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Fredholm Toeplitz operators on strongly pseudoconvex domains

by
NICHOLAS P. JEWELL (Stanford, Cal.)

Abstract. Venugopalkrishna in [15] investigated conditions which ensure that
a Toeplitz operator acting on a Hardy space on a strongly pseudoconvex domain
D s C" (n>1)is Fredholm. In [11] McDonald proved that when D = B?", the open
unit ball in €%, then the Toeplitz operator Ty, for ¢ ¢ H* 4 C, is Fredholm if and only
if p is bounded away from zero in a neighbourhood of 88", We extend this result to
a general strongly pseudoconvex domain, D, with smooth boundary in 0* with n > 2,
and give a similar result for Toeplitz operators acting on a Hardy space on 8D. We
also note that the property of a Toeplitz operator, T, being Fredholm depends
only on the local properties of the symbol ¢ on 8D.

1. Introduction. Let D be a strongly pseudoconvex domain with
smooth boundary in C% ie., D is—a bounded domain in C" and there
exists a real-valued function ¢ such that

(1) D={: o)< 0}

(2) grade % 0 on 9D,

(3) e is strictly plurisubharmonic in a neighbourhood of éD,

(4) o is of class 0% in a neighbourhood of D.

Denote by L* the space of functions f: D — € which are square
integrable with respect to Lebesgue measure, dV, in C". Write L™ for
the essentially bounded measurable functions on D. H*is the space of all fun-
ctions f € I* which are holomorphie in D, with norm [ifll, = ( [ |f(2)[2dV (2))*".

D

C is the space of all continuous functions on D, and A (D) is the space of
all holomorphic functions in D which extend continuously to D. H* is the
space of all bounded holomorphic functions on D.

Let ¢ denote the gurface area measure on 9D. We write L®(0D)
for L®(do), L*(oD) for I*(de). H*(2D) denotes the closure in I* of the
boundary values of holomorphic functions which extend smoothly to D.
Since the boundary of D is smooth, this definition is equivalent to requiring
that sup| [ [f(2)]*do,(2)]"* < co where D, = {zeD: o(2) < —s}, do,

>0 0D,

is surface area measure on dD,, and f(2) is the Poisson integral extension
of finto D. The norm for H?(8D) is given by

Il = ( [1f(@)2do () )"
aD
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F;or fin H* and 2 € D let v, be the outward normal to 8D at z and
set f*(2) = limf(s —ev,). Such a limit exists almost everywhere on oD
&0 .

with respeet to do (see [14]). The map f— f* gives an isometric isomorphism
of H* onto a closed subalgebra, H*(oD), of L°(2D) ([14], or see [1]
Prop. 10). f can be regained from its boundary values by using the Szegb3
kernel, (see [14], p. 18), i.e., f(2) = wf 8(z, w)f* (w)do(w) where 8(w, 2)

represents the Szegé kernel. Let ¢(dD) denote the space of continuous
functions on 8D. It is shown in [1] that H* + C is a closed subalgebra of L
and that H*(0D)+C(8D) is a closed subalgebra of L®(2D). A shorter
proof is given in [7]. Lemma 8 of [10] can be easily adapted to the cage
of strongly pseudoconvex domains with smooth boundary to show that
the map f — f* is an algebra homomorphism from H* - onto H' ©(éD)+-
-+ 0(9D) with kernel {feC: f* = 0}.

. Ff)r @ in L™ (resp. L*(8D)) the Toeplitz operator with symbol o, T
is defined by T,f = P(¢f) for f e H* (vesp. H*(8D)) where P denotes 1:1;7(;
orthogonal projection of I* (resp. L*(8D)) onto H* (resp. H>(2D)). The
Toeplitz operators, T,, have integral representations:

Tf(2) = [E(z, w)p(w)f(w)dV(w) (feH?)
D
where K (¢, w) is the Bergman kernel, and
T,f(#) = [6 [f) 8w, HpOf Qa0 (z)  (f e E*(oD))

where S(w, £) is the Szegt kernel (see [14]).

