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u is replaced by 2p. Specifically we expecti to have that
(%) F(t) = 2g%(21) w(f) = w(g).

But it follows from (+) that the unit ball of W with respect to the dual norm
has no extreme points, which is a contradiction. To see this we first note

implies that

that, if f e WeakZ' has the form f == _Z'Z,rxpf where the sets H,, are disjoint,

then f cannot be an extreme pomt OE 1ho dual norm unit ball of W, sinee
F = fo+fi where w(fy) = w(fy) = dw(f) and f, # f;. To construet f and
£y divide cach set Ty into LW() dmjmnt sets of equal measwwe Jy, = H, U1,

and let f; le,,x,a”,i =0,1 Cleatly f}(f) = f"(2¢), so that w(f) =

$w(f). Flnﬂly 11: suffices to observe that for any funchion g e WealkZ!
there exigts a function f = 2)%%1% of the above form which represents
J=1

the same clement of W. To construct f we let &, = {z| 2" < |g ()] < 2"}
for each integer n and let f restricted to G, be a simple function such that
I(f—9) xa,llz: < 27, Clearly f has the requived form. For each positive
integer N let Vy = U G- Then I{(f—g)xyy) = 0 for cach N and

Ini<
I(f—9) = I((f— Nxxry) < 1= Dz rylln < Z 2” '”]

n|>N
Since N may be arbitrarily lirge, we deduce that f and g are equivalont.
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On the strong maximal function and Zygmund'’s class L(log™ LY*
by

N, A FAVA, B A GATTO and ¢ GUTTERREZ (Buenos Aircs)

Abstract. We show that the bagic inequality of a weak type estimate may in
a senge be reversed, thus allowing us to give a eharacterization of the class I (log+ L™
in terms of the integrability of certain functions associated with the strong differen-
tiability of integrals,

1. Introduction and statement of results. In this paper m is used to
denote Lebesgue measure in any number of dimensions; this number being
clear in each cage from the context.

Let f(2) = f(2qy,...,2,) be an integrable function with support in
the unit cube of R™, defined by the inequalifies 0 <, <1 (¢ =1, ..., n).
‘We consider the partial maximal operators M, defined by

To

1
1) M@ = — f (@1, ey Bpmyy U By o vy )| A0

sup
asipsh

at each point » in R" We also consider the strong maximal function

(2) f(@) = sop——

Isx

1
e j Fwldy,

where the supremum is taken over the set of all intervals I (cells with
sides parallel to the axes) containing the point @. As usual, we denote by
L(log* I)* tho class of all functions f such that the integral
[ 1#(@)](log* |f (@)1} de
ig finite.
One of the authors proved in [1] the following theorem:
TerpoREM A. The operation M,... M,f is well defined for any function

fin L{logT LY*"* and there exists a constant O depending only on n, such
that for each t> 0,

3) mip: M,... Mf(0) > <0 [ —f%(log‘*‘ -'J;—l)"—ldm
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Moreover, if feL(log™L)", ML f is integrable over every set of
finite measure.

Since f*< M,...
of M,...M.f.

The preceding theorem was used in [1] to obtain an casy proof of the
theorem of Jessen, Marcinkiewiez and Zygmund [3]. Essentially the same
inequality was found some time later by de Guzmén [2], p. 192, who made
a similar application. The. purpose of this note, which follows the lines
of [4], is to show that in a certain sense our inequality (3) may be reversed,
enabling us to prove the following theorem:

TEEOREM. B. Suppose that f e L(logt L)"™! so that M,... D,f is well
defined and finite almost everywhere. Then this fumetion is integradle over
every set of finite measure if and only if f € L(log* Ly™

At the end of the paper we consider a conjecture concerning the
strong maximal function. Although we do not solve this conjecture, we
‘explain how the present contribution may help to give an angwer by re-
ducing it to an equivalent —hopefully casier to prove —statement.

then M,..

M.f, a similar statement holds with f* in place

2. Proof of the results. The proofs will be based on three simple lemmas:
LEMMA 1. Suppose that f(x) & Ll( ) and that

Mf(w)y = sup 7
a<a<sh 0

flf ()| dy

4s the maximal function on the real line. Then for every t > 0, we have

) mio: Mfw) > >0 [ If(o)an.

>3
This is a particular case of an inequality found by E. Stein [4] by
making uge of Calderén—Zygmund’s decomposition. We only remark that
it holds true even if f is not integrable. For if f is non negative, then we
select an increasing sequence of non negative integrable functions fi,
converging pointwise to f. Since for each %,

2—1
m oz Mfy(0) > 1} >~ f F(0)da,
>t
we only have to let k—oco.
Going back to R™, we state
LuvMA 2. For each of the partial maximal opemtors (1) and for each
> 0, we have
2-—-1 .
®) mio: Mif(o) > >—— f|f(m)|dw.

