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Divisible subspaces and problems of automatic continuity*
: by

W. G. BADE (Berkeley, Calif.), P. C. CURTIS, Jr., (Los Angeles, Calif.)
and K. B. LAURSEN (Copenhagen)

Abstract. This paper explores the role of divisible subspaces for linear operators
in the theory of automatic continuity of homomorphisms between Banach algebras.

§ 0. Introduction. Tn 1972 Graham Allan [1] showed that the algebra
of formal power series could be embedded in a commutative Banach al- ]
gebra B if and only if there exists an element # in the radical of B satisfying

Ba™tl o By )

for some positive integer m. He went on to observe that if this condition
is satisfied, then there exists a discontinuous homomorphism 6 from the
dise algebra A4 (4) into the radical of B with unit adjoined which maps
the coordinate function # onto 2. To construct the mapping 6, Allan
first shows that if  satisties the above condition, then there exists a non-zero
subspace Z in rad B such that for every A e C, the complex plane,

(@2—NZ =Z.

The subspace Z, necessarily non-closed, is called o-divisible, and the
existence of such a subspace is the essential tool in Allan’s construction of 6.
Indeed in a later paper [29]M. Thomas observes that the existence of an -
divisible subspace Z in a radical algebra R is a necessary and sufficient
condition for there to exist a discontinuous funectiomal caleulus for the
element «. Since o (x) = {0}, this is equivalent to the assertion that there
exists a discontinuous homomorphism of the dise algebra into the algebra R
with unit adjoined which carries z onto z.

In this paper we shall investigate the relation between the existence
of divisible subspaces for elements @ in a commutative Banach algebra B
and the existence of discontinuous homomorphisms from certain commmu-
tative Banach algebras into B. Johnson and Sinclair [20] were the first
to investigate the relationship between automatic continuity questions

* This research was supported by the National Science Foundation Grant No.
MC8-75-07091 and the Danish Natural Science Research Council.
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and the existence of divisible subsgpaces. The technigues employed here
are extensions of those developed in their paper.

If A = 0(Q), and » is & homomorphism of A into B, the possible
discontinuity of » is completely determined by the divisible subspaces in B.
Specifically, we prove in Section 2 that » is discontinuous if and only
it for some f e 0(R), »(f) has a divisible subspace in B. Such a subspace
necessarily lies in the radical R of B. Furthermore if » i3 discontinuous,
there must exist elements y € B with divisible subspaces.

Examples of discontinuous homomorphisms of C(£) have been
constructed by Dales [14] and Bsterle [17] under the agsumption of the
continuum hypothesis. Other set theoretic models have been constructed
by Woodin [31],[32] and Solovay [27] in which discontinuous homomor-
phisms of ¢(Q) do not exist. On the other hand if » is a discontinuous
homomorphism of 4 (4) into B which carries z onto b, it is not known if b
must necessarily have a b-divisible subspace in the radical of B. However,
this is the case for all known examples of such mappings. A. discontinunous
homomorphism » need not map A4 (4) into the radical of B with unit

~adjoined, and it may happen that (radB)* = {0}, so elements of the
radical- need not have divisible subspaces.

Section 1 containg the necessary aspects of the theory of divisible
subspaces including the Mittag-Leffler Theorem [10] and the stability
lemma [26], p. 11. These resulty are applied to continuity problems of
algebra homomorphisms in Section 2. Two main results are the following.

TurorEM. If A is a Banach algebra with a bounded left approvimate
identity, B is acommutative radical Banach algebra and v 18 & non-zero homo-
morphism of A into B, then for some a € A, v(a) has a divisible subspace.

The continuity theorem for homomorphisms of 0(Q) mentioned above
is a consequence of this result.

TEEOREM. Let B be a commulative Banach algebra with scatiered spectrume
A wnecessary and sufficient condition for every homomorphism from any
Banach algebra A into B to be continuous is that B have no non-trivial nil-
potent elements and that for each b € B there exist mo b-divisible subspaces
in B.

A locally compact Hausdorff space is scattered if it contains no compact
perfect subsets. Furthermore a locally compact space is scattered if and
only if each continuous function on it vanishing at infinity hag countable
range [23], [24]. Pelezyriski and Semadeni in [23] call these spaces dis-
persed.

If the algebras 4 are assumed to be separable and satisfy the condition
that co( M*) < oo for each maximal modular ideal of codimension one,
then this theorem remains true without the assumption about nitpotent

icm
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clements. If the algebras 4 are assumed to be Silov algebras, regular
commutative semi-simple Banach algebras which are normal on their
maximal ideal spaces, then the agsumption that the maximal ideal space
of B is seattered may be dropped.

In Section 3 we study the continuity structure of a homomorphism
from A = C"[0,1], the n-times continuously differentiable functions on
[0,1] into an arbitrary Banach algebra B. In [8] it was shown that if
»: 0" - Bis a homomorphism which is continuous on 0% = 0" for some k> n
(in the O* norm), then » is necessarily continuous on 0™+, We use the
phrage eventnal continuity to deseribe this situation. We prove that
y: (" — B is eventually continuous if and only if »(2) has no non-trivial
divisible subspace. It follows ag a consequence that if »: (™ — B is contin-
uous on ™ with its usual Fréchet topology, then » is continuous on ¢***1,

Since a divisible subspace must lie in the radical of B, it follows
that every homomorphism »: " — B is (***+'-continuous if B has finite
dimengional radical, & result proved also in [8]. We prove here the stronger
result that if dimrad(B) < oo, then » is ¢*"-continuous. It is not known
whether every eventually continuous homomorphism of 0" is continuous
on (*". We close with a discussion of this problem.

