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Hélder continuous functions on compact sets and function spaces

by
ALT JONSSON (Umes)

Abstract. Let F be a closed set, and let Lip (8, F) denote the space of all functions
which are Holder continuous on F with exponent f. Necessary and sufficient condi-
tions on F are given, which guarantee that every function in Lip (8, F) may be exten-
ded to a function in Lip (8, R™) belonging to a Besov space or a Bessel potential space.
Applications to the theories of harmonic functions and multiple Fourier series are given.

0. Imtroduction. Let F be a closed set and 0 < << 1. It is well known
from the Whitney extension theorem that every funection in Lip (g, F')
may be extended to a function in Lip (B, R™). (For the definition of the
Lipschitz space Lip (8, F), the Besov space B%'?(R") and the space L?(R™)
of Bessel potentials, which for integer o coincides with a Sobolev space,
we refer to Section 1.) In this paper we consider the following question.
For which sets F is it true that every function in Lip(f, F') may be exten-
ded to a function in Lip(f, R*)nB%?(R™) or Lip(8, R")NLZ(R™? The
angwer, given in Theorem 1 and Theorem 2, is definitive. The extension
operator used in the theorems is the same as in the Whitney extension
theorem. Applications of the result are given in Theorem 3 and Theorem 4.

A corresponding question for continuous functions was solved by
H. Wallin in [11] and, more generally, by T. Sjolin in [7] and [8]. They
proved that every function in O(F), the space of continuous functions
on ¥, may be extended to a function in C(R")NLEZ(R") or ¢ (R™)NB%?(R™)
if and only if a certain capacity is zero. Our case with Lipschitz conti-
nuous functions is of different nature than the continuous case, and the
methods used in this paper are entirely different than those in [7], [8]
and [11]. It should also be mentioned that the extension parts of Theorem 1
and Theorem 2 were proved, in a less general form, in [2].

Qur result iz also related to the imbedding theory. for functions of
several variables (see e.g. [6]), where e.g. the trace of functions in B2Z(R")
or LZ(R"™) to sufficiently smooth manifolds is characterized.

1. The spaces Lip(f, ¥), L5(R"), and BZ?(R"). Notation.

1.1. General references for the spaces defined in this section are [6]
and [9]. The spaces LZ(R") and B%?(R") may be defined in many equiv-
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alent ways, and the definitions given here are chosen to suit our need in
the proof of the theorems. :

For any closed set #'in R"and 0 < § < 1, the Lipschite space Lip (8, F
consigts of all functions f for which there exists a constant M such that
If (@)l < M and [f(#)—f ()| < M |lw—yl, 4,y e F. The smallest M possible
in this definition is taken ag the norm of f.

The following definition of the space L%L(R™ of Bessel potentials,
o> 0,1 < p < oo, is taken from [5]. Let I bo an integer, o < 1. Then L2 (R?)
is the space of all functions f with finite norm

an ([ o) cagt
o

t<lh|<z

Here, 4%f(z) denotes the difference of order I with step i at the pomt @,
ie. 4;f() = fla+h)—f(®) and, for I > 1, Aif(x) = AL(45 f) (@

The Besov space BE4(R™), a > 0, 1 < p, ¢ < oo consists of all functions
with finite norm

(1.2) W lymagary = W lo{ [ 145F@) 2RI an)™,

o Jhi<a
where 1> ¢ and 0 < a < oo. (Different values of I and a give raise to
equivalent norms.) For 1< p < o0, ¢ = oo, the norm is given by

(1.3) If IlBg,oo(Rn) = IIfl, *, j;}lga 4% (@)l 51~

1.2. Notation. We will use the notation
Lip(8, F') ~ S(R")

signifying that every funection in Lip(g, F) has an extension Ef, defined
on R™ and belonging to the normed func’mon space S{R"), and that the

extension operator is continuous, ie. we have ]lEf”S( NUS el f lluipis, 7 -

If §, and 8, ave two normed spaces, §;n8, will as usual denote 8,3,
equipped with the norm |[*[lg g, = max (|- g, II*lg,)-

Let I be a closed set in R™ Then F, will denote the set of points
with distance less than or equal to A from F, and |F,| the n-dimensional
Lebesome measure of J,. To simplify the notation, we shall often write h;
for 277, 7, for T ,—iy and AT for PN\F,,,, i€ Z. (In this way we ha,ve
two defmmons of F; when ¢ is an integer, but this will not cause any
confusion.) In the proofs, ¢ will denote a constant, in general not the same
every time it appears.

