STUDIA MATHEMATICA, T. LXVIII. (1960)

Corrigendum and addendum to the paper

“A simple diophantine condition in harmonic analysis”

Studia Math. 52 (1975), pp. 195–202

by

RON C. BLAY

1. Lemma 2.3 in [1] is misstated and should be replaced by:

Lemma 2.3. Let G be a discrete (not necessarily countable) abelian group. Let $(F_i)_{i=1}^r$ be a family of finite and mutually independent sets $(0 \neq F)$, i.e., $\text{g.p.}(F_i) \cap \text{g.p.}(F_j) = \emptyset$ whenever $i \neq j$. Then, (F_i) is a sum norm partition for G.

Victimized by the misstatement of Lemma 2.3, the proof of Theorem C contains an error. We can conclude only that the S_m's are independent in the sense that whenever $S_i \neq S_j$, $i = 1, \ldots, r$, then $F_i \neq F_j$. It follows that (F_i) is an independent set. But, we cannot conclude that $\text{g.p.}(S_m) \cap \text{g.p.}(S_m) = \emptyset$ whenever $N \neq M$, and therefore we are unable to apply the (correctly stated) Lemma 2.3. We are unable to supply a correct proof of Theorem C. The above error does not affect the main results of the paper.

2. Our diophantine condition is necessarily satisfied by $E = \bigcup F_i$, where (F_i) is as in Lemma 2.3: Without loss of generality, we assume that $\bigcup F_i = \bigoplus F_i$ where $F_i = \text{g.p.}(F_i)$ and $F_i = F_i$. Let D_i, as usual be a dense countable subgroup of G, and write $D = \bigoplus D_i$, which is then, a dense countable subgroup of G. The proof of the following proposition is a routine verification.

Proposition. $\text{g.p.}(E)$ accumulates precisely at 0 $(\text{g.p.}; \bigoplus F_i \mapsto \bigoplus D_i)$

Again, as at the end of [1], we note that the independence condition in the above proposition is sharp in the following sense: A sequence of disjoint and mutually lacunary blocks of integers, (F_i), can be constructed so that $\text{g.p.}(E)$ is dense in D_i for all $D_i \in I$. To see this, we mimic the construction at the end of [1], and add the requirement that $\|D_i\| = 1$. It then follows (see Lemma 1.2 in [2]) that $\bigcup \text{spec}(D_i)$ is dense in \bar{D}, the Bohr compactification of D. Our claim now follows from the observation that if $E \subset Z$ is dense in \bar{Z}, then $\text{g.p.}(E) = D_i$ for all $D_i \in I$.\[\]

SOPHIA UNIVERSITY
DEPARTMENT OF MATHEMATICS
Sofia, Bulgaria

and

THE OHIO STATE UNIVERSITY
DEPARTMENT OF MATHEMATICS
Columbus, Ohio 43210, USA

Received December 10, 1977 (1381)
Finally, we remark that the examples $N \subset Z$ such that $L^2_n \to C^*_R \geq A^*_R$
constructed by Rosenthal in [3] follow from our Theorem B in [1]. It is
proved in [3], via the notion of sup-norm partitions, that $\bigcup_{n=0}^{\infty} E_n$,
where $E_n = \mathbb{F}^k \cap (2n)! \mathbb{Z}^k = \mathbb{F}^k$ are R-sets. Let $\mathcal{V}: \oplus_{n=0}^{\infty} (2n)! \mathbb{Z}^{2n} \to \mathbb{F}^k$ be the map that carries $a = (\{a_{n,k}\}_{n,k})$ into $\sum_{n=0}^{\infty} \frac{2\pi a_n}{(2n)!} (\text{mod} 2\pi)$. Set $D = \oplus_{n=0}^{\infty} \ker \mathcal{V}$. Since, for $N \subset \mathbb{Z}$, $F_{B_0}(N)/\mathbb{Z}$ is $N/(\text{mod}(2\pi))$, it follows that $F_{B_0}(\mathbb{F})$ and $F_{B_0}(\mathbb{F})$ accumulate only at 0 in \mathcal{D} (a closed subgroup of $\oplus_{n=0}^{\infty} \mathbb{F}^k$). Now apply Theorem B.

References

Received December 29, 1977

Karol Borsuk
THEORY OF SHAPE

MONOGRAPFIE MATEMATYCZNE, Vol. 59

379 pp., cloth bound

The original concepts of the theory of shape appear in 1967 in the papers of Professor Borsuk. At present there exists a wide literature on the subject — more than 200 original papers.

This monograph gives the first systematic exposition of the most developed part of the theory of shape of manifolds. The beginning chapters of the book present side by side two theories of shape: the strong \mathcal{S}-theory and the weak \mathcal{S}-theory. The next chapters are devoted to the theory of shape of compacta; in particular, the author gives the approach to the theory of shape based on the theory of inverse limit, and an exposition of several important results obtained by using some methods and notions developed in the topology of infinite-dimensional manifolds. There are some relations between the theory of shape and the general theory of position are studied. The last chapter contains information concerning several facts belonging to shape theory whose exact exposition has not been included in the book and gives many open problems.

In the book only a very elementary knowledge of topology is assumed. All the more special facts as well as a concise exposition of the basic notions of the Vietoris homology theory are given in the first chapter.

Contents: I. Preliminary; II. Weak and strong fundamental sequence; III. S-shapes and \mathcal{S}-shapes; IV. M-shapes and \mathcal{S}-shapes of pointed spaces; V. Movable spaces; VI. Extensions of \mathcal{S}-sequences and of S-sequences; VII. Shapes of compacta; VIII. \mathcal{F}-spaces and \mathcal{P}-spaces; IX. \mathcal{N}-sequences and the theory of shape; X. On complements of compacta lying in Q or in B_0; XI. Positions of sets in spaces; XII. A survey of various results and problems of the shape theory.

Bibliography: Indexes.

Stefan Banach
ŒUVRES

Volume II

TRAVAUX SUR L'ANALYSE FONCTIONNELLE

470 pp., relié

Ce volume contient tous les travaux d'analyse fonctionnelle de Stefan Banach, ainsi que son fondamental traité "Théorie des opérations linéaires" et une bibliographie de ses écrits. Un simple aperçu de Kaczmarz-Pietsch présente une revue des recherches relatives aux parties de l'analyse fonctionnelle qui ont eu pour point de départ le traité de Banach et les résultats qui y sont exposés.

All volumes of Monografie Matematyczne and Banach Center Publications may be ordered at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa, Poland.