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Multilinear singular integrals
by
JONATHAN COHEN (Athens, Ga.)

Abstract. This paper uses Fourier Transform and Mellin Transform analysis
to obtain L? estimates for certain multilinear singular integrals. The results obtained
here extend estimates by Calderén, Coifman and Meyer on eommutators of singular
integrals to a wider class of multilinear singular integrals.

§ 1. Introduction. In this paper sharp estimates are obtained for

. operators of the type:

my Az €5 4) | f@)
1.1 y ,
( ) Pﬂfn{ (w ymjjwyy
where
mj—1
o AP ok
T, (A5 5 9) = 4;(2) — E hf(_y_)l_a(_"”_.__y)ﬁ :

k=1

These operators are related to those introduced by Calderén in [2] and
[3] and studied by Coifman and Meyer in [5], [6] and [7]. We will some-

n .
times denote these operators by D¥H{ [] Ty (453 @, 9f(*)} where DVH
=1

is the Hilbert transform followed by the nth derivative. (The reason for
this notation will become apparent in §3.)

The operators studied in this paper arise naturally from the study
of higher commutators of differential and pseudo-differential operators.
The simplest case is the commutator [4, DY H] where A is pointwise
multiplication by the function A (x). It has been shown by Calderén
[3] that this commutator can be written as the sum of pseudo-differential
operators of degree less than or equal to N —1 plus an operator of the
type studied in this paper.

One can show that higher commutators of the form [Al, ..y [4,,DVH]

..] can be written as the sum of pseudo-differential operators of degree
less than or equal to N —n plus the sum of operators of the type con-
sidered in this paper. One exampleis the second commutator [4, [B, DVH]]
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which can be written
[4, (B, DVH]|f = DYH[rn(4; @, )7 (B; @, )f(")]

3 0 (F ) H D 2, B ()]
Ie=1

m—1

3 (1 (]) DY E Iy (Bs @, ) A9 ()]
e i1 [ V) pN~3~k gr 409 B

. 1y () DYk [AD BWf]
P 3 () [49 B0

!
where motn =N, §>1, 1>1 and (1) - Tm%:“fr

The results and methods used in this paper closely follow those
developed by Ooifman and Meyer in [6] and [7]. It appears as a natural
follow up to [7] and the notation and organization have been chosen fo
be as consistent as possible with it. ’

Let a; e, j =1,...,n,fe& (& is the space of functions which
are 0 and rapidly decreaging). Let o: B®"'—( be bounded and measgur-
able. Assume o = (ay, ..., ) R seR and (a,s) = (ay, ..., oy, 8)

n

€ R"". We adopt the notation o(a, 8) = o(ay, ..., 4y, 8), &(a) = [T (o)
n : Jml .
and da = [] do;.

j=1

n
Let P, = {(D1seey Dy Do)t 1< P; < 005 12; (1/p;) =1jg <1}. For
(P P0) = (P15 -+ Duy Do), We define

L7 = {(a,f): eI, j =1,2,...,n, feL?},
and

@ ) lenag ={ [T 1l } 171y
F=1

Using the above notation and assumptions on the functions ayy f
and o we make the following definitions.

{1.3) DEFINITION.

n

A) T,(a, f) (o) = Rnil 6% (a, 8)d (a)f (s - aj) dads.

Je=1

(2) For (p, po) <P, (1) z-z—< 1,
g=0
M0, 20) = {02 [T, Pl < 016, Pl g}
Mn = rw Mn(phpo)' |

(D:20)EP,,

and

icm

Multilinear singular integrals 263

The function ¢ will be called the symbol of the operator T,
Tor g(x) a function (z.eR') with m>1 derivatives, we define the
Taylor series remainder operator

g9 () — a)

Brug(@) = gle—a)~ Y =

lo== ()

We lob B2 ,g(s) = g(s—a).
It m == (my, ..., m,) € 2" 0 < My, o € B* and g hag [m| = Zn‘mj de-
rivatives, wo denote the n-fold composition of Taylor series of j; 1by
R g(s) = R™, ... B™ g(s).
Lot 1 29 (8)

RM, slgon ¢
o, (a, §) = _lllr._.g_n“ .

I
J=1
The operator T, will be called a commutator of order |m|. We mnote
that if my =1 forj ==1,2,...,n, then the operator T, is the nth com-~
mutator treated in the papers of Qoifman and Meyer f%] and [7]. (The
order of the operator 7', does not have the same meaning ag the order
of a pseudo-differential operator.)