2. Statement of theorems.
THEoREM 1. Let l<p<oo 0<f<1, ﬁ<a<ﬁ+n/p, and let F
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be a compact set in R™. Then
Lip (8, F) — Lip (8, B") nLZ(R")
if and only if

) .
d dah
(2.1) Oj IFhlh(ﬂ_")p’k—< co.

TEEOREM 2. Let 1 < p,q< 00, 0 < f<1, 0 < a<f+nlp, and let F
be o compact set in R". Then
Lip(g, ) - Lip (8, R") n\BL4(R")

if and only if

: dn
(2.2) [ m a0
[

For 1< p< oo, ¢ = oo the resuls holds if (2.2) is replaced by

sup |Fh‘1/11h(ﬂ—“) < co.
0<h<l

(2.3)

Several remarks are in order in connection with these theorems.
™ Remark 1. The extension in Theorem 1 and Theorem 2 is given by
an operator B which is linear, and has the property that Ef is infinitely
differentiable outside F if f e Lip (8, F). On the other hand, the conditions
(2.1), (2.2) and (2.3) are necessary even if we do not require the eorrespon-
dary extension operators to be continuous.

"Remark 2. The assumption that F is compact is not a.limitation,
sinee if J is an arbitrary set, then every f € Lip (8, E) has a unique exten-
sion to a function in Lip (8, F), and if F is closed but not compact, then
the conditions (2.1)—(2.3) are not fultilled, and there is of course a function
in Lip (8, F) which cannot be extended even to a function jn Lip(g, F)n
NL?(R™).

Remark 3. If a= f-+n/p, 1<p< oo, 1< ¢< oo, then the im-
beddings in Theorem 1 and Theorem 2 are clearly possible if the compact
seb F consists of a finite number of points. This condition is also necess-
ary. To see this, we recall the imbeddings (cf. [6], p. 236)

(2.4) BY(R™ —»B>*(R") i y= a—nlp>0,

and

IZ(RY)— B2?(R"), 2<p< oo and ILZ(R")—>BL*(R"),1<p<2


GUEST


38 A. Jonssgon

From these, we see that

If(@+h)—f(@)| =o(af), h—0
if fis continuous and
feLi(R") or BY”(R*), a—nlp>p,

fmdB x;)vs _miuy obtain this even for a—n/p = B, using that O (R") is dense
in BZY(R"™), ¢< oo,‘:n.ld the continuity of imbedding (2.4). Thus, if F
has a cluster point, it is easy to construet a function in Lip (8, Iy which
can not bg extendgd to LZ{R") or BLY(R™), 1<p,q< o0, az f+n/p
Our first apphcgﬁion is to the theory of harmonic functions. The
result we ha,ve.ln mind should be compared to the famous example by
Hadama{rd, ‘Whlch shows the existence of a function f, harmonic in the
21?6111 unit d1s§3 U of RZ., continuous on U with, infinite Dirichlet integral
‘eleby shf)wmg t.ha,t, in general, the Dirichlet problem can not be solvec{
:}llreintly E_.Smg Dirichlet’s prineiple. Actually, it is known that for g <1 /2
he function f can be taken in Li T); this i nee of
the thonean & o= 1 p (B, U); this is also a consequence of
v A corresponding result for continuous functions is given in [11].
THEOREM _3. Let 0.< B <1, let I be o closed subset of the boundary 6T
c;lf dUi, where U is the unit sphere in R". Then every f e Lip (8, ) can be arten
e 0 a u% t. . . . . - FF . l- A
SJunction in nU, lazzrw:oma in U, belonging to Lip (B, T), with finite
Dirichlet integral —_— ; 3
0 z')f 1,:21I o, dz if and only if