) From this po.int on we will assume that # > 2. The results for Toe-
plitz operators acting on H? (in particular, Theorem 1 below) in Sections 3, 4
a,pd. 6 all carry through in the case n =2 with identical proofs. The
difficulty for the case n = 2 when we consider Toeplitz operators on H*(8D)
is discussed briefly at the end of Section 5.

The main aim of this paper is to prove the following theorems:

TEROREM 1. If ¢ € H*+0, then T, is Fredholm if and only if P i
bounded away from zero in a neighbourhood of 4.
. THEORE?/[ 2. If 9 € H®(0D)+ C(8D), then T, is Fredholm if and only
of the extemsion of ¢ to D (via the Poisson—Seegs kernel) is bounded away
from zero in a neighbourhood of . ’

1420}~ @ gG Venugopalkrishna [15] proved that T, is Fredholm acting
on H* L‘E' ¢ Iy non-zero on oD. For the particular case when D = B", the
open unit ball in C", MeDonald proved Theorem 1. We shall adapt his
methods to prove our theorems.

We nqte here some elementary propositions which we shall need.
For any Hilbert space, H, let BL(H) denote the algebra of all bounded
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linear operators on H, and 2(H) the ideal of all compact operators on H.
The identity operator on H is denoted by I.

PROPOSITION 3. If ¢ € L® (resp. L*(0D)) and peC (resp. 0(2D)),
then T, T, —T,, € A (H?) (resp. o(H*(8D))).

Proof. A simple extension of [15], Theorem 2.1 shows that when
w €0, the operator (I —P)M, is compact when restricted to H® (where
M, denotes the usual multiplication operator on I?). [12], Theorem 1.2
shows that when » e ((0D), the operator (I —P)M, is compact when
restricted to H?(&D). In either case, T,T,— T, = PM, (P —I)M, and so
rT,r,—1T, is compact.

PRrOPOSITION 4. If p e H®+C (resp. H®(0D)-+0(4D)) and ¢ € L™
(resp. L®(8D)), then T,T,—T,, & & (H*) (resp. oA (H? (8D))).

Proof. This follows from Proposition 3 by verifying that for y e H®
(vesp. H*(8D)) and ¢ € LI (resp. L*(dD)) T,T, = T,,.

ProPOSITION 5. If h € C and hlyp = 0, then T, is compact.

Proof. This is just Theorem 2.3 of [15].

It is appropriate to comment here that in [2] an index formula is
described for Fredholm Toeplitz operators on strongly pseudoconvex
domaing with. smooth boundary.

2. Results on maximal ideal spaces. In this section we state some
results on the maximal ideal spaces of the algebras H* + C and H*(éD)+
+C(&D) which were proved for the case D = B" by McDonald [10].
The proofs for the general strongly pseudoconvex domain with smooth
boundary are almost identical and we leave it to the reader to make the
necessary changes in the proofs of [10].

TFirst we establish some notation so that we can state the results.
For any Banach algebra A let M(4) denote its maximal ideal space.
M(A(D)) consists of just evaluation functionals, e,, where w e D and
ew(f) =f(wy (fe A(D)). The map w-—»g, is a homeomorphism from
D onto M(A(D)). If weD, we can consider ¢, as an element of both
M(H®) and M(H®-+0). We put D= {me M(H*): m = 6,, weD}.
The map f—f* is an isometric isomorphism from H> onto H>(0D) and
hence there is an induced homeomorphism = from M (H*®) onto M (H""(@D)]
defined by z(m)(f*) = m(f) (m e M (H®),fe H®). Let D sp = 7(Dg)-
It is clear that D ,p = {m e M(H®): m(f*) = f(w) for some weD
and all f*eH*(8D)}.

TemorEM 6. The map p: M(H®)—D defined by p(m) = m|yp 18
continuous and onto. The map p~*' is well-defined on D and is a homeo-
morphism onto an open subset of M (H™). This subset is precisely D, .

For A e dD, let F, = {p~'(A)}. It follows from Theorem 6 that M (H=)\
\D,, is closed and that M(H*)\D, = | ) F,. Define pp: M(H*+0)

4edD
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—M(H*) by pp(m) = m|geo and pyp: M(H’”(@D)—l—0(8D))-—>M(E°°(8.D))‘»
by pop(m) = m|H°°(6D)' .
THEOREM 7. The map pp 48 a homeomorphism from M (H® 4 C) onio
M(H™). ‘

THBOREM 8. The map poy, is & homeomorphism from M (H“(@D) +0 (6D))
onto M(H®(8D))\Dy, op.