We list now the basic concepts and facts needed in the sequel. For
proofs we refer to Allan Sinclair’s book [26], in particular Section 1.1.

0.1. DupINITION. Tf T: A — B is o linear map and 4, B are Banach
spaces, then the separating space of T, &(T') is defined by

#(T) = |y € B| there exists {u,} = 4, z, - 0 for which Tz, - y}.

This space measures the discontinuity of T’ because & (I') = {0} if and

only if T is continuous, by the closed graph theorem.

0.2. LmmmA. Let A, B, C, D be Banach spaces, T: A — B be continuous,
8: B — C be linear and R: C — D be continuous. Then

(i) £(8) is a closed limear subspace of C;

(il) L(8T) = &(8);

(ifi) (R#(8))~ = &(RS) (- denotes norm closure);

(iv) RS is continuous if and only if RF(8) = {0}.

0.3. DupiNTIION. If A is a Banach algebra, B a Banach space and
T: 4 — B a linear map, then the continuity ideal of T, #(T), is defined
by )

F(T) = {wed] y—T(wy) is continuous}.

0.4. DEFINITION. Let X be a Banach space and T be a continuous
linear operator on X. We say that a subspace D < X is T-divisible if

(' =)D = D, for each 1eC.
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Among all such spaces D there is a largest, the algebraic span of
all T-divisible subspaces of X. A divisible subspace iy never closed unless
it is the zero subspace [20]. In most situations under study here, the space X
will be a commutative Banach algebra and 7' will be multiplication by
an element of the algebra.

0.5. Remark. We note that the largest T-divisible subspace D of X
Is characterized by D being maximal with respect to D == (T —1)D for
every A in the spectrum o(T) of 7. To see this it suffices to show that
(T —p) D = Dior every uin the resolvent set o( 7). Since (1T — 4) (T—p)~'D
=T —u)y (T—2)D = (T—p)'D for any A eo(L), u e (1), it follows
that (T —p)=*D = Dby the maximality of D. Ience I = (T— w) (T —u)~'D
S (T—wuD < D.

To study a discontinuous homomorphism » one must also investigate
the continuity properties of mappings »)(z) = »(a,#) where a, is a fixed
clement in the domain of ». To do this it is convenient to introduce a
somewhat wider class of mappings, the class # of gencralized intertwining
operators introduced in [7], § 2. We list here the basic facts about .

Let 4 be a Banach algebra and M be a left A-module with module
action g: A - (M), the bounded linear operators on JM. We do not
assume the homomorphism g to be continuous. For technical reasons
we assume M to be commutbative, i.e.

e(ab)m = o(ba)m
for all a,b A, meM.

0.6. DEFINITION. A linear map §: A — M is of class £ if for every
a € A the map b — §(ab) —o(a)8(b) is continuous and if for all a,bed
we have S(ab) = S(ba).

Let » be a homomorphism of a Banach algebra 4 into a commutative
Banach algebra B and assume B = »(A4). Set M = B and define 0: 4 -+B
— B(B) by e(a)b = v(a)b. If a, is fixed in 4, and 8y() == v(am), then
it is immediate [7] that 8, is an operator of class .#. This class includes
derivations, and other operators as well, but we shall be concerned
here only with homomorphisms and “multiplied homomorphismy?”.

The following fact about maps of clags £ will be used repeatedly
without specific references.

0.7. LzemMmA. Let A be a Banach algebra and M be a left A-module
with module action o. If 8: A - M is o map of class & with separating
space & and continuity ideal S (8S), then

F(8) ={aecdl o(a) ¥ = {0}}.

Proof. By Definition 0.3 a e #(8) iff b — S(abd) is continuous, hence
by definition of class Sy aeF(8) HE b — o(a)8(b) is continuous, The
latter is the case iff ¢(a)% = {0}, by Lemma 0.2 (iv).
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Let B be a commutative Banach algebra and I be an ideal in B.
If £ € B, we say I is totally reduced by K if there are no non-trivial divi-
sible subspaces in I for the operation of multiplication by elements of
Kyie it bell, D s T and (0—2)D =D for all ieC, then D = {0}.
We will say I is totally reduced if I is totally reduced by itself.

Some remarks are in order. The proofs are immediate.

(i) Let B = xad.B. In view of Lemma 1.4 the statements “B is totally
reduced” and “R-is totally reduced by B arve equivalent.

(ii) If B is totally reduced and B’ is formed by adjoining an identity
to B, then B’ is totally reduced. -

(iif) IL B Is semi-simple or hag finite dimensional radieal, then B ig
totally reduced.

(iv) If B is a radieal Banach algebra and R is nilpotent or satisfies
("B = {0} for each r eR, then R is totally reduced. This follows

n=0
from the observation that if D is # divisible, then »D = D, so

D =)D = ("R = {0}.
n=1 ne=1

We show by an example at the end of Section 2 that a radical Banach
algebra can be totally reduced but () r"R # {0} for some » e R.
n=1

(v) If R is the radical of a Banach algebra B, then R may be totally
reduced but B may not be. This situation arises in Dales’ construction
of a discontinuous homomorphism of the disc algebra [13]. We discuss
the example in Section 2. However, if @y, is finite, and R is totally reduced,
then B is also.

