" ne=l

n=1 Nl

n=sl

Il ll; and || ||, denote the induced norms on R®1,. Then if ¢, i3 the nth
basis vector of I, and ¢,> 0 (n = 1,2,...,N)

(0, St = S+ Stiytogn
=1

n=] n=]

icm
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and

o, Sl = S+ Ssop 24
’""'1 o z—_;:l; " Py " t,

Thus we see for both 7, and ¥, we have examples to show
TrmorEm 8.1. There is a twisted sum of B and 1, where galb is 1,.
In view of this we remark that these two twisted sums are not projee-

tively equivalent ([9])inthe sense that there is no isomorphism §: R®yl
— B @p,l, such that the diagram

8
.lt @Flll — R @lel

: | ’

af
, —
commutes where a = 0. For (see [9]), projective equivalence implies the
exigtence of ¢ # 0, N << co and a linear map ¢: 1} — R so that
|H'y (aw) — Fo(w) —t(@)] < N |loll,

Since F,(e,) = Fy(e,) = 0 for all n, this would imply t(e,) bounded so
that ¢ is continuous and :

1F'y (aw) — By (@) < (- Jell) llell

vell.

zell.
Now by Lemma 3.5 we see the only possible value of @ ig ¢ = 1.
Thus
1y (@) — Fy ()] < (N [l flel].

w1
Now let wy == 2’,{%'

sl

& 1
= Z - (logn --log 85}

By (@)
Nl
&1
‘where Sy = 2»,;; Hence
nwl

Fy(oy)— Ty (wy) = Sylogly

while gyl = Sy — co and so we have a contradiction.
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To conclude this short section we consider the following:

DErpINITION 8.2. An operator T 1, -1, is Liftable it for every twisted
sum R @yl, there is a map I l; - R @pl, such that the diagram

. R®p
7|
'
g
,comvmutes.
TuamoreEM 8.3. Let T': I, —1, be given by Te, = d,e, where |T|
= sup|dy| < oo. Then the following are aquwalem
(m) T is liftable.

(b) For some v << oo, Z exp(—z/|d,l) < oo.

(c) [d,,] ec, and if dn w the decreasing ve-arramgement of (d,), then
{@;logn} s bounded.

() T <1,

(e) For amy logeonvex space X and quotient map q: X -»1, there is
an operator 8: 1y — X such that ¢S = T.

Proof. It clearly suffices fio consider the case d, > 0. Note first
that if d,, + 0, then there is a ‘projection P onto a subbpaca isomorphic
to I such that P = 8T for some bounded §. Then T is liftable so iy P
and thig clearly contradicts the fact that (R, 1,) does not split. Here wo
may assume d, — 0 and then we may suppose {d,} decreasing.

(2) = (¢). Congider ‘

ROy
i
yaur

T
ll—_> z1

Suppose e, = (o,, d,6,). Then

Tl = lon| + 14,1 < |2}
and
1T e+ oo Fe)l; = Zd, -I-‘Z o — Zd,\ﬁogkl
foma
> 2 i+ 2 dlogh — 2 o
Tp==l k==l T ],
= nd,logn—n|T|.
Hence

d,logn < 2”1’][

Uonwenily, type and the three space problem 277

= (b). Tf d, <b

(logn)™*, n =2, then if v > b
exp( —;:) L nm
(b) = (d). Suppose [t,|+ ... 4 [t,] < 1. Then
: deiﬂ
y
Tty oo R0 = > &ltl+ > dli;]log =1 ——
Ity | ) it g iflog 40—

= §+8log8 — 4‘"_,’cz¢1t¢11<>g014~

d=l
2 '
— D ditilogl

=l
n
where § = Y'dfltix < ||IT}. Also —d;logd, < ¢~. Hence
e

1
T (ts0x -+ -+ tuen)l < TN+ |1 Tl og | T+ 6~ +2dilti”'0g

£l fta] ©

are chosen to m'»xunize’w(ﬁ,..., £,)
= Z d;&;log ? subject to & 4+ ... +&, =1.
qeal

Then there is a Lagrange multiplier 1 such that if & =0,

Now suppose Sy b

1
C dlog = —d; = A,
&

ie.,
lo 1—+: A
g =14 —
2 &
80 thut
£ o g (HHE)
Lot A == {i: & > 0}. Then
294144/@ w1,
16
P(Eryeny ) = ) A EHHL 4-2/) < T+
T84
Now

\;j g_ﬂ'/‘z'[ i 0,
rd

el
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Hence
o0
3 iz,
qe=1

S <,

there exists 4, such that A > A, implies

Since for some 7<< oo

oo
N < g,
fr=l

Thus ¥ < 4, and so

IT (ts01+ - -+ + tug)llp < IT1(2 +log IT1) + 67" + Ao.
Hence T maps I, into I,.
(@ = (e)
X
s o
e

J
LI SAN )

T factors T = JT, where J: I, =1, is the inclusion map. The existence
of a lift S follows from the fact that X is logeconvex.
(e) = (a). Theorem 7.1.