1

i
(2.5) leh|h(ﬁ_1)2%< oo
b

) Proof. Assuming that (2.5) is satisfied, we obtain fr r
since N (R") is equal to the Sobolev space Wﬁy(R"), 1};;0:;]1;;1?: Z)gs%}czozz(zfﬁlniy
t19n Ef in Lil? (.ﬁ , R"),. equal to f on F, infinitely differentiablewoubside If’
with f'u-nte D.u*lehlet integral. Applying Dirichlet’s principle, minimizing
the Dirichlet integral over all functions in T which are equal to Zf on tSU
we get an extension with the desired properties, sinee a harmonic .fu-nctim;
in U with boundary values in Lip (B, 6U) is actually in Lip(g, T). To
prove the converse, let  be a harmonie function in Ulwith finﬂ:o 7])iri(;hi01‘
integral belonging to Lip(g, D). Then, defining % outside U by « fr‘
= u(m/]ay.lz), and multiplying this extended function with an ini?‘r Y 't(i,)
chfferen“?la,ble funetion with compact support equal to 1 oﬁ U, we lllglbo o
a function iI.l Lip (8, R")nWi(R"™) = Lip(8, R")NL} (R™) (cf, 1;heO r‘m;
of Theorem 5 in [11]). From this the converse follows, in view of' Theorgl O;

AOu%* lagt theorem is an immediate consequence of Theorem 2 " 1
a criterion for absolute convergence of multiple Fourier series. Tt gesg;-
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alizes the corresponding one-dimensional result in [4]. Tt should be noted
that in [4] it is also proved that the theorem below admits a partial con-
verse whenn = 1.
THEOREM 4. Let 0 < f <1 and let F be a closed subset of the cube
C={n = (B, Ty o0y B Il <m0, 4 =1,2, s, Y} Such that
o 1
[ 17,20 < oo
0 .
Then every feLip(8, F) has an extension fo a function with period 2,
which has absolute convergent Fourier series.
Proof. By Theorem 2, f has an extension f in BE(R™). Multiplying
this function f by an infinitely differentiable funection ¢ equal to one on F
and equal to zero outside the cube {@] |w;| < ©— 8/2}, where § is the
distance from ' to the complement of €, we obtain a function of in BYS (R™).
Extending the restriction of this funetion to ¢ periodically with period 2w
to R", we obtain a function whieh is easily seen to belong to the periodical
Begsov space B35 (T™) (see e.g. [10] for the definition of this space). But
a function in B’;f%(_’l’“) hag absolute convergent Fourier series, see e.g. [1ol,
s0 we are done.

3. Proof of the sufficiency of the conditions on F in Theorem 1 and
Theorem 2.

3.1. In the proofs, the conditions (2.1) and (2.2) occur in an equivalent
form involving sums. We take care of this once and for all in a simple
lemma, whose proof is an immediate consequence of the monotonicy of ||

LA 8.1. Tet B = R be compact, s > 0, and —oo <y < co. Then

oo 1
the sum 3 2% |F,|° and the integral [ |F,|° h™7"1 dh converge simultanously.
i=1 0

In the proofs in this section, the main tool is the Whitney extension
theorem. A version of this theorem suitable for our purposes may be
found in [9] and reads as follows.

THEOREM (Whitney). Let F' be a closed set in R". Then there exisls
@ continuous, linear ewtension operator B mapping Lip (8, F) into Lip (8, R").
Furthermore, Bf is infinitely differentiable outside T for f e Lip (B, F).