The main results of this paper are the following theorems.
Temormm L. If ay, ..., q, €, then

10 (@ )l < €Ul [ ] sl
=1
where 1 > 1/q mj%‘ (1/15,), 1<p<oo,j=0,1,...,n

TumorEM IL For a;e D (0% functions with compact support), a; =

d \"™
AP = (-———~) Ay, and

du
myp=—1
P (A3 10, ) = A njw’ AP () (0 —y)*
mg\dhys Wy YY) s J(w)“}% A a—

(@—y)™ | (w—y)

(‘1.41-) po. [ ]’%‘l{ﬁﬂ‘f.(ﬁiﬁi)_lmﬂww ay
Jwal

( — ’I;TU) ( .M_l)lml
where o, = wwﬂmﬁg)‘m‘f N

A el wo e ae L
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TemormM TIL. We define T™(a, f) = TMo»"(ay, ..., a,) by

e Tayls & 9\ F(9)
(4, f)(@) = fH{ o ey

lz—yl>s j=1

dy

and let
(e, fie) = sup 1T a, ) (@)l

Then, for 0 < g < o
[ nra <o f [ []4@] s @f @

where af is the Hardy-Liitlewood maximal function of .

§2. An I? estimate for smooth functions. We defined the order
n
of the symbol w, to be |m| = 3 m; where m = (my, ..., my,) € Z" and
j=1
0 < my;. The proof of Theorem 1 ;s by induction on the order of w,,.
To clarify the inductive hypothesis we make the following obser-
vations.
(1) Let o(oyy«..sanys) €M, Then if 7(ag, ..., ty B;8) = o(ay,...
ey Op, 8), v M, .
@) If o6 M,, then B2 0(ag, ...y Oy 8) = 0(0yy ey ay, §—B) € M, 0.
(8) The zero order symbols are those w's of the form RY, ... RL, sgns
=8gn(8 —oy—...—ay). ‘ . N
Applying observations (1)-(3) and the fact that Hf (s) = ( —in)sgnsf(s)

where Hf(x) = p.v. f Jw dy, we see that the zero commutators
v—y .

n—k n
are of the form | [] a][H(f [] a)] € M,,.
=1 jmi1

The inductive hypothesis is the following: for @ = (¥, ..., M5) € Zﬁ,
0 < m, and |m| < |m| —1, the symbol w; e M;. From observations (1)-(3)
it is clear that we need only show that the inductive hypothesis implies

N
©n € M, when m = (mny,...,m,) €Z" 3 my = |m| and m,; > 1.
J=1
The symbol

4 sB™, ... Bl s™~1sgng

K
[] o

J=1

Dy

is introduced and it is shown that w,, —®,, is & sum of lower order com-
mutators. It is enough to show that @, € I,.
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(2.1) DEFINITION. &° = {p: ¢(e%) e},

(2.2) LeMmA. For all ¢ e 7, oeM,, and all integers j, 1<j<n,
o(ls/yl)o(a, s) e M,,.
Proof. For ¢ e 77,

co

P = [ p(»)a” ay
where y(x) == ¢(¢") € 5. Hence
plsloyoa, s) = [ [s| ||~ o (a, s)ip(y)dy.

-0
But [s|* is a bounded multiplier with norm not exceeding (1+|y|) so that
the operator 7\gyq, has norm less than or equal to [ (L-+y|)* ol () dy
—00

where |lo|| is the operator norm of T,.
Since & is closed under the Fourier Transform, 4 €% and we have

oo

JWI@(V)[(J.—I—ly])Ndy << oo for any positive integer V.

(2.3) LmMMA: Let v: R"'~0 be o measurable function. Let € be the
st of y = (fy, ..., 4,) such that |a, ... |a,['n7(a, s) € M,. Then € is a con-
vex sol.

Proof. The proof is given in proposition 3 of [6]. Its importance to
this paper is the following corollary.

(2.4) COROLLARY. Assume that O € M, for. [m’| < |m|. Then for

n
06, <1 and 3 6; = 1, we have,

Je=1
ny s s""""lq n
[ 0, e Sgns
lag’ ... [, i €M,
[[ o
dul 7

Proof. The proof only involves the case Oy == 1,0, =0forj =2,...
oroy e The cases 0; == 1, O, = 0for & = j are taken care of by a symmetric
argument and the vest of the cases follow by convexity from Lemma
(2.8). So one mugt ghow

M, 7. ~1
B2 .. RIn s gon g
T
T o™
o
jI—II; 4

A simple argumnent shows that if o(a,s) e M,, then sgnoyo(a, s) € M,.
Henee we may replace loyl by @ in (2.5).

(2.5)

]aﬂ € Mn

3
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If my =1, let m' = (m,, mg, ..., m,). Then

R™ ... B s™~lsensg

ay n
7
=t .
R™2, ... RB™ (s—a)™ 'sgn(s —a,) BT, ... R "™ lsgns
= r - n :
] o [T
J=2 Fem2

Oalling the first term oy and the second term oy we sce that Ty (2, f)
=aT, (a,f) and T, /(a,f) =T, (a,af). Both T, and T, satisfy
Definition (1.3) and so they are both in M,.