§ 1. Much of the usefulness of the notion of divisible subspaces
derives from the basic result that is known as the Mittag-Leffler Theorem
[10]. We quote here the version proved in [26].

1.1. TurmoreM. Let {I,} be a commuting sequence of continuous linear
operators on & Banach space X. Denote by X, the largest subspace of X for
which T,X, = X for each n, and X the largest closed subspace of X
for which T,X* = X* for each n. Then X = X,. '

1.2. Remark. Although this result does not directly mention divi-
sible subspaces, the connection is obtained as follows. Recall that if
T e #(X), the largest T-divisible subspace D of X is characterized by D
being maximal with respect to D = (I'— ) D for every A in the spectrum
o(T) of I. If T has countable spectrum {4,} and W is the largest closed
subspace of X for which (’F—“i;[)“ﬁi == W for every n, then by the Mittag
~Leffler Theorem D is dense in W
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Another important consequence of this theorem is the following
result. A. more general formulation is contained in Corollary 1.9 of [26]

1.3. CoroLLARY. Let X and Y be Banach spaces and T: X — X,
R: Y - Y be continuous linear operators, with R not a scalar multiple
of the sdentity. Let 8: X —~ Y be a linear operator for which RS — 81
X - Y ds continuous.

If G(RLS"(S)) is coumtable, there exists a mon-constant polynomial p
whose roots lie in o (R|& (8)) such that p(B) & (8) < W(2(8)), where W (£ (8))
is the closure of the largest R-divisible subspace of the sepavating space & (8)
of 8.

Proof. Since RS — S8T' is continuous, Ry (S) == P (RE) == PR(ST)
c #(8). By the Mittag-Leffler Theorem and the remark above it suffices

to show the existence of 2 non-zero polynomial p such that p(R)%(8)
= (R—y)(p(R)#(8))” for any yeo(R). I o(R) = {1,} aun,nqo {2}
in a sequence {u,,} 5o that each 1, occurs infinitely olton, let T, =T — piy,,

R, = R —u,, and use the Stability Lemma [26] to cunclude that there
exists a constant M so that s > M implies

(B, ... R, #(8)]" =[R,... Ryy&(8)T".

Let p(R) = R, ... By and let y € o(R). Then if y ==y, with m > M,
[(B=»(pR)78)|™ = (B —y)pR)(8)] :
= [BpBi ... By (8] = [RpBy... By Byt 7 (8)I
=[B,... B, (8)]" = [R,... By & (8)]"
= [p(R)&(8)]".

In the case that X is a commutative Banach algebra and I' is multi-
plication by an element of X, then divisible subspaces are ideals in the
radical of X. The result is due to Mare Thomas and the proof ig in [29].

1.4. LeMuMA. Let B be a commutative Bamach algebra, let b ¢ B and
let D be the largess b-divisible subspace of B. Then D is an ideal contained
in the radical of B.

1.5. Lemma. Let A be a commutative semi-simple Banach algebra
and v: A — B = y(A) be an isomorphism with bounded inverse, i.e. there
exists M > 0 such that |»(x)| = M| for every x e A.

- If B is semi-simple, then v is continuous. If B is not semi-simple, then »
4§ discontinuous, and rad B = & (v). Furthermore B = v(A)@D (»).

Proof. Let B =radB. We note that »(4)nR = {0}, because if

0 # o e A, then
lIv (™)l = > M| = M@,

where & € 0(®,) is the Gelfand transform. Hence the spectral radins of
»(x) is greater than |#f, > 0, and therefore v(z) ¢ R. '

Mla™]
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Next suppo,so {#.} = 4 and v(s,) >b eB =»(4). Since [z, —,,
< M7 (w, — ), {8} I8 a Cauchy sequence in A. If =, — g, then
By, —y =0 'nnd v(@y, — @) — b —v(w,) € #(v). Since b = (@) + (b —» (o)),
this shows that & (») =R and B =(4) = »(4) DL (»).
it B = {0}, then &% = {0} and the first assertion follows.

Furthermore

§ 2. In this section we apply the results of Section 1 on divisible
subgpaces to obtain automatic continuity theorems for homomorphisms
hetween Banach algebras. As an immediate consequence of Corollary 1.3
we have

2.1, TunoruM. Let A and B be Banach algebras with B commutative.
Letv: A — B be a discontinuous homomorphism from A into B. Let a,e A
be such that vo(w) = v(ae)v(z) is discontinuous with continuity ideal S, (»)
and separating space &. Suppose Pp is scaitered and suppose B is totally
reduced by »(4).

Then for every a e A, not a complex multiple of the identity if A s
unital, there ewists a mon zero polynomial p, = p, whose roots lie in the
spectrum of v(a) considered as a multiplication operator in & (v,), such that
p(a) e I (vy). The same coneclusions hold for S (v) if 4 is not unital.

Proof. Referving to Corollary 1.3 let X = 4, ¥ = B and let a € A.
Let T be left multiplication by e and R be multiplication by »(a). Then
with § = », we have

b — v(a)vg(b) —»y(ab)

continnous. Next we assert o(R|& (vp)) is countable. To show this it is
enough to show &, is scattered, where ¢ = »(4) in B. By adjoining a
unit if necessary we may assume B and C to be unital. If ¢ e 8C, the Silov
boundary of C, then by a well-known theorem of Silov, ¢ extends to
a homomorphism on B. Therefore if ¢* is ‘the dual mapping of the
injeetion of ¢ into B, then *(@Pp) o 90 and by [24], Theorem 1, 90 is
scattered. Let ¢ be the nniform closure of ¢ on @y, Then &z = P and
20 = a0. ¢ onsequently by [24], Theorem 4, C is the algebra of all con-
tinuous functions on 80, and as a result @y = 9C.