We shall need the following estimate on the derivatives of Bf. Let
d(w, ) denote the distance from z to F, and let s be a multiindex, not
equal to zero. Then, for f e Lip (B, F),

& (Bf)
on®

Tor |s| = 1, this estimate may be found in [9], p. 174, and the general
case follows in the same way.

(3.1) @)| < cd(@, B
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In the proof of the extension parts of Theorem 1 and Theorem 2,
we shall take po (Ef) as our extension of f e Lip (B, F), where ¢ is a fix,
infinitely differentiable function with compact support, equal to one
for all # with d(z, F') < 1. The estimate (3.1) clearly holds with Bf replaced
by @o(Ef), and using the mean value theorem repeatedly (write AL f(w)
= A,9(x), where g(®) = A7 f(x)), we obtain from this the following
fact. Suppose that the line segment L between « and @ -- Ik does not inter-
sect #. Then

(8.2) | i, (Bf ) (2)] < ¢|hf sup(@(a’, 1))P-".
a'ely

3.2. We assume first that 7 satisfies (2.1), and prove that the exten-
- sion f = @Bfy given above helongs to L2 it f; € Lip (8, F). Sinco fis bounded
and has compact support we have [f||, < oo, 50 using norm (1.1) for L2,
it remains to show that the second term in (1.1) is finite. This term is

(o] o0
less than a constant times { 37 4,4+ 3'B,)"®, whero
Fe=0 fe=0

T8 4L f(@)] o g \22
zedFy; 0 i<iil<at 1A} t
and B; the same expression but with the t-integration from Ty /81 to infinity.
Here we have put AF; = F\F;,, i>1, and AT, = {o| d(=, I) > $}.
Using (3.2) we easily get

2 di
11

nifal
A,<e f ( f mr”-a“hﬂ;’dh)

t<|hl<<2t

pl2
) dw < o| AT, WP-,

wedl; 0

and using just that f e Lip (8, B™), we obtain

mi<e [ kG

xedRy ‘hyfsl t<|hl<at

/2
7 e dh) ) an < ¢ | AT WP~
Altogether, as |AF;| < |F,|, this shows togetﬁer with Lemma 8.1 that f
belongs to L%, and as the constants in all estimates are independeut of fy
aslong as |fplly ., wny = 1, We actually obtain that Lip (8, &) - » L2,

3.3. Next we show that f e BZ? under (2.2). For [h| < hy[(40), T >
we have, since (3.2) holds and f e Lip (8 , R

H

[14f@Pras =3 + j) [ 1445 (@) dw

v=it1 4F,
7 o0

<o Z:IAFvlhﬁphf”"l”-ko D) 147, imee,
y= y=i+1

‘where the last term is less than ¢ || hEP.
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‘We shall estimate the second term in (1.2), which raised to the power ¢
is less than a constant times

00

~ag—n
20

i=0 T g /A< <gf(al)

[ 14 5(@)1? d)™ an.

Ingerting the estimate above for the x-integration, and using that
(Za)"? < Zall?, wo see that this is less than a congtant times

0 < oo
2 R (2 | AT, |1 hf—l‘)ﬂ + 2 -, 2,

=0 =0 i=0

Using Hardy’s inequality for sums, we get that the left member of this
[od
expression is less than a constant times D |AF;#Phf~9% and we are
1i=0
finished in view of Lemma 3.1. The continuity of the extension operator
follows in the same way as in Section 3.2. Under (2.3) we have

i 7
D) AR, WP w2 < o 3T < ohg?,

Pe=0 »=0

which combined with the firgt formula in this section easily setitles the
case 1l < p < o0, g = oo,

4. Proof of the necessity of the conditions on 7 in Theorem 1 and
Theorem 2.

4.1. Our problem is to construect a function feLip(B, F), which
cannot be extended to a function in Lip (8, R*) and LZ(R"), B2¢(R™),
or BY*(R"), if the conditions (2.1), (2.2) or (2.3), respectively, are not
fulfilled. The construction of f is given in Lemma 4.1, and in Section 4.4
we prove that f has the desired properties.