3. The necessity part of Theorem 1. We follow the proof of McDonald
[11] for the case D = B" but we will have to do a little work to show that
the modified ideas of [11] will go through for general D.

First we need some results on the Bergman kernel funetion, K (w, 2).
In [6] Hoérmander showed that if 1e 8D, then K(z,2) — oo ag z— A
Also Kerzman [9] showed that K (w, 2) is 0 up to the boundary of D
simultaneously in # and w, except at points where z = w e 8D, i.e., K e
O*(D xD\F) where F = {w,s)ecdDxdD: z = w}.

Now given 1€ 6D and 4, € D converging to 4 as m — co we let f,, (2)
=K (2, 2,) /K (3, 1) for 2€D. Then f,, e H* and |f,ll, =1. Tt is
clear that f,, converges pointwise to zero on D a.e. by the above remarks.
Also, by Kerzman’s theorem, K (1,,, 2) is uniformly bounded on the comp-
lement of any open neighbourhood ofi for m large enough whereas
K (Apy Ap) — 00 a8 m — co. It follows that f,, converges uniformly to
zero in. the complement of any open neighbourhood of 4 in D.

Luuma 9. Let peC, 28D, @(A) = a. For any sequence {A,} in D
converging to A we have [[(T,— a)f,,lls — 0.

Proof.

1T ofn — aflls = oS — PNl = [ |(p—p(0) ()T (2)
D

= [ lo—eW)Fn@PaV ) + [ |p—9(2)fu(@)PaV (@)
N D\N
for any neighbourhood N of 1. The right-hand side can be made as small
as we like by choosing ¥ to be a neighbourhood of A so that |p—p(4)|
ig sufficiently small in N and by choosing m large enough so that |f,,(2)|
is uniformly small on D\ N.

_ Lmyma 10. If g€ H*4-C and @ is not bounded away from a on some
neighbourhood of 8D, then there ewisis e 0D and a sequence {Am} in D
such that 1, — 4, ¢(h,) = a and |(T5—a)fpll,—~ 0 as m — oo,

Proof. The same proof as given for Lemma 2.3 in [117] will work here.

THEOREM 11. For ¢ € H*--C, T, is right Fredholm only if @ is bounded
away from zero in a neighbourhood of 8D.

Proof. Suppose ¢ is not bounded away from zero in a neighbourhood
of &D. Then, by Lemma 10, there exists a sequence of unit vectors {fu}
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in H* with ||T5f,l.—0. Choose geH® and a subsequence {f,} with
g~ 9 weakly. It T, were right Fredholm, then there would exist S
e BL(H?) and K € # (H?) such that 8T;+ K = I. We would then have’

Wy, — Els = U(ST5+ E)fyn,— Eglla < 181155 my s+ I, — Kl
Since X is compact, the right-hand side converges to zero as k— oo and
80 fu, cODVerges to Ky in norm. But {f, } eonverges pointwise to zero
a.e. and so the only function it can converge to in H* in norm is 0. However
{fin,} 18 & sequence of unit vectors and so would have to converge in norm
to a unit vector. Thus the sequence {f,,,} cannot converge in norm and this
contradiction completes the proof.

4. The sufficiency part of Theorem 1. Our initial aim in this section
is to show, using results of Section 2, that if ¢ € H*4 ¢ and is bounded
away from zero in a neighbourhood of 9D, then there exists y in H*+C
and b in € with h|,p = 0 such that gyp+h =1.

We consider ¢* which belongs to H*(aD)-+ € (D) and we want to
prove that ¢* is invertible in H®(8D)+C(8D) when ¢ is bounded away
from zero in a neighbourhood of D. By Theorem 8, M(H=(&D)+C( aD))
= M(H*(8D))\ Dy, ;p Where D, sp = {m e M(H>(2D)): m(f*) = f(w)
for some w e Dand all f*eH>(8D)}. Then let m be any element of
M(H“(BD))\DDGY&D. Then m belongs to the fibre above a point 1 e D,
i.e., in the notation of Section 2, m € ©(F,) for some 1 € oD.