>4

icm
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Here is the proof for 4 = 1. Starting from the inequality
@) > 1}

2~1
>,..—4

{egs 1 (g, @950 en

miwy: Mof(s, %y oeny

|f (e, 22y -e oy

)=ty

mn)l dml)

we integrate both members with respect to ., ..., #, to obtain (5) by
the virtue of Fubini’s theorem.
LeMMA 3. For cach integer T such that 1< &k << n and for each t> 0,

we have
2—76 If1 IF1\E
1)' f_. 7 ( og ._N) dw.

|71>¢

(6) min: My...M,f(2) >t} = >
This inequality reduces to (B) if k =1 and follows for &> 1 by in-
duction. on k.
Let us assume that (6) holds as stated for some positive integer & < n.
Then
-1
Mf (@) > 1) > —

{Mps

mip: My M. .. My...M.f(@)dw

M f>t)
=27 M. Myg(w)de,
{Mpe.  My0>1}

where g = fift with f! =f if |fl >t and f* = 0 otherwise. On the other
hand, the lagt integral may be evaluated as follows:

f (M ... My g > 130{M, ... Mrg > u})du
0

00

f m{My ... Myg > w}du

- f lg1( loglgl)"dw 2,: f I (log Ifl)

171>

Note. The proof above is a good example of the extremely simple
technique used in [1].
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Now we come to the proof of Theorem B. Suppose that f ¢ L(log™ Ly !
so that the set where I, ... M,f > 1 has finite measure in virtue of The-
orem A. If we assume that M, ... M, f is integrable over ¢very set of finite
measure, then

00 > f M, ... Myf(@)do > f m{M, ... Myf > 1)t
{Mger I 51} i

_ 2 g-n g Ifl 1fl “—1',
= T lfdt f—r(log--»r) dw

5=n Il I (Zﬁ 9-n
=Gy [ 4o [ frog | =S f 11008 e

3. An open problem. Suppose that feL(og" Ly * go that f* is
finite almost everywhere. We conjecture that f* is integrable over cvery
set of finite measure if and only if f e L(log* L)".

By virtue of Theorems A and B this conjecture is reduced to proving
(or dlsprovmg) that if f* is integrable over every set of finite measure,
then so is M, ... M, f; but this remaing, as far a8 we know, an open question.

I
=
=
—
=
g
‘E
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Zexo-one laws for Gaussian measures
on metric abelian groups

by
T. BYOZKOWSKI (Wroctaw)

Abstract. ' We prove zero-one laws for Gaussian meagures on metric abelian
groups. As a comsequonce, we derive the zero-one law for Gaussian processes with
values in an LCA. group &. The latter result comtains, in particular, all the zero-one
laws of Kallianpur and Jain as well as the zero-ome law for the G-valued Wiener
ProCess.

In 1951 Cameron and Graves proved that every measurable rational
sabspace of CT0, 1] has Wiener measure zero or one [7]. This result has
been generalized by Kallianpur [16] to a large class of Gaussian processes
and by Baker [1], Rajput [18] and others to Gaussian measures on Banach.
gpaces or on Fréchet spaces.

The proofs presented by these authors depend heavily on methods
of linear spaces as well ag on the stability of Gaussian measures.

A completely different approach has been proposed. in the proof
of Theorem 2.2 in [4]. This proof, suggested Ly an algebraic definition of
Gaussian meagure, seems to be more natural and relatively simple. The
arguments, being of group-theoretic nature, enable us to extend this result
to Gaussian measures on measurable groups, as pointed out in [6].

The aim of this paper is to generalize the result of Theorém 2.2 in
[4] in two directions. First, we consider Gaussian measures on arbitrary
Hausdorft abelian groups; secondly, we prove the zero-one law for measur-
able subgroaps (instead of rational subspaces, as in [4]).

Section L i preliminary. In Section 2 we prove that every symmetric
Gaussian measure without idempotent factors on o ITausdorff abelian
group G can be embedded in o unigque continuous semigroup of symmetric
Gauggian meagures under the agsumption that z—2w is & Borel auto-
morphism. of ¢. From this result it follows, in particular, that every sym-
metric Gaussian meagure on & ig infinitely divisible.

In Section 3 we prove that every Gaussian measure on a metric
abelian group @ is a translation of a symmetric Gaussian measure (under
the agsumption that @ has no non-zero elements of order 2). This prop-
erty of Gaussian meagures is well known if G is a Banach gpace (or, more
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