8, Orlicz sequence spaces. We recall that an F-space X is a X'-space
it (R, X) splits ([6], [8]. In this section we classify completely those
locally banded Orlicz sequence spaces I, = I, which are -spaces. It is
known ([6]) that I, is a o -space if 0<<p <1 and fails to be a £ "-space
if p=1.

‘We shall suppose throughout that f is a twice-differentiable strictly
increasing Orliéz function with f(1) = 1 such that @f(#) is convex (ef. [6]);
these assumptions may be made without loss of generality. We also sup-
pose that f satisfies the 4,-condition, i.e. for some K

f(22) < Kf(x), O<w@< co.

‘We define
a, = sup{p: M, f(aw) < Ma®f(v), 0 < a, < 1},
B, =inf{p: M, flax) > MaPf(w), 0 < @, s < 1}.
Since I, is locally ‘bounded, a, > 0, and the 4,-condition implies g, < oo.
Since I, = I;, we shall suppose

fo)< Mo, 0<o<1,

for some M.
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Now let h: R — R be defined by

h(w) =mf f(;)
h(0) =0,
h(®) = —h(—2), 2<O0.

Lmvma 9.1. b has the following propertics:
(i) h is contimuous, and twice differentiable for » = 0.
(1) B (u) <0, u 0.
(ifi) If w—+ov--w =0,
(9.1.1) h(u) -k (v) 4 h(w

(iv) If 0<a<1 and v e R,

< 2(f(ul)+F(il) +F(jwl)) -

(9.1.2) i (az) — ah (x)] < f().
Proof. (i) For continuity at 0, observe if 0 <a<1

M
3

1

1

h(o) < iy
() \mmf < Mmlog p

The other agsertion is clear.
(¢
(i) »’(u) —-ff ) dt——mu>0,

h”(u) = ___I__(il’_)__

w

<0.

(iii) Suppose without loss of generality > 0,v > 0and w =
Since 7' <0,

R(w+0) < h(w) -+ h(v) < 2h(F(u+0)),
50 that
0 < ho(w) -+ B () + h(w) < 2h{}(u +0)) — h{u+ ),
Yo (@)
2h{}(w+0)) —h(u+) = (u-+0) el < 2f (w+-).

Hu+v)

Hence I‘

h(%)+7t(‘l?)+h(w)\<\2f(lw|)§2(f(|“1)'hf(lvl)+f(]wl))-

279

—(%-+0v).
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(iv) For # > 0.

haa)—ah(o) = a0 [T at < aupio) [ -t = f(a)(1—a) < fla).

Lmvwua 9.2. Suppose for some B < oo we have for 0 < o< 1

‘ k(@) < Bf ().
Then By<< 1.

Proof. Let ¢, = C[0, 1] be ‘defined by

0, = Goff;: 0<i< 1}

where .
~ J(tm)
film) = —th)“
(ef. [5], [10]). Since ¥; = I,; o<1 If ﬁf>.1, then @ € ¢, ([10]).
Now

1
JECRPEL)
& t z )

and if 0 <s<<1

1 1 I 1
L@ o flst) . fsfw) s flu)
mf———tz dt = m‘f dt = j — du < 7

f(s) 2 e S Te ) e du
s flsw) Bf,(»)
B = Y8 P
f(sw) sz y 0<a £ 1
Hence, if g,
1
1 ,
f_g_;?)_ d< B g/(:a)_ ,0<wl,
Y y

In particular if g, >1, we may let g(f) =

1

L
deth, 0<o<l
) |

and this contradiction shows g, < 1.