I my>1, let m' = (my,..., m,) as above and let m" = (m,—1,
My, ..., My,). Then once again,

—1 -1
R™M, .. BRI s™~lsgng R, RT2 .. RTnos™~lggng

™
n n
[T & []ap
41 g=2 ‘
(Im|—1)! B2, ... Rz s™lsgns

(my —1) 1 ]1 [
R Jum2
The first texm is the symbol of the operator Lo, a,f) and the second
is a constant times the symbol of T,,(a,af). Both of these are com-
mutators of order lower than |m| and so satisfy Definition (1.3) by in-
duction. This proves the corollary.
(2.6) LEMMA. @, — w,, € M, where
sR™

~ay

ay

—(—ym

... Rl sm~lsgng
1] '
n
ar?
PA

Proof. Lemma (2.6) follows from the following identity. For ¢(s)
a function with |m| derivatives, ‘ )

Dy

(2.7) RZL ... BTz sp(s)
n
_ m: 2 3 -1 1 3
=sB™, ... B" g(s)— ¥ a,B™ ... R BT g(s).
J=1
Hence,
5 BT .. RN R sMlgeng
. D, —0,, = L .
m m n
i=1 o™t [T o
Rtf
Je=1

and all of the terms in this sum are in M, since they are the symbols
of commutators of order less than |m].
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(2.8) LemmA. Let 5 e OF where v is even, non-negative, at most one
and satisfies n(t) =1 for t €[ —n, n] and (t) = 0 for t ¢ [ —2n, 2n]. Then

@(a; ) [] (L=n(s ) =o0.
Proof. It 1—mn(s/ay) 5 0 for all §, then |s| > n|e] for all j and so
sgn(s — 3 o) = sgns for any subset J of {1, 2, ..., n}. Thus ﬁ X —n(s/a)
# 0 im;)gi’ies that =
BT, ... BT simi=t

s oy
D (2, 8) == 8808 —~—mm 7

[T o5
Jual

=0,

Proof of Theorem I. To prove Theorem I it suffices to show that
®,, € M, since by Lemma (2.6) @,, —w,, € M,,. From Lerama (2.8),

—
Buley 8) = — D (=1 [ [ nis/)m(a9)
Jedy o
where #, is the set of non-empty subsets.of {1, 2,...,7} and |J] is the
number of elements in J. If we define

ws(a, 8) = [[n(s/a)@n(a, s),

Jed

then

""" 1, s M i1 g oy
Wy = Sgn.s {I n(l,q/aj|)|s/aj]1/l-7|} {[IY Ia;ll“‘"] R*“l Ij;*ans 8gns }
jed jeJ o+ [~[ a;':]c*'l
Jom=1

Let ‘

le R’f(ﬁ;s'm"lssgns \

o= ([T

7 ‘
ge 11 a;:'k')‘ ! |
frve

Then &; e M, by Covollary (2.4). &, ][ n(ls/wl)js /e, e M, by Lemma
Jed

(2.2) and the fact that M () ¢ L= '.l%‘.imully, summing up the J's we get
that @, e I,.

§ 3. The fundamental identity. The purpose of this section is to
show that the operators considered in §2 can be realized as singular in-
tegrals if enough regularity is assumed on the a’s and f. Specitically, for

0
and N = 3 my;, T

GeD,f=1,2,...,0, €D, m= (Mg, ..., M,)
, ol

D
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" ‘
=DNH[Hrmj(Aj; #,)f(1)] and this operator is given by
=1

(A]’ b
~———p f]Y{r (2 — ya’””fy } a‘:(J? 4

(3.1) LeMMA. Assume g€ D and » c R.

(—fm)(—1)
m| ! (@m)* L

where ¢, =

(1) If N is a positive integer and ¢(w) = g™ () =...= g™ V() =0,
then
a .\
62) (& {po 200 2y} = (171 [ a.
(2) If &, N are positive integers with &< N, then
(3.3) :
IWe—yF | (LN v 9@ .
( ) { Ta—p Y= (N—k)v'(—“) {Mf —

Proof. Choose M > 0 large enough so that the interval [—M, 1]
containg the support of 9. Let n ¢ & be an even function where 0 < () < 1,
n(t) =1 for t € [—4 M, 4M] and 7(t) =0 for ¢ ¢ [ —8M, 8M]. Lt m(t)
= 7(t/k). For k>1 we clearly have for » e[ —2.M,2M]
9(%) 9(y) —g(»)
P | ——dy = | L2
P ) g W oy (@
By differentiating N times and letting koo we get the formula

—y)dy.

3 99 (@) (y —wy
AN g) —_— )=y —
(ifc—) {P.v. [ T dy} = (~1)¥ N!lim f ](wl—— Wi dy.