LevmMA 4.1. Let F < R* be a compact set, 0 < <1, and let k, be
a positive integer. Let furthermore the imieger N be big enough, depending
on by and 8, and let 0 < Ny < N. Then there exists a function f e Lip (8, F),
and points p e F, k integer, k=1, ¢ =1,2,...,1%, with the following
properties:

() |Pre— gl = Py 5 #J, and to every poini py, there ewists a point
Driy €QUAL 10 SOME Dy, § F 4, With

Ty < | Ppi — Pial < 2700y,

(i) Put@, = {&] |&—py| < 4Ry, for some i}. Then, for every s > 0, we
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have the estimate
{4.1) 1Gl* =

Here, the positive constants ¢, and c, depend only on s and n.
(iii) We have

Ox(|° — 022750 | By 1)

1f(Prs) = (Dr0)| = B,
Sor all p,; with &b = Nyv+ Ny, » =1, 2,
Before provmcr the lemma, we remark that if 0°<y < ns, it follows
from (4.1) that 2 G lf R ? diverges if Z P hy Y diverges, if %, is big enough.
1 1

Indeed, we have

M M M )

87—y 87— —Rons+k 8-
DG N = 0| D] Tl hg? — Y epa tnetior g, 1h )
ko ko kg

and if k, is big enough, the constant in the last snm is less than 1/2, so
then the right member of the inequality is greater than

- M kg—1
o 3 wimrnr+ S men -3 Y Fen),
%o M Teg+1 o

from which the assertion follows.

This also means that given N > 0 there exm’us an Nowith 0O Ny < N

such that 2 G sy By, diverges if 2 | F°h;? diverges (which
1 k=1

by Lemma 3.1 is the case if and only if [|F,/*A~*~'dh diverges).
0

Choosing a sequence k, such that By, "Rz} = max |Fl°h;?, we

1<is<hy,

+ooif sup |FRI°h7Y = oo, Ty

X 0<h<l

big enough, and consequently then also sup |GM+N0|37»;73' 4y, = oo for

easily get from (4.1) that sup|G,°h;? =
k

some N,.

4.2. Proof of the emistence of points py, € F satisfying (i) and (i) in
Lemma 4.1. Divide R™ into a net of closed cubes with sides of length hy,.
Choose points b; e F and cubes B; from the net in the following way.
Let b, be an arbitrary point from F, and B, a cube containing b,, and
having chosen bl, byy .-y b;_1, choose, if possible, b, € F and B; with b, e B;

so that B;n( U B) =(J. This gives a finite number of cubes B,, with

the property that the cubes 5B; contain all cubes from the net intersect-
ing cubes from the net intersecting F, whence

(4.2) /5B, = 5" 3|B| > |Fy|.
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Here, 5B, denotes the cube obtained from B;, by expanding B; with
the factor B, keeping the center of B, fixed. Next put M = 2% /}/;i and
define the index set I by the condition that ¢ e I if and only if MB,NM B;
# @ for some ¢ # §. Since MB; = Fy_; we get i%’ | MB;| < |[Fy_p,) OF

DBl <

¢l

(4.3) M Fyp gy -
Now we let the points b;, 4 € I, be the points py, ¢ =1,2, ..., % in the
lemma. By construction, condition (i) of the lemma is fulfilled. From (4.2),
(43) and the equality |B; = 0™ (1/2)™"{@| |z —b,| < 1;/2}|, where o
is the volume of the unit sphere in R", we geb

<5 3B =57 2 IBmI+ZIB ) < B (M By 4 (112) 0™ 1G]

and thus, wsing (a-+0)° < 2°(a®+0°),

T4 < 208 M By o+ (1/2) T 071G
This gives (41) (With o, = 2 °w*57™2™™ and ¢, = (5Vn)"2°).