TeBOREM 9.3. Suppose fis a Orlics function satisfying the A,-condition

and that 1 is locally bounded and contained in by Then 1y s a A -space if
and only if ;< 1. '

icm
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Proof. Ik f,<1, l; is a A -space [6]. Conversely, suppose I, is a
A -space. We define

H: 1 —~R
(where ¥ is the finitely non-zero sequences in ) by

H@) = Yhi) £ 3 f(lol) =1
qeal

Twal
and extend so that
‘ H(ax) = aH(z), ach.

We first assert that H: I} — R is quasilinear. To see this we show that
it w,v,wel

v+ w =0

and
ffoell -+ ol -+ fwll < 1,

then.

[H (w) + H (v) + H (w)] < 9.
Indeed,

| B~ Y hw)| <1
fe]

and similarly for », w while

| 3 ) + B (o) +B(ws)| < 6.

il
Now I, is & o -gpace so that there a linear map y: 7} — R such that
sup [H (@) —yp(@)| < oo.
it
Thus, {y(e,): » =1,2,...} is bounded since H(c,) =0 and so y is conti-
nuous. Ienco, i :
|H(w)| < Liwl, wel,
for gome L < co. i
Suppose 0 < &< 1; chooso n so that ne N and ¥ < af < 1. Choose
7 80 that f(n) = 1—né and let ’
@ = §(ey+ ...+ en) + Ny -
Then [of =1 and
1 1
F{O NP S LI
H(m)},néefw?rdt> 5T !w" :
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Hence,

19, e

1
f o 4
{ &
and so by Lemma 9.2, f,< 1.
Suppose now f is submultiplicative at 0. Then we say X is f-convex
if 3 f(llel) < oo implies 3 @, converges, i.e., X is galbed by .
CQOROLLARY 9.4. Suppose f is submultiplicative at 0; then every twisted
sum of B and a f-convex space is also f-convex if amd only if

. logf(a)
b ml;f.,l logw

<1.

Proof. Observe that ,(I) (for an index set I) is projective among
f-convex, i.e.
X
A

7
7’

l,(I)/—T—> XN

Hence if every twisted sum of R and I, is f-convex, then I, is a 2 -space.
Conversely, suppose I, is a #-space and X is any f-convex space and
Y = R®ydX is a twisted sum of R and X. Then there is & quotient map
T: 1,(I) > X for some index set I. Now I,(I) is also a 2¢-space (this is
eagy to show) and so there is a lift 7' L(I) - X. If T1ails to be surjective ¥
\ splits, while if T is surjective, ¥ is f-convex.
Remark. In this case f,<<1 implies f(z)>
and ¢ >0 for all 0 << 1.

¢x? for some p <1,

10. Locally convex .¢-spaces. Let X be a metrizable locally convex

space. Let ||+ ||,, be & sequence of semi-norms on X which define the topology
of X and such that

loll, < I@llpga, »eN.
Define a map F: X — R be quasilinear if for some n & N, K< oo
F(in) = t¥ (a),

1B (@ +y)—F(@)—F(y)|

teR, veX,

S K (|lely -+ 1ylla)

if F is quasilinear we define R ®rX to be the space R @.X equipped Wlth
the quasi-semi-norms

e, @)l = t—F (@) + [0y 7> n.
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Then if ¢: R@pX -» X is given by
q(, ») ==,

¢ is a quotient map and ¢~*(0) = {(t, 0), ¢ ¢ R}. Thus we have a short
exact sequence 0 =R - R@pX — X — 0 and B @pX is a twisted sum
of R and X, It is easy to show that if X is complete, then so is R @pX
{gince it is such a twisted sum).
The twisted sum R®,X will split it and only if there is a linear
map y: X -» R such that
|7 () — ()]

< Moy, welX,

for some m e N and M < oo.

TunoreM 10.1. Let X be a Fréchet space (complete metrizable locally
oonvew space) and suppose an F-space Y is a twisted sum of B and X. Then
there ewists a quasilinear map F: X — R such that X is isomorphic to R ®pX
(a8 a twisted sum).

Proof. It is convenient to write ¥ = R@X algebraically so that
the quotient map ¢: ¥ — X is given by ¢(f, o) = .

Let {V,: n € N} be a bage of balanced neighborhoods of 0 such that

Vs +Vap e V, for all # and V,nRe is bounded where e = (1, 0).

Let !- 1, be the Minkowski functional of V,. Then we have
(10.1.1) 1ty @)l < (@) yyy, tER, welX,
(10,1.2) 18+t 0+4), < 18, @) s + 1 (5 @) s
(10.1.3) {(1,0)!, =a, where e >0 and a,{cc.