8
% le-1l<s y)

If glo) =gW(@) =... = ¢" V@) =0, formula (8.4) yields

N () (7 — )

o)~ L2 =0y .

1i - = L
dfil (a;~y)N+1 dy ?'”'f (mny)N"'l d.’/

lz~y|<s

which establishes (3.2).
Applying (3.4) to the function p(y) =
positive integers with & << N) establishes (3.3).

(3.5) Remark. Assume 4, <y 4, €. Then

d\¥ "
(Ey_) Hf’mj(A,; @3 Ylyme = 0

J=1

g()(»—y)* (where &, N are
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for N =0,1,..., [m|—1 where |m| = }" my;.
J==1

Remark (3.5) and Lemma (3.1) show that
N
o[ [ [ 455 @, 10)]
e

e |m|!p.'v.f[n[ ’"J(Aj’y n’zjy) } F) iy
Jral

z—y

(3.6) Luvma, Assume feD, 4d,,...,4,eS. Then

n
3.7y i"™0, IIﬁ{ﬁ’f{,)s'm'ﬂgnsfi( f( -\

el =l

_ [ 7my (455 2, Y) } @)
P f” | w—yy*t [ o—y 4
where O, is as tn Lheorem II.

Proof. To show this we introduce sorme multiple index notation:

F = set of subsets of {1,2,...,n},

J’ = complement of J in {1,2,...,n},

[} == number of clements in J,

Tog = (kyy «ovy Boy) Where J = {Jayeeer i and jr<jo<...
== {ly: 05 7(;_,,l Ky ~15...5 0Ky < mjz*l},

34 = Joy U Ryt Tyl

{hg| = Ty, + Iy -t Ty,

(o) = g *’W( a).

Using this notation we have the expansion for any g €&

( ,,,1)]7{ (k) (b — S‘aj)
X & ,
(6) = \7 3 Toy o I [ (e

/z,y lrJt 193 KN

a ) & dads

< iy

(3.8) fm)

For ¢ € B* w e R, wo use the following notation:
Agla) = [ [ 4ylay),
Jad

A (@) = [I A}Iy) ()
Y

and

da = [ [do.

Jed
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With this additional notation, setting g(s) = s sgns and using (3.8)

n
f R, s™sgns d(a)f (s — E a,) & dads
RA+1 jel

(3.9)

0 (S i ! {e"&wx
= 3 TR A
=, (W (bml =1Es )t 5
fmi~Vegl Y
o f[@ (,5: ——Z aj)]’m ] ( —im)sgn (3._..2 aj)AJ/(a) day %

R jer Jed
AG @) 1 (N g
f-.a%;-!-m—f s-/>_/ aj)(last.

Jusl

Pal

Integrating in a;. the inner infegral equals

@m)! {%f—;’i} ) (s - ]2; a,) .

Integrating next in a; we get the middle integral iy equal to
Eg)\y "
(2m)" I_AJ,DIWLI—IEJ!H jii;’__ } (s).
| k!

I.uﬁegra.ting in s and using Lemma (3.1) and Remark (8.8), the right-
hand side of (3.9) becomes

__a\m| Oyt , A(Ic]-) .
2 Z (—1) ,_2'7:) (—1)M1 [IAj(m)DlmlH{f(.)[]vgﬁ)" (@ —-)’“1}(90)
Jef kyeKy jeJ jeJ
» A17my( 455 @, y)
= giml Cmp.v.J Z:W;,Tgr’f(y)dy-
Proof of Theorem XL Let

. R, s gom ¢ . -
I(s) =i, | o= 4L~’—-—*ia(a)f(s-2a,) dads.
Rl [] (Ga;+ &y e
J=1
z b tmj—l
It Aj(w) = e ~;£-'[° _f a;(s)e®ds, then Afes and Aj(ag)
G ;
= Gt o Applying Lemma (3.6) -

(@—y™ Jo—y

I(e) =p.v.f ﬁ{%"(A;; w,y); 1) dy.
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Since
1 —n &y K "
M) 1(8) me - (m) o _ N7 - =1
B{g(s) (m-.1)!f f g ('9 Z“f“]“}n’ d“’
0 i i1 j=1

(where (m—1L)! = (my—~1)!... (m, —1)1), for any ¢ with |m] derivatives,

. d m| ‘
and since (—(i; s™sgns = [m|!sgns we have the ostimate
lmlt .
]R(w_t) s""‘ﬂgxns o _[1 ™.
= ! (m—1)! i Iyl

Applying the Iiebesgue dominated convergence theorem to I(e)
We 8e0 '

, " R 8 o ¢ 4 S
limI(e) = Q,, T ~»m(-»-f—‘f);,;»ww-/-f?»» Ma)f (s* - > a,) dads.
ol an 1 1 I a}nf =1