Write p* = f*+g* where f* ¢ H*(2D) and g* e C(0D). We consider
the function %* = f*--¢*(1) which belongs to H>(dD). Now p*—Ek*
= g*—g*(1). By our assumption % is bounded away from zero in a neigh-
bourhood of A (since p—k = g—g*(1) and so |pf < lg—g*(A)|+ |kl and
50 we choose our neighbourhood so that ¢ is bounded away from zero
and |g—g*(A)| is sufficiently small). We now state a crucial lemma.

LEMMA 12. If H e H® 48 bounded away from zero in a neighbourhood
of L& D, then @(H) %0 for p € F;.

Proof. See Theorem 2.3 of [13].

Using this lemma it follows that « '(m)(k) # 0, i.e., m(k*) 5 0.
But  m(g*) = m (k") +m(g*)—g*(2) = m(K")+g*(A)—g"(2) #0. Since
m was any element of M(H®(8D)+ (8D)}, it follows that g* is invertible
in H*(8D)+ C(8D). Thus we have the following theorem.

TusoreM 13. Let ¢ € H* 4 0. The following are equivalent:

(1) @ is bounded away from zero in a neighbourhood of D;

(2) @* is invertible in H*(8D)+0(2D).

Proof. The remarks above show that (1) = (2). Standard Poisson
integral calculations show (2) = (1).

So for any ¢ € H®+C which is bounded away from zero in a neigh-
bourhood of &D there is u* e H*(8D)+C (D) with ¢*y* =1 on oD,
i.e., there exists & & ¢ with |,p = 0 such that gp+h =1 on D.
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) THEOREM 14. If ¢ & H* + O is bounded away from zero in a neighbouy-
hood of @D, then T, is Fredholm.

) Proof. By above ¢p+h =1 on D for some pweH®+C and he
with %|,p = 0. Then we have

Tppin =I =T, +T=1=T,T,+T, =I+K,
=TT, =1+K, (by Prop. 5).

§imilarly T,T,=I1+K, (K;,1<1<3,are compact operators.) Hence T,
is Fredholm. '
Theorems 11 and 14 give Theorem 1.

(by Prop. 4)

5. Toeplitz operators with symbol in H*(dD)+( (0D). The proof
of- Theorem 2 follows the same pattern ag that of Theorem 1 and so we
will only point out the essential differences.

The necessity part of Theorem 2. Here we will need to use the Szegt
kernel ‘ra,t.her than the Bergman kernel. We refer to [14], p. 17, 18 for
a desc?rlptlon of the basic properties of the Szegé kernel. We need the
following result concerning the singularities of the Szegd kernel.

THEOREM 15 [3]. Let D be o strongly pseudoconvex domain with smooth
boundary and let g be a defining function for D. Then

(@) the Seegi Lernel S({,w) is 0* on 0D x aDN\{(w, w): w € 8D};

(b) there emisis w(Z, w) e 0°(C™ x C") such that
(1) p(@, @) = —ig(a), :

(2) 9, and By, vanish to infinite order at ¢ = 1w,
@) p(&,w) = —p(w, ),

(4) there ewist F; G e C*(0D X 8D) such that S(Z,w) = F(—ip)™ "+
+G.log(—iy). :

This tl}eorem tells us that if S(Z, w) becomes infinitely large as w — ¢
€ 0D, then it does 50 in a predictable fashion. It is 0® everywhere else.

The Szegt kernel can be defined in the following way (see [14]):
let {y;(0)}52; be an orthonormal basis for H?(8D) where we congider »;

as defined on Dj; then (¢, w) = ; Zl’ ¥ (0)p;(w) where the series converges
uniformly for {,w restricted to any compact subset of D x D. Therefore,
for L e D,

. (C
EEOL e

ey IFIE "