Now there exists by Corollary 1.3 & non zero polynomial p such that

w(p(@)Fo = W(F0)

the elosure of the largest »(a)-divisible subspace of & (»). Sinee B is totally
reduced by »(4), W(&,) = {0} s0 »(p(a)s, = {0}, hence p(a) €S ()
by Lemma 0.6. Replacing », by » in the above argument gives us the
last assertion.

The next result, known as the primeideal theorem, is from [7], Theorerm
2.7. We have altered the phrasing to suit our present purposes, but the
proof is essentially unchanged, so is omitted here.
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2.2. ProrosITION (Prime Ideal Theorem). Let 4 and B be Banach
algebras. Assume B to be commautative and A to have an identity. Let v: A — B
be a homomorphism with separating space & +# {0} and continuity ideal
S (v).

If A]F(v) is am integrol domain, let vy == v; if not, there ewists a, e A
such that if vy(®) = v(wx), then v, is discontinuouns, and if &, and S (v,)
are the separating space and continwity ideal for w,, respectively, then

(1) for every a e 4 (v(a)&y)” = {0} or = &y;
(L) F(vy) 2 F(v) and A[F(vy) is an integral domain.
The result enables us to extract further information from 2.1.
3. THEOREM. Let A, B, and » be as in Theorem 2.1. Then either
F(v)2 = {0} or there exists ayc A such that if vy(w) = v(ayw), then v, is
discontinuous and & (v))* = {0}.

Proof. Suppose that 4 /7 (y) is an integral domain. We assert 7 (»)
is & maximal ideal of codimension one. Since £ (») is an ideal, 1 9@7(7})“
Thercfore, there exists a continuous linear functional a on 4 such thatb
a[#(»)) =0 and a(l) =1. Let a(a) = 0. By Theorem 2.1 there exists
2 non-zero polynomial p such that p(a) e #(»). Since 4 /7 (v) is an integral
domain, a—2e.#(v) for some AeC. But 0 =a(@a—1) = —1, and
o €.#(v). Since S () is closed and has codimension one, & (v) © 1:( 7(&))
Therefore & (v)2 = {0}. If 4/ (») is not an integral (Iom(un, then there
exists a, such that »(w) = »(aww) has a continuity ideal #(v,) o .~ (»)
for which A/#(») is an integral domain. Applying the same argument
to v, we see that (v is maximal, and &(v))2 € L (¥)-& (v)) = {0}.

Immediate continuity results are available from Theorem 2.3 for
the class of semi-prime Banach algebras. Recall that a Banach algebra
is semi-prime if it contains no two-sided nilpotent ideals. A. commutative
Banach algebra is semi-prime if and only if it contains no nilpotent ele-
ments.

A clags of exampleb of radlical semi-prime commutative Banach algchras
isprovided by the weighted L'-algebras on R , usually denoted by MR, o),
where a: B, - R, satisfies a(t; +1,) <a(ly)a (ta)y b1yt € R, . The umltl-
plication is bV convolution and

Il =17 et
By

provided |f{a is Lebesgue-integrable. If a() is rapidly decreasing, say
a(@t)™ -0 as n —> oo, then I (R, a) is radical. Moreover, the
Titchmarsh Theorem [28], p. 324, shows that LY (R, , a) containg no nil-
potent elements. More elaborate examples of radical, semi-prime Banach
algebras may be found in [12].
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2.4. TuroreM. Let B be a commutaiive Banach algebra with scaltered
mawimal ideal space. A necessary amd sufficient condition that every homo-
morphism from any Banach algebra into B is continuous is that B is totally
reduced and semi-prime.

Proof. First assume there exists b eB with countable spectraom
¢(b) having a divisible subspace in B. Let {V,} be a sequence of compact
neighborhoods of o(b) such that (1) ¥, = o(b). Let ¢ be the algebra of
germs of analytic functions on o(b), and assume that the induective limit
topology in ¢ is defined by the sequence of Banach algebras 4 (V;) of
those continuous functions on V; holomorphic on intV;. There exists
by [29], Theorem 2.11, a homomorphism » of ¢ into B such that »(2) = b
and » is discontinuous with respect to the inductive limit topology in 0.
On the other hand, » induces & homomorphism »;: A(V,) —+ B, »(2) = b.
Furthermore, by [16], p. 433-434, »; must be discontinuous for some 4.

On the other hand if B hag nilpotent elements, then it is easy to
veriy that there exists a disecontinuouns homomorphism from the algebra
of C* functions on [0, 1] vanishing at 0 into B. Conversely if B is totally
reduced and »: 4 — B is a discontinuous homomorphism from a Banach
algebra 4, then we may infer from Theorem 2.3 that & (») contains non
zero elements which are nilpotent of order two. This contradicts the
fact that B is semi-prime.

An intriguing conjecture iy that the assumption that &z is scattered
may be dropped in the above result. Some evidence in this direction is
furnished by Theorem 2.13.

Auntomatic continuity results may be obtained if the assumption
that the range algebra is semi-prime iz replaced by a restriction on the
maximal ideals of 4 of codimension one.