4.8. Construction of the function f in Lemma 4.1. Define a function f
on R" in the following way. On the points ps, ¢ =1,2,..., %, define
fi BY folpr) = hE, and if f, is defined on Pry ¥ =1,2,...,4—1, put
Felpr) = h,c if f is not previously defined on Dhis othelwme put fr(Prs)

= —fu(Pis). Outside the points pu, Pub fi(a) = fulPr)( 1 2 | — Prsl )
if the distance from @ to P, is less than 7, /2, and fi(#) = 0 oftherwise.
Then we have

+4) @ —fh@)<2o—yH <2—yf H lB-yI<h
and since trivially [f,(z)—f{¥)] ) 21 < 2 |w—y|? if |z —y| ;h,?, Wem see
that for any @ and y holds |fy(« —fe(¥)] < 2|z —ylP. Now, put f = ;:f;,
where 5 = Nv+N,. Then for any m> 1 we have if lz—y|= by (7
= Nm+ Ny)
Sif@) —fHm) <2 38 = 2ig/hy ~1) < lo—yPAN),
>0 ¥>m ’
where A(N) = 2/(hyf —1). I lo—y|< Mhz, M >0, we instead have,
by (4.4),
m=—1 M1
D @) —H@)<2lo— y\Z 1

1=-l

=2lw—y|(i5 — M) (W —1)<2le—yF BN, M),
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where B(N, M) = M*~?/(Wi* —1). Here, in the last inequality we re-
placed | —y| by |z —y M1 and dropped a negative term. From these
estimates we easily obtain the following facts. Firstly, if 2 and y ave given
with o —y| < hy,y, and we choose m so that b < lo—y| < s

= 12", we obtain that feLip(B, R™), since f is obviously bounded.
Secondly, for k¥ = Nm+-N, and M = 2™, we have

(45) ) ~f@)] = |20 = 3 (5w (i)

VA
= 2h§"‘ (A (N) ']'B(‘N7 2100)) kai r~pllc'l]ﬁ
> hj(2 — 2% (A(N) -+ B(N, 2%))) > nf

if N is big enough, which shows that f satisfies (iii) of Lemma 4.1. Thus
the restriction to F of the function f constructed here satisfies the condi-
tions of Lemma 4.1,

4.4. Proof of the mecessity of the conditions on T in the case a < 1.
The case a > 1 will be reduced to this case in Section 4.5. We begin with
some preparatory estimates.

Let I be a compact set, and let f eLip (8, ) be the function’ given
in Lemma 4.1. Assume that f is extended to a funetion in Lip (g, R™),
and denote this function also by f. Since f & Lip (B, R™), there exigts a con-
stant @ >0 such that |f(o-++h)—Ff(2)]< B4 it b <ah, If ze 8
= {t| [t— 9| < ahy}, then it follows from (iii) in Lemma 4.1 that | f(z + k) —
—f(@)] = /2 if @+ belongs to the sphere 8}; of radius aly, around py,,
if & is of the form % = Nv+N,.

Assurde as we may that ¢ < 1/8, and set for a moment § — [P — Dral-
Then, if @ e8;; and ¢e 8y, we have d—2ah, < lz—1| < d+2ah,, and
hence

(4.6) S = ftl d—T/d < Jo—1| < A+ Iy 4} < {t lw—1| g 2hot1p, ).
This gives the estimate
(4.7)

. s dt R ; '
\f (@ -+ ) —f ()| [h]‘"‘“dh) — TR, e 8y, = No+ I,
0 t<h|<2t

where ¢ is independent of z and %, since the left member of (4.7) is by the
left inclusion in (4.6) greater than

d—hyld N
f(@+h)—f()] Ikl_""“dh) =

d—3ky/8 ’
T e+heSy,

. . 5
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from which (4.7) immediately follows. Similarly, using the right inclusion
in (4.6), we obtain for b = 2"t}

(4.8) [ If@)—f@)Pay > b, @ €Sy, b = Nv+No,
|z—y| <Dy,
where ¢ is independent of # and .