@ B0 = D wr = mp S
= S

Let ¢, e 61?. Now, since D is strictly pseudoconvex with smooth bound-
ary, there i3 a holomorphic peaking funetion, g, at £o3 i.e., g is holomorphic
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in a neighbourhood of D, g(f,) = 1 and |g(£)| < 1 for all & e D\ {4}, [5],
p. 275. By taking a high enough power of g, say g~, we may suppose that
lg™|i, is very small (g e H*(9D)). However, by choosing { close enough
to ,, it is clear that |¢™(Z)| is as near to 1 as we please. It follows from (1)
that 8(£, &) becomes arbitrarily large if £ is near enough to £, i.e., |8(Z, )]
=00 a8 Lo ... (2)

Now, given £, € 2D and a sequence ,, — {, as m - oo, we let f, ({)
= 8(Z, &) /8 (Lmy L)H? where we are considering 8({, w) as being defined
on D xD. f,eH?(6D) and |ful, =1 for each m. For { # {, S(, w)
is uniformly bounded in w & &D in a neighbourhood of {, by Theorem 15 (a).
This extends to w e D by the definition of the Szego kernel. It then follows
from (2) that f,, converges pointwise to zero a.e. on &D. It also follows from
the above remarks that f,, converges uniformly to zero in the complement
of any neighbourhood of {, in &D. Hence {f,} cannot have a convergent
subsequence. :

Using the above information we can then prove the appropriate
Lemmas 9" and 10’. We then have

LEMMA 9. Let ¢ € C(8D), A€ D, p(d) = a. For any sequence {An}
in D converging to 2 we have (T, — a)fylls = 0.

Proof. Similar to the proof of Lemma 9.

TeMMA 10°. If ¢ € H®(8D)+C(8D) and ¢ (extended io D through the
Poisson-Szego integral) is not bounded away from a on some neighbourhood
of 0D, then there exists A € 0D and a sequence {An} in D such that A, — 2,
@) = o and (T3 —a) full: = 0 as m — oo, .

Proot. Since D is compact, we can find {4,,} = D converging to some
2 edD with ¢(4,)->a By the remarks in the introduction we have
o = (f+¢)+% where feH”, gel, and ke with kl;p = 0. Then

(T3 =) foull < 0I5 —B) frnla+]| (T — (@ =) funl2

where 8 = limf(4,,). The second term on the left tends to zero by Lemma 9'.
Tt is not hard to see from the reproducing properties of the Szegd kernel
that || T5flle = I/ ()], The result follows.

Theorem 11’ follows in the same way as Theorem 11.

The sufficiency part of Theorem 2. It follows from Section 4 that if
@ € H*(8D)+ C(8D) is bounded away from zero in a neighbourhood of oD,
then ¢ is invertible in H®(8D)+ C(0D), i.e., there exists e H*(8D)+
+0(8D) with ¢y = 1 on &D. Then

Ty =I=>T,T,+K, =T,7,+K, =1 (by Prop. 4)
= T, is Fredholm.

‘We have now proved Theorem 2.
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Remarks. (1) In the remarks before Lemma 9 we noted that |S(Z, )|
— oo a8 { € D tends to , € 0D. Now 8. Krantz has pointed out that, for
¢, we oD, 8(L, w) must grow arbitrarily large near (&, &,) where {,e éD
for the following reason. Suppose S({, w) were bounded in a neighbour-
hood of (&, &) in @D. Then for ¢ near &y, ¢ e dD, 8(L, w) is uniformly
bounded in w by Theorem 15 (a) (w € 6D). This extends to ¢ € D, ¢ near ¢,
by the definition of the Szegd kernel. Now let g € 0(.D) be a holomorphic
peaking function which peaks at [,. Let {,, € D converge to {, non-tan-
gentially. Then [¢(,)]* = f 8, Cu)g(0)T* do(Z) for each m. Letting

k, m — oo appropriately the left-hand side of the equation tends to 1,
while the right-hand side tends to zero. (Recall that, if we choose % large
enough, f 19(&)1**do(£) can be made arbitrarily small.) This contradiction

shows that 8(¢, w) is unbounded on 6D x D near (&, &,) for ¢, e oD.
By Theorem 15 (b) (4), 8({, w) is unbounded as (£, w) — (&o, L) (£, w)
€ 2D). It follows from the definition of the Szeg6 kernel that |8 (£, w)| - oo
as (£, w) € D xD tends to (¢, &) where £, w — £, non-tangentially.