5. THrOREM. Let A and B be unital Banach algebras, with B commuta-
tive. Suppose that A is separable, and M* has finite codimension for every
mawimal ideal M of codimension one. Let v be a homomorphism of A into B and
assume that v(A4) is totally reduced by »(4). If @p 45 scattered, then v is con-
tinuous.

Proof. If v is discontinuous, then the proof of 2.3 shows that either
J(v) or S (v,) is 8 maximal ideal of codimension one. This contradiets [7],
Theorem 2.8.

In certain cases the only possible homomorphism turns out to be the
zero homomorphism. We need first the following generalization of a theorem
of G. Allan [2].

2.6. PROPOSITION. Let B be a commutative Banach algebra with a bounded
approvimate identity. Then there exist a non-zero element b € B and a non-zero
subspace D of B for which

bD = D.
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If B is in addition a radical algebra, then there exisis a divisible subspace
for b.

Proof. In view of Remark 0.5 we need only prove the firgt assertion.
Let {a,} = B be a sequence converging to zero, and let ¢ be the smallest
closed ideal containing {a,}. Sinee B has a bounded approximate identity,
O = gp{ca,: (Tc?B? By the Cohen factorization theorem for sequences
and its proof [9], p. 62-63, there exist b e B, {b,} < B such that {b,}
converges to zero and a, = bb, for cach n. Furthermore for each &> 0,
there exists ¢ e B such that sup |b, —ea,| < 6. Therefore {b,} < ¢, and

n

consequently ca, = obb,, = beb, € bC. Hence O < b0 < (. The existence
of a subspace D satisfying D = bD, now follows by Theorem 1.1 and
Remark 1.2.

2.7. TEHEOREM. Let A be a Banach algebra with a bounded loft approai-
mate identity. and let B be a commutative radical algebra. If v is a homo-
morphism from A into B such that B is iotally reduced by v(A), then » = 0.

Proof. We assert first that » is continuous. If not, then by Theorem
2.1 for each & € 4 there is an integer % such that o™ e # (»). Consequently
by Proposition 2.2 we may choose an a4, € 4 such that if vy(z) = ACTOR
then », is discontinunous and #(»,) = 4. However, since 4 has an approxi-
maite identity # (»)? = A? = 4 is closed and hence, by [7], Lemma 2.5,
vp must be continuous. This contradiction shows that » is continuous.

Consequently the kernel of » is closed, and assuming » s 0 we may
factor out ker» and assume » to be one to one. Since 4 has a bounded
approximate identity, so will the commutative Banach algebra A4, =
A [kery. By Proposition 2.6 there exists a non-zero element & 4, and a
non trivial a-divisible subspace D < 4. Since » is one to one on 4, (D)
is & »(@)-divisible subspace of B. This contradiction completes the proof.

‘We note that there exist continuous homomerphisms » such that »(4)
fails to totally reduce B = »(4). A simple example illugtrating this remark
is provided by the dise algebra A(4): Let 4, = {fed(d): f(1) =0}
and let K be any closed primary ideal in 4 (4) with hull = {1} such that
K # A, . If B = A,|K, then B is radical and the canonical homomorphiym
of A; onto B is the desired example. Thomas’ Theorem 2.11 in [297 can
be used to comstruet discontinuous homomorphismg of 4, into B.

When 4 = C(Q), the algebra of continuous complex valued funetions
on the compact Hausdorff space £, Theorem 2.7 combined with a theorom
of Foias and Vasilescu [19] yields the following result.

2.8. THROREM. A homomorphism v: C(Q) - B is continuous if and
only if mo v(a) € B has a non-trivial divisible subspace.

Proof. If : €(L2) — B is a homomorphism and no v{a) has a non-
trivial divisible subspace in B, then there are no divigible subspaces for

Divisible subspaces and aulomatic continuily - 169

p(a) in v((]'(.Q)), 80 we may assume B = p(O(_Q)), By [4], Theorem 4.3,
p = pu+21 whered: C(Q) »radB =R, and p(a)R = {0} for every
o e M (I), the ideal of functions vanishing on the singularity set 7 of .
Furthermore, 4 is a homomorphism on M (F). Since u(a) annihilates R,
no A(a) has a non-trivial divisible subspace, for a € M (F); hence by The-
orem 2.7 A == 0, i.e. v is continuous.

For the converse, suppose v: C(2) - B is continuous and suppose
ac0(R); let A be the closed algebra generated by e and its complex
conjugate &, viewed as O (c(a)). In the terminology of [19] we see that
(@) is a generalized scalar operator with a spectral distribution of order 0,
hence by [19], Theorem 3.2, Q) (v(a) —)2B = {0}; thus »(a) can have

&
no non-trivial divigible subspace. This completes the proof.

If v is a homomorphism from a Banach algebra 4 to B which is
discontinuous, we may lift » to a homomorphism 6 from 4 to 5?(.9’(1))),
the bounded operators on & (»), by setting 6(f)s = »(f)s, s € #(»). This
homomorphism is useful in the study of ». We give some of its properties
in the following lemma. }

2.9, LmvmmA., Let A and B be commulative unital Bamach algebras
and let v: A — B be a discontinuous wunital homomorphism satisfying B
= m Lot ay € A and assume vo(z) = v(ag®) s discontinuous with separ-
ating space P, and continuily ideal F(v,). Define 0: 4 — 9B(F,) by

0(w)s =»(z)s, se€Fy, vzed,

and set D = 0(4). .
(22) Let 0% be the adjoint map from Pg to D, defined by

0*(p)s =y (0(@), wed,ypedy.
Then 6* maps $g homeomorphically (for the weak star topologies) nto hull
(Jf("’o))-
(b) Let H: B — B(#,) be defined by
H(b)(s) =b-s, beB,sec,.