Jul

Finally, as e~0, 4] (w)~>4;(2), L < j<n, uniformly on all compact.
sets, and the same i true of the derivatives of Aj (@), It follows that

7 2
. r Ty (475 2,90 f(y)
e f ’ml {__v @@=y oy ¥

=,l= pvfj]j] {Qtj(w)] f(y)—dq/

(@—y) | a—y

§ 4. Real variable nethods. In thiy section veal variable methods.
are introduced to extend the estimates of §2 to a full range of Z? functions.
The trunecated operator T™(a,f) is introduced along with its associated
maximal function I3 A good 1 inequality is proved showing that 7% is
bounded in If by the I? norm of an appropriate product of Hardy—
Littlewood maximal functions.

Some moro notation and definitions must be introduced. Adopting

the notation of §1, for p == (p,, seey Dg) AR (D, Do) == (Pyy .oy Doy Do)
L@20) ang I(ewy Pl gy ave defined as before. In addition wo define :

lellgy = | ] Nyl
Tl
1 ,
ay () = t-}lljpnfaﬂ« f |y (£) ] it
2k ol Fi

where I is an interval and |I] is its length, We introduce the corresponding:

multi-index maximal functions,

"

a™ (@) [ ) (w)
e
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and
(a, )M @) ={] ] o} @)} (@)

71
Next define the truncated operator

[ tmle, 9)F) dy

le—y1>8

I a, f) (@) =

where

Tong (AI’ ’y
m('x‘; y) 0 — y IY - m J ’Inj

'We are now ready to state the principal result of this seetion.
(4.1) ProrvosiTioN. If a e L' for j=1,...,m, fell, then there
ewists yo so that for y < v,

le: T (a, f)(®) > 22, (a, /)™ (2)

and T (a, f)(

) == wup | L7 (a, f)(x)]
a>0

<A < e TR (a, f)(z) > 4.

(The notation |#: “...”| means the measure of the set » such that “...”.)
Theorem 1 will follow as an immediate consequence of Proposition
(4.1). The proof will be given in a series of lemmas, following closely the
real variable methods used by Coifman and Meyer in [5].
(4.2) LeMMA. If |w—y|> &, |@—,] < s[4, then for m,
w-¢/4) we have the following estimates.

e (w—eld,

a™(wy) o —

(a) (0 9) = (o3, )] < 0L,
(b) | ] o)~ i) < o(a, )" (@5)|
and for |y —yal < dlo—yl, ly—v:l < Hlo—yl,
(c) (o 9) —ta(o, 1)1 < 00 () =22,
Proof. .
(@, Y) (21, y) = g Ty (A3 w,y)[(m_yl).mh.l ~ @ mz)nnﬂi‘f] +
+(——_~%m ,-g s (435 @5 Y) =Ty (Ay3 miyy)]l;lfm,ﬂ(Aza; @, ¥) X

X _]7 Ty, (Aics @15 Y)

>3
| — |

< ca®™ (1,)
o —y|?

icm

Mullilinear singular integrals 273
& —
iiiii <o a(*)( ).14__.1]
o —y*

A gtandard argument tells us that for |o-—a,] < [ — @],

o —
~|" - m‘" )y < of* (@)
{—yl 2wy
which implies part (b) of Lewma (4.2). Finally, part (e) follows by the
game argument as (a).
Beforo stating the next lemma it is necegsary to introduee a Hardy—
Littlewood maximal function and an appropriate multi-index notation.
For (a,f) == (@, ag, ..., &, f) define

280 m g™
== BUL) | 77 Jﬂ[auj(c) |2 dt}

ij (“1) (

Iam

and the corresponding multi-index notation

Agy (@) (@) = [ ] 4,,(a) (=),
FEN
A (@, 1) (@) = Ay (a) 4y (£) ().

(4.3) Lmvnea,  Assume (a,f) e L0, p >1, j =1,2,...

1< po << oo, Further, assume 0 < 6 < qwhere 1/g = Z‘ (L/ps). If T™(a, f)

, o and

satisfies the wealk type inegquality:

(4.4) M_m]“

[ Tm(“’f)(w)>ﬂ|<0[ 7

then the mawimal fumction T (a,f) satisfies

Ty f) (@) << e[y (T™ (@, 1)) (@) + A,y (4, £) (@)]

and the same wealk type inequality as in (4.4) is valid for 1% (a, f).
Proot, Burom proving Lemmsa (4.3) we note that Theorems I and IT

imply (/L-.I.L) if 2_, (1};) <y, L < py <t oo unnd the afs and f are 0 with
J=0 J
compaet supp(jnrt.