It would be of interest to settle the following question: If (¢,, £,) € 8D x

x 8D and ({,w)eDxD, is lim  [S(,w)] = % According to
(8:0)->(2g,20)
the above remarks, the only case unrgsto)lved is when { s w and either ¢

or w (or both) converge to , tangentially. It may be possible to prove the
conjecture for this case also by extending the methods of [3].

(2) In proving the sufficiency part of Theorem 2 we used Prop-
osition 4. In order to extend Theorem 2 to the case n = 2 we would need
the following result:

peC(oD) =
the restriction of (I —P)M, to H?(4D) is a compact operator.

As noted in the proof of Proposition 3 this was proved by Raeburn [12],
Theorem 1.2 for the case n > 2. The methods of Raeburn do not carry
through since the Neumann theory for the 7, complex does not work
right for n» = 2. It is possible that there may be a way to get around this.

6. Local Toeplitz operators. In [4] Douglas shows that, when D = B,
the open unit dise in C, then the Fredholmness of T, for ¢ € L*(8D)
depends only on the local properties of the symbol . We want to remark
here that an analogous result holds for a strongly pseudoconvex domain
with smooth boundary. We will only give an indication of the necessary
changes needed in Douglas’ proof and we leave it to the reader to fill in
the details.

For a family of functions # in L*®, let T(F) be the C*-algebra gen-
erated by the Toeplitz operators on H* with symbol in &. Note that by
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Proposition 3 the quotient algebra T(L*)/o'(H?) has a non-trivial centre
which contains T(C)/o (H*) and this last algebra is equal to 0 (0D) by [12],
Theorem 3.1.

Recall from Section 2 that M(H®)\D is fibred by D. The main
tool we need in making Douglas’ proofs go through is the fact that the
cluster set of f e H* at A € 4D is equal o the range of the Gelfand trans-
form f on the fibre in M(H>) over 1. This is proved in [13], by using
a well-known result of Kerzman [8] concerning the existence of a smooth
solution, , to the equation du = ¢ where ¢ is a smooth, bounded, cloged
(0, 1)-form on D.

For 1€ 9D let T, be the closed ideal in T(L™) generated by {r,:
pel, p(d) = 0} and let G; = T(L®)/T, and let @, be the canonical map
from I, (L%) — G,. Then it is possible to prove:

TeROREM 16. If @ 4s the *-homomorphiswm defined by @ = > @,
AedD
Sfrom T(L®)— 3 ®G,, then the sequence

redD
{0} = o (B > (L") > Y @6,
ied D

is exact at T(L™).

For each 1 e dD denote F,nM(L*) by 8F,. We have the following
propositions:

Provosrrion 17. If @, p e I® with Gelfand transforms ¢, p on M (L)
and A is in D, then Go(T,) = Bo(T,) if ¢lop, = Do,

CoROLLARY 18. If ¢ € L™, then T, is Fredholm if and only if for each
A € 0D there ewists y e L™ auch that T', is Fredholm and ¢ = yw on OF,.

COROLLARY 19. If g, v € L™ such that for each 2 € 8D either p —f lﬁFz =0

for some f'um‘hf in H* or 1/1—-5(]61,31 =0 for some g in H*, then T,T,—T,,
s compact.

Remark. These results extend results on p. 198, 199 of [4].

Acknowledgements. I would like to thank 8. Krantz for several
instructive conversations concerning pseudoconvex domains and for some
helpful correspondence. I am also grateful to the Commonwealth Fund
of New York which hag supported this research in the form of a Harkness
Fellowship.

References

[1] A. Aytuna and A.-M. Chollet, Une extension d’'un résultat de W. Rudin, Bull,
Soc. Math. France 104 (1976), pp. 383-388.

[2] L. Boutet de Monvel, Index formula for hypoelliptic operators with double
characteristics, Liectures at the Nordie summer school (1965).

[3] L. Boutet de Monvel and J. Sjéstrand, Sur la singularité des noyaux de

A DA Al WA ATe s o D e T RIRPTYT 4


GUEST


34, N. P. Jewell

Bergman et de Seegd, Société Mathématique de France Astérisque 34-35 (1976),
pp. 123-164.

[4] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press,
New York 1972.