1
Now we assume that [[F,IAC-9P" dh = oo, and show that the
0

X R 12 ig
function f above does not belong to Lf. Put Gy = 1=U1 8;; (then G° i

K e
. . a — U4,
equal to @, as defined in Temma 4.1). We write (U G%ix, ig ,

we=l

K
= 0%irn, N G%, . vy, 1<t <k Then,
where Axp =G%x N and A4; = Girw, 1-91 N+ Ny

using (1.1), (4.7), and that

S‘W P = bf—)-l_—b <b1; ___b___ =Gbi, b>17
o b—1 - \b—1

we get (since a > f)

o

llflliﬁ(nn)z Lf ( j (

0 t<lhl<t
Y

i=

biq b4 i
\7 — 6—ap

=0 2 iAilh.(z'\gmﬂ\l;o?G E [4,] E hNe 4N,
qe=1 =1

=1

o df \P*
[f @B —F ()| 1h1~2ah) T) a

K

K K
(B—a)p
=0 3V D A > 0 D) 165w 12K
y=1 1=v

y=1

3 (B—a)p
T now %,, NV and ¥, on beforehand are chosen so that 21 10 %117 B iR,
’ =

i i for all 0 < @ <<1/2, since a "|G%
iverges (this happens simultanously ! . 2, |
(}—iv(cll}gz)“’s\%!z}) which is possible due to the discussion after Lemma 4.1,
we may eonciude that f is not in LZ(R").

Next assume that f\Fh]q’”W‘“)qdh/h< oo. In [3] we proved that
0

an equivalent norm for BY?(R") for a < 1 is given by

< I0\1la
(TS 3 ol (O (@) —F )P dwiy) "),

p=0 la—y)<bly,
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where b > 0. Using this and (4.8), we obtain .
I 1 g™ © 2 Wk (G5, 1)

where the sum as before may be taken divergent.
Tinally, suppose that sup |Fy|"P1°" = +-co. Tf feB®™, then

0<h<l
J1f(@+h)—f(@)?dw < ¢[h|*”, and consequently hg™ [ 1f@)—F)P
dody < ohi?. By (4.8), the left side of this inequality is larger than ¢ |GE| hip

lz—yl<bhy,
T 9

b = Nv+N,. From this it follows that f ¢ B2 again because of the
comments after Lemma 4.1.

4.5. The case a=1. Let ay = af+B(1—6), 1fp, = 0/p, and 1/q,
= f/q, where 0 < 6 < 1. It is then well known that Lip (8, R")n BY2(R™)
= Bir%(R"), and we obviously have

| 1
[ 1B He=2an b = [ |7, @lrone=0map .
o 0

Thus, to show that (2.2) is necessary in Theorem 2, just choose 0 so close

to zero that a, < 1 4nd use the case a < 1. The necessity of (2.3) is obtained
analogously.

In order to show that (2.1) is necessary in Theorem 1, we use a similar
argument. Put

Nyalf) =| {f( [ 18 f @ =" an)" @™

t< By <t

p*

From the lemmas below, and the fact that the norms (1.1) are equivalent
for 1 > a, we deduce that N;g,so,l(f) < o if f e Lip(8, R")n L2 (R™), where
oy = ab+§(1—6), 1/p, = O/p, 1]s, = 0/2, 0 < 6 < 1. Choose 0 50 close
to zero that o, < 1. In Section 4.7 we constructed a function in Lip(B, F)
such that for any extension f of it, holds

1 1
Fgon(f) = +eo it [IFRC kb = [ |F, | RO-0P0Gh[h = -+ oo,
) 0

[

but an inspection of the proof shows that actually also N, 28,30,1( )= +oco.
Thus we are finished.