Algo since q is open, there exist increasing sequences {m(n)} and {8,}
such that

{10.1.4) For x e X therc exists ¢, e R

Uty 2)l, < ﬁn“w”m(n) .

In view of (10.1.4) there is 4 map ¥, : X - R such that F (i) =
te R and

17 (),

LTy (@), @)y < Bulllmry-
Now if n>p > 1,
| B () — T (@)= a2y (B (@) — Fiy (@), 0) s
a5t (T (@), @) Y + Y(Fp (),

<
(10.1.5) < 0521 (B + Bp) 0l -

) !p)
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Also if n >3 and w,ye X
(10.16)  UF,(@)+F,), 6+1) s <
!(lﬂn—l(w"{"y% o+ :’/) !n——l < ﬁn—l(“””m(u) + ”f‘/”m(n)) .
Ifence combining (10.1.6) and (10.1.7) with (10.1.2)

an—zllﬂn (w) + Fn (y) — Fn ((b‘ +f’/)| < (ﬂn+ ﬂn—-l) ( ”w”m(n) -+ ”y”mm)) .

B (Nl ay =+ 1Y lagy) -
(10.1.7)

Thus

|I’n w) ‘Bn (/l/) "‘P (‘7’ K ) = Gn(lmlm(n) -+ ”?/”m(n)) .

In particular F = F, in quasilinear, and for n = 3

(@) — F ()] < Dy @l

Thus

!(21’7 ) !n K Oy 9-1]“—“ n LU)] -+ Ign H”wnm(n-u)
<o n+1|u .P( )] + < . an -+ ﬂn-}-l)”@”m(n-l—])
< n(]u_F(m)] 'i‘”mum(n-}-l)‘ °

Hence the identity i: R@®yX - ¥ is continuous. By the closed graph
theorem ¢ is an isomorphism.

THEOREM 10.2. Any nucear Fréchet space is a A -space.

Proof. If X is a nuclear Fréchet space and F: X — R is quasilinear,
then there is a Hilbertian semi-norm ||, on X such that

1B (@+y) —F (@) — F @) < ol + 1yl

Since a Hilbert space is a o ™-space ([6]), there is a linear map y: X -> R
such that

[ (@) —y(@)| < Kol
Let (@) be a matrix with non-negative entries such that a,

g M+ 1,m % am,n
for all » and for each n there exists » with a,,, > 0. Then the Kothe se-

quence space l,[a,,] is the space of sequences (@,) such that

”w“mz mm1,2,..

Dl 2, < o0,

n=l

Tarorem 10.3. I,[a,,,] is a X- spa('e if and only if given m & N there
ewists T << co and r > m with

(10.3.1) g exp (—1:

n=al

—li) < oo (0/0 = oo).

mn
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Proof, If (10.3.1) fails, there exists m such that for all » > m and

T< 0
00
: \ 7 g Bm )
(10.3.2) )J oxp( T %m) = co.
Tl

Define F': 1}[a,,,] — B by

N [l
]W(m) - X @, Iog_.__;’”__
1"""”; T e W |2,

(for finitely non-zero sequences). If R @yl [a,,,] splits then there is a
linear map v: {[a,,] ~ R such that

1P (@) — (@) <
m. This implies

X,

for some 7 >

v(e,) < Ka,,

and so
lp(2)] < K|,
so that
[F (@)} < 2K ||,
Hence
> tal 10g l‘:'{l’“ﬂl \ZKZ Uy,

= )
This means the diagonal map {w,} — {d,»,} maps I, into I, where

aWLll (

0 if a,, = 0).
Hence by Theorem 8.3 we have contradieted (10.3.2).
Jonversely if (10.3.1) holds and F is quasilinear, then if
(-t y) 2 ()~ B ()] < ([0l - 19 lln)
choose r > m to satisfy (10.8.1). Let

R

a’rn

d, =
Then D: {w,} - {d,x,} is liftable. If we define G: I, -~ R by

I G(z) = F( {amnwn} (1/0:.1'0!)_
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@ is quasilinear on I, and hence there is a linear map D

R®, 1
¥

.D
L1,
It Do = (y(w), D), then

lp (@) —~@ (Do) < Ololl, @&l
Hence
W{“mwn} 4 (w)i 5 Ollmnﬂ xe ll [a’wm]

80 that B®ul,[a,,] splits.
Remark. Condition (10.3.1) is thus a topologieal invariant of I, [a,,,].
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