Then &(6) = H (.9’(1:)) and i partioular 0 is continuous if and only if
F(v)-Fy = {0}, In this case F(v,) = kerd is closed.
(¢) If a ¢ A and & is a 0(a)-divisible subspace of 9, i.c. (6(a) —~y)€
=& for all y eC, then
V =span{Tls| T e &, s € S}
is y(a)-divisible in B.
" Proof. (a)Since 6(4) is dense in 2, 6* is one-to-one. If wéT) — (1)
for every Te®, then 6*(1.)(f) = v.(0(f) j>1po(0(f)) = 0" (yo)(f) for
all f e A. Thus 6* iy a homeomorphism onto its range. Let ¢ = 6% (y),
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where p & @y Since 0(f) = 0forf & # (uy), we have 0% () (f) = v (0(f)) = o,
80 ¢ € hull (.f(v)) :

(b) BSinece 6 = How, this is an immediate consequence of Lemma,
0.2 (ifi).

k
() Let AeC.IbeV,b = Y Tis,;, where T; & &, 5, € . By assnmp-
=1

tion on ¢ there exist U; e & such that 1) = (Q(a) —«Z) U;, and henee
I
b= (0a)—4) D) Ugs; = (v(a) —2) -0
i=1

I
where v = 3 U, e V. This shows V < (v(a)—24)V. On the other hand
I =1
it w= 3 Ts eV, then
=1
k-

(p(a)=2)w = D' T,(0(a)—A)(s) e V,
=1
since T, and 0(a) commute.

Next we use these results to show that for certain commutative
Banach algebras 4, if » is a discontinuous homomorphism then the hull
h(F(») of #(») must contain a perfect set.

2.10. THEOREM. Let 4 be a commutative, separable,” unital Banach
algebra and suppose co(M?) < oo for each mawimal ideal M. Let » be o
homomorphism of A into a Banach algebra B and assume B == v—(j_ﬁ If B
is totally reduced by v(4) and v is discontinuous, then h(7(»)) contains
a perfect set.

Proof. We first need a preliminary

2.11. Levva. Under the assumptions of the theorem if aye A, vy(w)
=v(auw) is discontinuous and k(7 (vy)) is scatteved, then 0 is comtinaous
and & (v)% = 0.

Proof. Apply Theorem 2.5 to the homomorphism 6: A — HB(F,) of
Lemma 2.9. By 2.9 (¢) 2 = 0(4)” is totally reduced by 0(4) and by
2.9 (a) @y is scattered. Thus 6 is continuous s0 & (y,)2 = 0 by 2.9 (b).

To prove the theorem assume h(.f (v)) is seattered. Then by the
lemma, 0 is continuous, and consequently #(») is closed. Lict a & be
the canonical map of 4 onto 4/#(»). It G—A-L is invertible in A/#(»),
then »(a) —4-1]#(») is a one-to-one mapping of & (») onto itself. Thorefore
for a e 4 o(»(a)|#(») < o(@) which is countable. By 2.1 if »(a) # A1,
»(a) is algebraic over (). If #(») is prime, then the proof of 2.3 shows
that (») is maximal which is impossible by [7], Theorem 2.8. If ()
is not prime, choose a, so that »,() = »(ae) is discontinuous with prime
continuity ideal .#(r,). But J(v) = F(v), s0 h(F(v,)) is scattered, and

icm
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by the lemma, #(»,) is closed. Repeating the above argument for £ (»,)
in place of # (v), we get that . (»,) is maximal whieh ig again a contradiction.

Tor Silov algebras, Theorem 2.10 yields the following automatic
continuity corollary.

2.12, OOROLLARY. Lei A be a separable Silov algebra such that M°
has finite codimension for each mawimal ideal M. Let v be a homomorphism
of A into the commutative Banach algebra B. If B is totally reduced, then
v 48 CONLINUOUS.

Proof. If » were discontinuous, then h(# (»)) would be finite by [257,
Theorem 2.2. Thix contradicts 2.10.

Some algebras to which Theorem 2.10 applies arve the Siloy algebras
Ly (6) with adjoined unit, where & is & locally compact abelian group,
and A40[0,1], the algebra of functions absolutely continuous on [0,1]

1

1
with norm [Ifll = [file-+ [ 1f(t)|dt. In these algebras maximal ideals have
d

bounded approximate identities, so M2 = M for each maximal ideal.

For Silov algebras the condition coM? < co may be replaced by a
condition that the range of » be semi-prime. )

2.18. TumormMm. Let v be a homomorphism of the Silov algebra A
into the commastative Banach algebra B. If B is totally reduced and semi-prime,
then » is continuous.

Proof. Suppose » is discontinuous and assume a, .4 is chosen
80 that vy () = »(a2) is discontinuous. If S (»), and # (»,) are the respective
continuity ideals, J(v) < .#(»). Therefore h(F(»)) < h(#(»)} and the
latter is finite. Therefore by 2.9 (a), o(»(a)|%), and o(r(a)|5,) are finite
for each a € 4, where & and &, are the respective separating spaces.
Therefore we may apply the arguments of 2.1 and 2.3 and conclude that
there exists an @, € 4 such that v, is discontinuous and %5 = {0}. Since
there are no non zero nilpotents in B, &, = 0, and ¥, is continuous, which
is a contradiction.