- Lmmma 4.2, Let 0<6<1, 1<p,8< oo, 0<f<l, O0<ax<l,
o = ab~+pB(1—8), 1/p, = 0/p, and 1[s, = 0/s. Then

Nt 60,1 (F) < (N5 o1 (F)) IS Irtpga, m)*~°-
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Proof. Using H¢lder’s inequality, we get

[ 14 £ (@)= by 0 dh)”

t<|hp<<2t

—0
<( [ ids@imereranf ([ 4 faan)t
t<|h| <2t i< |h)<2t
—6
<o [ 145@) W= ah)" If [Fp.m;
i<|h]<2

from which the result follows.
TamMA 4.3. Let 0<a<1, 1<p,8< oo and l,=1, and assume
that f e L2(R™) and N&,,(f) < oo for 11, Then Ny, (f) < oo for 12 1.
Proof. We use the identity (see e.g. [1]. p. 228)

-1 &

P (’;) AELF (4 shy

1
k=0s=0

(4.9) A (@) —27 A f(o) = —§

and the obvious identity
A f(a+sh) = — A5 fla+ (s —1) k) + A5 flo+ (s —1)B).

y=l+8+1
Repeated use of the latter gives (A (k) <e D |4nf(w)l, and

ye=l+4+1

in view of this we obtain from (4.9)

: al
|44 f(a)| —2 Ay @) <¢ D) 145 (@)
r=[+41 .
After integrating, one obtains

21
—_ -3
Q-2 N <o D Ni,,
v=l4+1

(4.10)

o

(Put 4, =(f( f

e i<ihl<2t

\1ls
| AL ()] 1751*"—“.)31?) and let A, be the same
expression with 4% replaced by 4%;; then straightforward substitutions
show that AL = 2°4,, < 2°4,, and sinee f e L?, we have that 4, < oo
a.e. From this (4.10) is easily deduced.) The result now follows from (4.10)
by induection.
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Sur le minimum des fonctionnelles dans les espaces de Banach
par

T. LEZANSKI (Lublin)

Résumé. Soit @ une fonetionnelle continue sur 'espace de Banach, remplissant
Vinégalité; @(iw+ (1—1)y) < 10 () + (A~0P(y)—I' ¢ lm—yl) ol I'(t,s) satistait
aux certaines conditions spéeiales. On montre Pexistence d’un seul point minimal
de @: ldi(.fE) = inf@(x): xeX et on &tablie une limitation pour la distance lz —2]|

Soit ¥ une autre fonctionnelle, continue, convexe et non-négative; 4 tout 1> 0
on fait correspondre un élément 73 tel que & (x;) + A(xy) = inf( P () +A¥(@)): vxe X.
La fonction »; posséde la limite 7 (si 1> o0) et on a: @ (7) = inf®(z): ¥(x) = 0.

Enfin, on présente une application de la théorie exposée ci-dessus 4 la calculation
numérigue d’un point minimal absolu et relatif, en se servant d’ainsi dits espaces
des suite concordantes [2].

Ce travail comprend trois parties; dans la premiére, nous considérons
le probléme du minimum “absolu”

() infd(a): we X,

X étant un espace de Banach (non réflexit), @ une fonctionnelle définie
sur X. Nous montrons I’existence d’une solution 7 unique de (%) et dédu-
isons quelques limitations pour lle—2Zll, # € X — arbitraire. La deuxiéme
partie contient la solution du probleme du minimum “relatit?, c.-a-d.
du probléme consistant & trouver 7 € Z tel que

*k) infd(2): 2 €2 = ®(z),

Z étant un sous-ensemble fermé convexe de X. Bofin, dans la troisidme
partie, nous appliquons les résultats des parties 1° et 2° aux problémes ()
et (*+) dans des espaces spéciaux, appelés “espaces de suites concordantes”
ou bien espaces du type {X,}. Expliquons-le plus en détail: soib {X.}
une suite d’espaces de Banach et considérons les suites {@,}: w, e X,.
Certaines d’elles sont digtinguées comme “concordantes” (corrélatif
des suites de Cauchy); les suites concordantes forment un espace de Banach,
appelé espace du type {X,}. Voici Pordre des idées de la troisiéme partie:
on représente I’espace donné X comme un espace du type {X,} (ce qui
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