[5] R. Gunning and H. Rossi, Analylic functions of several complex variables,
Prentice-Hall, Englewood Cliffs, New Jersey 1966.

[6] L. Hérmander, L? estimates and ewistence theorems Jor the @ operator, Acta
Math. 113 (1965), pp. 89-152.

7] N. P. Jewell and 8. Krantz, Toeplite operalors on strongly pseudoconves do-
mains, Trans. Amer. Math. Soe. 252 (1979), pp.207-312.

8] N. Kerzman, Hélder and L? estimales for solutions of du= [ in strongly pseudo-
convex domains, Comm. Pure Appl. Math, 24 (1971), pp. 301-379.

[91 ~ The Bergmoam kernel function. Differentiability at the boundary, Math. Ann.

195 (1972), pp. 149-158.

G. MeD onald, The mavimal ideal space of H*® -+ C on odd spheres, (preprint).

— Fredholm properiies of a class of Toeplile operators on the ball, Indiana J. Math.

26 (1977), pp. 567-576.

I. Raeburn, On Toepliie operators associated with strongly pseudoconvex domains,

Studia. Math. 63 (1978), pp. 253-258.

R. M. Raunge, Bounded holomorphic functions on sirictly pseudoconvexs domains,

Ph.D. thesis, U.C.L.A. (1971).

E. M. Stein, Boundary behaviour of holomorphic functions of several complex

variables, Princeton University Press, 1972.

U. Venugopalkrishna, Fredholm operators associated with strongly pseudo-

convex domains in C", J. Functional Analysis 9 (1972), pp. 349-373.

[10]
[11]

1121
[13]
[14]
[15]

STANFORD UNIVERSITY
STANTORD, CALIFORNIA
Present address:

PRINCETON UNLVERSITY
PRINCETON, NEW JERSEY

Received May 20, 1977
Revised version December 23, 1977

(1811

icm

STUDIA MATHEMATICA, T. LXVIII. (1980)

Hélder continuous functions on compact sets and function spaces

by
ALT JONSSON (Umes)

Abstract. Let F be a closed set, and let Lip (8, F) denote the space of all functions
which are Holder continuous on F with exponent f. Necessary and sufficient condi-
tions on F are given, which guarantee that every function in Lip (8, F) may be exten-
ded to a function in Lip (8, R™) belonging to a Besov space or a Bessel potential space.
Applications to the theories of harmonic functions and multiple Fourier series are given.

0. Imtroduction. Let F be a closed set and 0 < << 1. It is well known
from the Whitney extension theorem that every funection in Lip (g, F')
may be extended to a function in Lip (B, R™). (For the definition of the
Lipschitz space Lip (8, F), the Besov space B%'?(R") and the space L?(R™)
of Bessel potentials, which for integer o coincides with a Sobolev space,
we refer to Section 1.) In this paper we consider the following question.
For which sets F is it true that every function in Lip(f, F') may be exten-
ded to a function in Lip(f, R*)nB%?(R™) or Lip(8, R")NLZ(R™? The
angwer, given in Theorem 1 and Theorem 2, is definitive. The extension
operator used in the theorems is the same as in the Whitney extension
theorem. Applications of the result are given in Theorem 3 and Theorem 4.

A corresponding question for continuous functions was solved by
H. Wallin in [11] and, more generally, by T. Sjolin in [7] and [8]. They
proved that every function in O(F), the space of continuous functions
on ¥, may be extended to a function in C(R")NLEZ(R") or ¢ (R™)NB%?(R™)
if and only if a certain capacity is zero. Our case with Lipschitz conti-
nuous functions is of different nature than the continuous case, and the
methods used in this paper are entirely different than those in [7], [8]
and [11]. It should also be mentioned that the extension parts of Theorem 1
and Theorem 2 were proved, in a less general form, in [2].

Qur result iz also related to the imbedding theory. for functions of
several variables (see e.g. [6]), where e.g. the trace of functions in B2Z(R")
or LZ(R"™) to sufficiently smooth manifolds is characterized.

1. The spaces Lip(f, ¥), L5(R"), and BZ?(R"). Notation.

1.1. General references for the spaces defined in this section are [6]
and [9]. The spaces LZ(R") and B%?(R") may be defined in many equiv-
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