2.14, Remarks. Recall [26], Remark 8.1, that if 4 is a Banach
algebra and M is a Banach A-bimodule in which [am|, |[meal < lal|m]
for all @ € 4 and m € M, then B = 4 @ M with norm [(a, m)|| = la|[-+|m|
and product (ay, m,) (@, M) = (4,85, G4My+ma,) is a Banach algebra.
If 4 has a unit 1, then (1, 0) is a unit for B. Bvidently {0} ® M becomes
an ideal which is nilpotent of order two, and if A is semi-simple, then
rad(B) = {0} ® M.

We shall use this general construction to present two relevant
examples: let 7': M — M be a continuous linear operator and let (4, |-
be a Banach algebra of power series with the property that if (a;)i2, € 4,

then 37 |a,| |T% < oo, and |3 &T%|< li(a;)[. Almost by definition. M
=0 =0
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is 2 Banach A-module via the module action
(a)m = 'm,(a,‘) =2a,1“’m.
=1

(i) We use this method first to give an example of a commutative
Banach algebra B with radical R such that B is nilpotent of order two
and hag an element a € B with a non-trivial divigible subspace. With the
above notation let M = C([0,1]), let T: M - M be the Volterra operator

3

(Tm)(t) = [ m(2)do

0

and let 4 = {(a 24 lag] < oo} with [(a;)ll = Z la;). Since T iy quasi-

nilpotent we have 1[2 a, T < )jiam{ 179 < ; la;] for every (a;) e A. Let

B =A® M. As pomted out 111 [13], whel(, ‘rhls example originated, the
set
My = {m e 0([0,1])] m®(0) =0, p =0,1,...}

is T-divigible. If 2: ¢ -t denotes the identity function, then obviously
zed; it we let a=(2,0)eB and D = {0}®M,, then (¢—A)D
= ((#, 0) — (L, 0))D = (2—2, 0)({0} & My) = {} D (T =AM, = {}
@ M, = D. So the algebra B is certainly not totally reduced. However,
R =radB = {0} ® M is totally reduced since it is nilpotent.

Thus while we know in general that a Banach algebra B can have
a totally reduced radieal without being itself reduced, it is not hard to
see that if @y is finite the two properties are equivalent. This follows
easily from the fact that if e is an idempotent in B and D is b-divisible,
then eD is eb divisible. We do not know whether the properties are equiv-
alent under the assumption that &5 is countable.

(ii) We next give an example of a commutative radical Banach algebra

o

R which is totally reduced, but has an element @ e B for which (M) "R

nwal
s {0}. Our example is based on Mare Thomas’ (unpublished) example
of a quasinilpotent operator T on & Banach space M which hag no non-
trivial divisible subspace, but for which ﬂ I"M 5 {0}. We wish to

ne=1
thank M. Thomas for permission to use his example here.

Let 7 be the countable tiree illustrated below: the trunk of = contains
countably many points, there are countably many branches, the nth

branch consisting of » points, all branches joining the trunk at the point @,. -
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: voe bm

/bM
. __'_____.‘./bn\

Xn X2 X Xg\ .
bzl\.

by

bll
Fig. 1

‘We let M be the weighted It space on = with weights chosen so that
it T is the leftward shift on = (w1th addition at ), then I' becomes quasi-
nilpotent.

Now T has mno divisible subspace, because if m erangeT, then m
vanishes at the end of each branch, hence if D < M satisties "D = D
for each n = 1,2, ..., then m € D means m is zero on each branch, hence

at #,, hence everywhere, i.e. D = {0}. On the other hand !ﬁi () # {0},

as the characteristic function of {r,} satisfies Ly = T (l{b y) for each
n=1,2, "
Ne*zt 1et A Dbe the zulgebm of power series

4 ={(“¢)§l112“ 1T < 00}

=1

and use the defining sum as the norm on A. Since [T < [T%|| | T %
for ¥ =1,2,...,4—1 and i =1,2,...,4 is a Banach algebra; also,
since nT’“H”‘ -—>0 a8 i -+ oo for ea.ch n=1,2,..,it is elementary to
check that 4 is a radical algebra. Let R = A @ M be the Banach algebra
defined at the beginning of these remarks. Because 4 — A ®{0} is an
isometric embedding of the radical algebra A and because {0} ® M is
nﬂpotent it is clear that R is a radical algebra.

For later use we remark that if fe A, then ﬁ f"4 = {0}, because
if b =f"a, then b = (0,0,...,0,* % ...). "

About B we eclaim thg+1310110w1’ng:

(i) there ewists (f,, m,) € B such that ﬁ (for mo)"R # {0}, Md

(ii) B is totally reduced. "

Proof of (i). We know that ﬂ T™1,) 5= {0},s0let 0 2 m, € ﬂT ();
write m, = T™m,, for n =1, 2, Let fo= (1 0,0,0,...)eAd and note
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that (f;, 0)"(0, m,) = (0, mq), because

(fos 0)™(0, my) = (£3, 0)(0, my) = (0, T™m,) == (0, my).

Thus (0, me) € () (fo, 0)"R.

