for all such \(h \in H \). Taking into account (11) we see that \(A \) is an extension of \(-D^2 \). Finally observe that in this case

\[
Eh = J^*h = t \int \frac{h(s)ds}{s} - \int \frac{h(s)ds}{s} \delta(s).
\]

Example 3. Take \(X = C^1([0,1]) \), \(Y = X' \), \(H = C([0,1]) \), and

\[
E: H \to V
\]

defined by

\[
Eh(t) = \varphi(h) + \int_0^t h(s)ds,
\]

where \(\varphi \in H' \) is an arbitrary, fixed functional.

If we put \(a(x,f) = f(x) \) for any \(x \in X \), \(f \in X' = Y \), then \(a'(f,x) = f(x) \) for any \(f \in X' = Y \) and \(x \in X' \), and both forms \(a \) and \(a' \) are bounded and coercive; hence Theorems 1 and 2 apply.

Observe that \(DE = fD \), where \(D: V \to R \) is the bounded derivative operator; hence \(R(E') = H' \), and Theorem 4 applies as well. This means that \(A \) is the extension of \(E^{-1} \) over \(U \subset X' \).

We have \(E^{-1} = D(R(E)) \).

It is easy to see that \(E(R(E)) \subset V \) is the set of all \(v \in V \) such that the following boundary condition is satisfied:

\[
\psi(0) - \varphi(D_v).
\]

Indeed, if \(v \in E(R(E)) \), then \(v(t) = \varphi(h) + \int_0^t h(s)ds \) and \(\psi(0) = \varphi(h) \), and since \(Dv = h \), (18) holds.

On the other hand, (18) holds for some \(v \in V \), then \(h = Dv \), \(v \in V \) and

\[
v(t) = v(0) + \int_0^t h(s)ds = \varphi(\psi + \int_0^t h(s)ds) = Eh.
\]

We can consider \(E^{-1} \) as the operator \(D \) over \(E(R(E)) \subset V \) with the boundary condition (18).

References

* Received October 35, 1977
* Revised version January 3, 1978

Maximal operators defined by Fourier multipliers

by

Carlos E. Kenig

and

Peter A. Tomas

(Chicago, Ill.)

Abstract. The authors develop a linearization for maximal operators defined through Fourier multipliers, and establish for such operators transplantation and restriction theorems. Applications are discussed.

Introduction. Let \(\lambda \) be an \(L^p(\mathbb{R}^n) \) function; define for each real number \(R > 0 \) an operator \(T_R \) on \(L^p(\mathbb{R}^n) \) by \(\hat{T}_R(f) = \hat{f}(R) \) and \(\hat{T}_R(f) \) on \(L^p(\mathbb{T}^n) \) by \(\hat{T}_R(f) = \lambda(R)\langle f, \hat{f} \rangle \). We say \(\lambda \) is \(p \)-maximal on \(\mathbb{R}^n \) (or weak \(p \)-maximal on \(\mathbb{R}^n \)) if the operator \(T^p \) defined by \(T^p(f) = \sup R^p \hat{T}_R(f) \) is bounded (or weakly bounded) on \(L^p(\mathbb{R}^n) \); similarly for \(T^p \) on \(L^p(\mathbb{T}^n) \).

The purpose of this note is to establish for \(p \)-maximal operators results on transplantation between \(T_0 \) on \(\mathbb{R}^n \) and \(T_0 \) on \(\mathbb{T}^n \), and restriction of \(T_0 \) and \(T_0 \) to subspaces. These results are similar to those of de Leeuw [3] for Fourier multipliers. The study of such transplantations was initiated by A. P. Calderón [1] and by Coifman and Weiss [2].

The authors wish to express their gratitude to Antonio Cordoba, whose work has inspired us. We also thank R. Latter for his helpful comments.

1. A linearization.

Lemma. Fix \(p, 1 < p < \infty \). The function \(\lambda \) is \(p \)-maximal if and only if

\[
\left\| \sum_k T_{R_k} f_k \right\|_{L^p} \leq c \left\| \sum_k f_k \right\|_{L^p}
\]

uniformly in all sequences of positive reals \(\{R_k\} \).

Proof. Define the Banach space \(L^p(G, \mathcal{F}(\mathbb{R}^n)) \) for \(G = \mathbb{R}^n \) or \(G = \mathbb{T}^n \), as the collection of all sequences of \(L^p(G) \) functions \(\{f_k\} \) such that the norm \(\sup_k \|f_k\|_p \) is finite. It is clear that \(\lambda \) is \(p \)-maximal if and only if the linear

* The first named author is a Victor J. Andrew Fellow at the University of Chicago; the second named author was supported by the National Science Foundation.
operator $T: L^p(G) \rightarrow L^p(G, l^\infty(Z^+))$, defined for each sequence (R_k) by $T(f) = (R_k f_k)$, are operators uniformly bounded for all sequences (R_k). The operator T is bounded if and only if $T^*: L^p(G, l^\infty(Z^+)) \rightarrow L^p(G)$ defined by $T^*(f) = \sum \sum T_{R_k} f_k$ is bounded, that is,

$$\left\| \sum T_{R_k} f_k \right\|_{L^p} \leq c \sum \left\| f_k \right\|_{L^p}.$$

Remark. Similar results hold for \hat{T} and also for λ weak p-maximal, and also in the case that T^* is bounded from $H^\infty(G)$ to $L^\infty(G)$. In the latter cases, the linearization takes the form

$$\left\| \sum T_{R_k} f_k \right\|_{L^{p,1}} \leq c \sum \left\| f_k \right\|_{L^{p,1}}$$

or

$$\left\| \sum T_{R_k} f_k \right\|_{H^\infty} \leq c \sum \left\| f_k \right\|_{H^\infty},$$

2. Transplantation. A function λ is regulated if every point of \mathbb{R}^n is a Lebesgue point of $1/\lambda$. For regulated λ, the multiplier properties of continuous approximations to λ. It is clear that the techniques of [3] for treating regulated multipliers extend to p-maximal or weak p-maximal λ; in the proofs which follow, we may therefore assume λ is continuous if it is regulated.