The lemma is proved for ¢, e@,j =1,...,n, feP and then it
follows from standard arguments that the lemma can be extended to
any (a,f) e L2,

For ¢ > 0, let x4, bo the characteristic function of the interval [o —e¢,
#+¢l. Let n, € 2 be a function which i one on the interval [# —e, x - 6],
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less than or equal to one, non-negative and everywhere vanishing outside
the interval [@—2s, -+ 2¢]. Then, for », [ —e/4, #+e/4], we geb the
identity

48)  T™a,f)(@) = [ [n(@,y) —tnl@ 9L —7.(9)1f () dy +
+ [twlon, @)y — [ @, )7 @) (W) dy +
+ [ tn( —1.(9)1f () dy -

Taking absolute values, raising to the & power, averaging in @, over
the interval [x —e/4, z-+¢/4] and taking the 1/8 power gives the cstimate

(4.6)  |T™(a, f)(2)

’y ['r]a

%-1-8/4 1/61

<ef@ @Al @nErs ([ e .

o efd

The (a,f)" (#) comes from the first and last term of (4.5) after
applying T.emma (4.2). That is,

| [ttn(@, ) —ta (@1, 9L ~2,0) 17 (0) dy |
< [ (@5 9) — (@1, DL — 1, (9)1F () dy < e(a, )V (@)
and

| [l 9 ) - ) @y |
2 — 4|
lz—y|*

< ea® (@)

282> |—y]>8

If (%)l dy < o(a, ) (2).

Both estimates are independent of #, and are left unaffected by
averaging in ;.

To evaluate the second term on the right hand side of (4.6) we use
the fact that the usuwal Hardy-Littlewood maximal funection is weak
type 1-1. If we set B, = {w: |T™(a, f)(#)|" > A%, then

2
Bl <~ [1T"(a,0)@)
Ey
using Kolmogorov’s inequality
2
< 1ZP(@, £y -

Taking the 1/6 power of both sides and simplifying we get

B, < {2 “(“:f)”(p,pg_]ql

(4.7) .
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To evaluate the lagt tierm in (4.6) we need to be a little careful. We
leb 7, = 7,(£/2). Then 7,,(t) == 1 for [t —a| < 2. If we adopt the notation
7728“‘ = ('ylﬁua’l: L2 ")2«“71,)7 then. for [ml _"7[ < ":/l-l

T™(@y naf) (1) = T™(n20, ) (3).

Applying Kolmogorov’s inequaliby again (the weak type property is
gunaranteed sinee ny,a; € 2 and n,f € Z) wo have,

2-t-8f4

2 1/5 9 dla 18
{-; j/‘ (L™ (130 @5 1 ) (4)] dwlj» e {__; Cy (»g-) (72,2, n«.f)ll&omo)}
@—af4
n w-de @36 / .
— J}__ s z,][llpj‘l_];_ . ) 11110/ '
< 0!“[ 5 m_:{; |ot,j(6)|7’Jdl,l \1e m;{; | F ()P0 dtf < Ay p) (@, ) ().

Since 8 < 8y = A, (f)(#) << A5 (f)(%) we geb the estimate
1T (@, ) (@)] < o[ 4o T™ (@, ) (@) + A, (@5 H ()]
The weak type estimate for 7% then follows from (4.7) and
(4.8) OJsSImVArmN If Ty,..., T, are weal type (p;, ;) operators
lq = 2 (L/p) amd co>p; =1 for j=1,2,...,n, then dﬁ \T; a4l
satisfies the woalr, estimate of (4.4).

with 1

(4.9) LA, If (a, f) € L2, where 1)g = 3 (1/p,), and (4.4) is
§ o0

satisfied for this set of p;'s, then there ewist constants yy> 0 and ¢> 0 so
that for 0 <y < yy,

(410)  wz TP(a, 1) (2) > 24, Ag, (@, 1) (@) < 2]
< oyf|w: TRHa, f) (@) > A].
Proof. {w: !l‘&!i(a,‘f Y (@) > A} = U I, where the I are open disjoint
(g, 0y-1- 8) amd ’l’“‘(m Day) =< A sinco a,qﬁU I.

Tt will suffice to oxtablish (4,10 for each I, gince the I ;'8 are disjoint.
Choose an J, with a point 2 stisfying A, .0 (4 f) () < yA. I I; containg
no such point, (4.10) s sutomatically satisfied. Lot I == (o —28;, 4;--24y),

Sy = xS (2i; s the chavacteristic function of the interval I),
Jo = f—fu
For z eI, T%(a, f;) (@) = 1'2’(;5,}(1,, Xz“,f) (@).- By virtue of Lemma (4.3)

intervaly, I e
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'

n
we have for 1/g¢ = 3(1/p,),
7=0

(xz, @5 25 ) i, i
(411) el T2z, 150)0) > Il < 0[»1&@__931{,_@9)_]

pA
T s L [ vogp)”
o[L__[ sl ij astopear) | [ J foal ]
(2)]-?1[:,50(]/1‘].) p

<c{ Aoy (9, f)

N } < oy IANIT)-

For the f, part
(412)  1T™(@, ) (@)] < T2 (0, £2) (@) = T2(@, fa) ()] + 1 T2 (0, Fo)loy)]
<z+|fwm(w—y>~tm o, y)1fa(y)dy |+

EL—M

+f Lt 9)1 1faly)] dy + f It (2,91 1F2 () | By

£—8 Z--8
< Atey(a, N (2) < Aoyl

The estimate for the first integral in (4.12) follows from Lemma (4.2).
The estimate for the second and third integral follow from the obser-
vation that

a™(2)

17 L G
(0, ) S 07

OOmbining the f; and f, estimates,
o EI] I™(a, f1) (%) > 24, A(p,po)(“7f (%) < Al
T2 (a, £:) (@) > AL —o0,)|+
tlwely: TR (a, fo) (@) > AL +ep)]
(?’/ ”‘01’}’)) 1241

Since the constants ¢;, ¢ are independent of the choice of I; wo can add
the estimate for each interval to establish (4.10).

(4.18) CoroLLARY. [[T%(a,f)(@)lldz<e [ | 14 p,pg) (@) F) (w)%da for amy
0<q.

(4.14) COOROLLARY. For aeL™™ (i.e.-
fel’ p,>1,

<leel;:

ael® j=1,...,n) and

[VASCINDIMES

X & l1allieoy 171,
where |af, = ﬂl flalle

Corollary. (4.13) is the standard vesult of a good A inequality (see

icm

> VO T follows that @ = (J I, and o = g+b where
L .

©
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remarks at the end of this section). Corollary (4.14) follows from the fact
that any function in L™ is locally in Z* and the fact that 4,(f)(#) < [Ifl.-

To finigh the proof of Proposition (4.1) we need one more lemma
which extends the range of p's.

(4.15) LmMmA, If a; e I* for § = 1,2, ..., n and feI', then

l]/(n+1

l o ‘T f

lwe ™ (@, f) (@) > A <

where (@, Mllg,y = {J!: ;; flay ) 11 -

Proof. The proof consists of showinwtlmfollowing For wny j =0,1,..

oy laally = gl = o = lagly = (=104 [ay,p = ... == @] =1,
then
(4.16) o: 1™ (@, ) (@) > A < =

AI+1) T

Choosing j == n and using the multilinearity of 7™ (a, f), (4.16) will imply

the lemma. We proceed by induction,

Tirgt, the estimate (4.16) is valid for j = 0 (i.e. for all the as in L)

gince by Lemma (4.2)
[y =¥l
[tn(@, ) — ﬁa for

b (@5 Y1) 5;:0“(*)(%) —yl > 21y —ysl,

and 1™ is bounded in IL* as an opemﬁor acting on f whenever all the

a8 are in L*. By a standard Calderén-Zygmund argnment as given in
[9] we get that T™ iy weak type 1-1 as an operator on f.
Noxt assume (4.16) is valid for 1,2, ...,5—1 and assume f{ayfl;= ...
= ol = lfly = 1 and Jag,lle = ... = lagle = 1. Let @ = {w: aj (x)

(1) Tho I,’s are open and disjoint.
) 2 Il < o2l

(iii) ke |y (8)] it < AMOHD,
I ,,j ’

(iv) Ig(w)i
(v) b =« X b, where by, is supported in I.
I

WELER

This follows by detining ¢ by
(), wEQ,
g@) =) 1 f o), wel,

|Ilc | Ly
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and defining b = a;—g. Then if y, denotes the characteristic function
of the interval I, we define b, = byy,.

Let 4, be the center of the inetrval I, and let 27, denote the interval
which is twice the length of I, and also centered at y,.

For = ¢ 21, we observe:

@) | [0t (@—tymat|< 20—y ™ L 200H)

since

1 1
- bM< 2{— (1 dt}<211/(:l~|~1).
7 1{1 D)< {II,,x ka Jay (1) ,

2y 1I™(ay, <oy Gy, ) (@)
|Ile/(J
L o —ysl®

(] 1—17 blc: ®jpry

<n ]'un

=1 i=]-h

1, (
T X e | O

satisfies the followmg weak type estimate:
When, fel?,
{4.17)

f Iflat.
(3) The map

o ¢ LkJ 20 Lf () > A < olflafA.
This follows from using Fubini’s theorem to get

ILf(m)ldm<2 f If(y)l{lIk| f W }d
k Iy

zeJeI), chla_}' ]II"|2
k

o [ 1fw)ldy < ol

Q

This strong type result implies the weak estimate (4 17). Putting (1), (2)
and (3) together we see that for « ¢ U 21,”
T(ay, .. oy Oy, (@ 00"1( )y 1“1* 1 (@) Al”hH)If

8o we have the ploduct of j operaﬁuow which are all weak type (1,1) and
the functions a;, ..., a,_,, f all have an I* norm of one. This implies that

(4.18) o ¢ U 2L Ty, oy 00,0, 0

< I-’L‘é U 217:: Caf(m),
< OMI/UH)

w2,
% &

Sy W1y by @i,

)a’n!.f)(m) > M

ooy @y (0) If () > 20+

This follows from observation (4.8) about weak type estimates for the
product of weak type operators.