Theorem 1. Let λ be a regulated $L^\infty(\mathbb{R}^n)$ function. Fix p with $1 < p < \infty$. Then λ is p-maximal or weak p-maximal on \mathbb{R}^n if and only if λ is p-maximal or weak p-maximal on T^*. If λ is p-maximal or weak p-maximal on T^*, then it is p-maximal or weak p-maximal on \mathbb{R}^n. If λ is p-maximal or weak p-maximal on \mathbb{R}^n, then it is p-maximal or weak p-maximal on T^*.

Proof. We establish the result only for the weak p-maximal case, as the proof in the p-maximal case is similar. From the linearization of Section 1, it suffices to show that the inequality

$$\left\| \sum T_{R_k} f_k \right\|_{L^{p,1}} \leq c \sum \left\| f_k \right\|_{L^{p,1}}$$

uniformly in all sequences (R_k) if only if

$$\left\| \sum T_{R_k} f_k \right\|_{L^{p,1}} \leq c \sum \left\| f_k \right\|_{L^{p,1}}$$

uniformly in all sequences (R_k). Assume (2) is valid for all (R_k). Then it suffices to consider finite sequences (f_k), where each f_k is in $L^\infty(\mathbb{R}^n)$. Let $f_{x,\delta}(x) = e^{-\delta x} f(x - \delta x)$ and $f_{x,\delta}(x) = \sum f_{x,\delta}(x + w)\delta^w$, where the sum extends over the lattice \mathbb{Z}^n. For each x in \mathbb{R}^n,

$$\lim_{\delta \to 0} e^{-\delta x} \sum T_{R_k} f_{x,\delta}(x) = \sum T_{R_k} f_k(x)$$

(see [7], p. 266). Choose h in $C_0^\infty(\mathbb{R}^n)$ with $\left\| \hat{h} \right\|_{L^\infty} = 1$; define $h'(x) = h(e^{-\delta x})$ and construct h'. Then

$$\int \sum_{\mathbb{R}^n} e^{i x \cdot \xi} \hat{T}_{R_k} f_{x,\delta}(x) h'(x) dx = \int \sum \sum_{\mathbb{R}^n} e^{i x \cdot \xi} \hat{T}_{R_k} f_k(x) h'(x) dx,$$
Proof. By Theorem 1, it suffices to show \(\lambda \) is \(p \)-maximal or weak \(p \)-maximal for \(T^{n-m} \). We linearize the problem as above; for the \(p \)-maximal case the techniques of de Leeuw \([3]\) apply to the linearised problem. In the weak case, it suffices to show that a function \(g(\theta) \) on \(T^{n-m} \), extended to \(g(\theta, \phi) \) on \(T^n \) by \(g(\theta, \phi) = g(\theta) \), enjoys the property \(\|g(\theta, \phi)\|_{L^p_{\theta, \phi}} = \|g(\theta)\|_{L^p_{\theta}} \), which is a triviality as \(T^n \) is compact. We remark that the proof establishes an analogue of Theorem 2 for \(T^n \).

3. Applications.

(1) On \(T^n \), the finiteness almost everywhere of \(T^nf \) for all \(f \) in \(L^p \) \(1 \leq p \leq 2 \) implies that \(\lambda \) is weak \(p \)-maximal; see Stein \([6]\). If we let \(\lambda(x) = 1 \) when \(|x| < 1 \) and zero otherwise, the pointwise summability of Fourier series on \(L^p(T^n) \) by spherical means is equivalent to the weak \(p \)-maximality of \(\lambda \) on \(T^n \), which by Theorem 1 is equivalent to the weak \(p \)-maximality of \(\lambda \) on \(R^n \). If \(n = 1 \), that \(\lambda \) is \(p \)-maximal on \(T \) is a deep result of Carleson and Hunt \([2]\); it is folk result that their methods apply to \(R^1 \), while the results of this paper show the transplantation is trivial. But in higher dimensions, no methods have been developed even to compute \(\lambda \) on \(T^n \), whereas on \(R^n \) it is relatively simple to show \(\lambda(x) = \sum_{k=0}^{\infty} (2\pi |x|)^{-k} \). Thus the almost everywhere summability of spherical means for \(L^p(T^n) \) is equivalent to the weak \(2 \)-maximality of \(\lambda \) on \(R^n \).

(2) Results similar to the above may be established for suprema of operators \(T_\lambda \) defined by \(T_\lambda f(\xi) = \lambda(\xi) |\xi|^m f(\xi) \). If \(\lambda \) is as in the preceding remark, the inequality

\[
\|\sup_{k} |T_\lambda f(\xi)|\|_{L^q_{\xi}} \leq c \|f\|_{L^p}
\]

is valid for \(T \) (see \([8]\)). The methods of this paper allow the trans- plantation of this inequality to \(R \). In higher dimensions, these methods show \(\lambda \) is weak \(p \)-maximal on \(T^n \) if and only if \(p = 2 \), as C. Fefferman \([4]\) has shown \(\lambda \) is not \(p \)-maximal on \(R^n \).

References

Received November 7, 1977 (1302)