-
[ L, pO o
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We next use the inductive hypothesis to make & wealg type estimate
for g.

(4.19) oz Iy, oty f) () > 2

g
= e I ("u o Bty s Gy amf) (@) >
i/ {loo

< olllglle ATV o 020,
Sineo (7l 5 A wo have
(h) There is

(4.20)

vy Ay iy Gypyy e

A
gl

|U 20
Pulting together estimates (4.18), (4.19) and (4.20) we have shown
s (@, f) (@) > 4] <

It the I' and L™ novms of the functions are arbitrary, by dividing
by the appropriate noemy and using the wmulbilinearity of I™ we get the
estimate:

210 = /}t”(““”.

e/ AMI+1)

”/'”t” [”l”l I[ ”"i”

1+
A ’ ’

R H( P
o) :

e A™ (e, f) () e 4] =% (}l

Tu particular, for (@, f) o 100,
s ™ (a, f) (o) = 2] <
Proof of Theorem LI Proposition (4.1) then follows by applying

Lemmay (1.3) and (4.9) to Lemma (4.15), In other words we have the
estimato:

s Ry ) () e 2, (g L) () =7 pA] < g™ s

Theorem TIL then follows Dy the following argument. If aye L' for
iy ,'n and  fely thon (a, H () = oflo* as w-»c0. Ionco
Jeeo Lo ¢ -2 (|1 For g = L (1), Lemma (4.3)

whore

i, f) (@) > 4]

guutantees the oxistones ol T4

i == q f 207 s T (o ) (@) = A A

N
% (’y"”f Mz T (@, f) () > A dd-o [ 277 oz (a, £YO (@) > A dA

8

< (Jj/” -1 Ilf

fLa PR a1 dlee

4


GUEST


280 ) J. Cohen

Choosing y so that ey™™* < ¥, letting N—oc0 and e-»0 completes the proof
of Theorem IIL o
By standard arguments Theorem TIT implies the following important

corollary.
n

(4.21) CoroLLARY. For (a,f) e Lin2o), IZ(‘ (Lip) =1Ljg<n+l, 1<
=
Po< 00, 1< P o, and T™a,f) and Te(a, f) the operators defined
in Theorem I, the following propertics are saiisfied :
@) T (s Dl < €y Hllp,ng)-
(2) YmT™(a, ) (@) exists almost everywhere,
80
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An analog of the Marcinkiowicz integeal in ergodic theory

by
ROGER T, JONIKS (Chieago, I1L)

Abstract. ot 7' ho an invertible moeasure proserving point transformation from
a space X onto ilsell, Deline 7y (w) =int{n 2 0] T e B} The analog of the classieal
Marcinkiowiez intogral I (f) (@), is dofinod by

Ty S )

fpsal 4

It s the elneaeterislio funetion of a sot B3, then this integral, like its classical analog,
given o moeasure of the distanee Tron w point 2 to the set B, Intuitively it is the average
amount of Gimo the point spends ouwbsido the seb B during its orbit. It is wsed to give
a direet prool that the ergodie Hilhort transforin is woal type (1, 1).

Theorems. Lot (X, X, m) denoto & complete nonatomic probability
gpace, and 7 an ergodic measure preserving invertible point transformation
from X onto itsell, For B e X, with 0 <2 m(B) << 1 and a point », ¢onsider
the orbit, w, Tw, T, ... Following this orbit wo will enter and leave
the set B infinitely often, In the following we will be interested in various
measures of the distance from the point » to the set B.

A natural measure is the recurrence time, defined by

~fint {n:> 0] "0 e B}, w@eb,

(@) =y o¢B.

This function has hoen previously studied by Kae [67] and Blum and
Rosenblabt |1 Xae has shown dhat [wglly == L (B), and Blun and
Rosenblntiti have studied the highor moments,

A gecond measure, reladod to the reeuvrence time, s defined by

w(®) -+ ind{n = 0] T""w e B}.

Tt i not hard o see that = (@) may fail to be in LX), In fact v () e L'(X)
if and ouly it »,(w) has a finite second moment,

Both of the ubove measuroments are local in the sense that after
a return to B, thoy fail to observe the remainder of the orbit. However,
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