=1

Proof of (ii). Suppose D is a divisible subspace in R for gome
(fos M) € By 1. (fo, me)D = D. Tt Dy = {feA| (f,m) €D for some m},
then it is easy to see that D, is fy-divigible in 4. By the previous remark
D; = {0} and hence D =0@D. Thus (fy, me)D =D < (fy, me) (0 D)
=0®D = (0,/()D) = 0®D +f,(T)D = D. We are now reduced to
showing that f,(T) has no divigible subspace D in I*. But sinee Fo(T)
= 5‘ a,/T* we sec that if f,(T)D = D, then each m e.D vanishes on each

t=1 .
branich ‘of 7, and hence m vanishes everywhere. To sce this suppose a,

is’thé first coefficient of } e, 7 which is not zero. Then D = So(I).D
(3N ' vi=1

icm

= fa,h'geT”(ll)‘, ie. everyr clement of D vanishes on the last n points of

each branch of ‘7. Since m>1 repetition of this argument shows that
D = {0}, hence R is totally reduced. -

§ 3. In this section we examine the role of divisible subspaces in the
spudy of continuity properties of homomorphisms of Banach algebras of
differentiable functions. Let n be a non-negative integer. We denote
by O" the Banach algebra 0"([0, 1]) of n-times continnously differentiable
functions defined on the unit interval [0, 1], with the norm

LB
Il = max‘zi;,(ﬂ.
d=0 a

tefo0,1]

In{8], Theorem 2.5, it was shown thatif »: ¢" > B is a homomorphism of
0" into’ a Banach algebra, and the restriction of » to OF is continuous
with respect to the C*-norm for' some % > n, then » is necessarily con-
tinuous-on 0% for all %> 2n-+-1. We use the phrases eventual continuity
and C***-gontinuity o deseribe this situation, Analogously, if » is discon-

binuous on every 0%, k > n (equivalently, » is discontinuous on OF for some:

k= 2n-1) we say that » is permanently  discontinuous. A basic result
of [8], Theorem 2.6, was that it »: 0 > B and imrad (B) < oo, then »
iy 0**+l.continuous. - . , o

In this section we obtain in Theorem 3.3 a set of necessary and suf-
ficient conditions for a homomorphism »: 0" B = »(0™) to be (™1
continuous. Most important of these is the condition that the operator

|

of ‘mulfiplication on B by the image #(z) of the generator 2(f) = ¢ shall

have no non-trivial divisible subspaces. We obtain as a congequence of this.
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result the fact that if » is &@homomorphism of 0" info a Banach algebra with
totally reduced radical, then » is C***continuous, stréngthening the
theorem mentioned above. The same theorem is also strengthened in
another direction: If »: ¢" -» B and dimrad (B) < oo, then » is (**-con-
tinuous. As pointed out in [8], the value 24 iy best possible.

It remains an open question whether C*"+-continuity for a homo-
morphism »: (" — B always implies C**-continuity, and further whether
O*-continuity implies a formally stronger set of equivalent conditions
established in Theorem 38.11.(%) .

Let v: C" — B be a discontinuous homomorphism. Since ¢ is a Silov'
algebra, the continuity ideal #(») has finite hull and containg the ideal
J(F) of all functions vanishing in neighborhoods of F = hull (- (»).
(See [4], [8] and [25].) As in [4] we will call the hull of & (v) the singularity
set of ». If y, is any point of ' and a, is any function in " which equals
one in a neighborhood of y, and vanishes in a neighborhood of the remaining
points of F, then the multiplied homomorphism vo(f) = »(a)»(f), feC™
is also diseontinuous with separating space & (v,) = v(a,)&(v) and con-
tinuity ideal s (vy) = {f| aof €.#(»)}. Consequently hull .4 (»,) = {7o} These
observations allow us to reduce the study of arbitrary homomorphisms
of 0™ to that of multiplied homomorphisms whose singularity sets have
only one point via the next lemma.

3.1. LeMvA. Let n>1 and let »: " - B be a homomorphism with
separating space & (v) amd continuity ideal S (v). Let F = {1y eeer vp}
be the singularity set for v and let a; be functions in C* such that

(i) a0, =0 4f 4 £5,4,5=1,..,r; Co A

(i) a; =1 in aneighborhood of y; ond = 0in a neighborhood of {yld # i}
fori =1,... 7

Define ay=1— 3 a; and v(f) = vasf), f€C® i =0, ..., 7. Then
i=1

(i) L(») = F(v) D:.. D L(n);

() #6) = ) 50

Proof. Since a, vanishes in a neighborhood of F, it follows that
ap € F(v). Thus v, is continuous. Clearly & (v;) = (v(a;) 2 (»)" = £ (), so
>

{2 & () € &(»). Conversely, if s € &#(»), then
ms]

s =p(l)s =2r'v(a,-)s ej L),

. t=1 i=1" )
since.a, € £ (v). Since for s € & (), »(a;)s = s, v(a5)s =0, j #4, ¢ =1, ...
..., 7, the sum is direct.

(}) Added in proof: cef. footnote (3), p. 183.
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2

”
To show that £ (») = (N £ (»;) we note that if a € #(v), then a0 & 2 (»)
i=1 r
80 f = v(maf) = v(af) is continuous for ¢ =1, ..., 7, Le. F(¥) < NI (y).
i=1
If f — v(a,af) is continuous for 4 = 1, ..., r then, since a, € ./ (»), we obtain

r
the continuity of f — »(af) = X v(aaf). Hence a'e S (»).
1=0

We will also need a notion from operator theory. Let # be a non-nega-
tive integer. An operator T with real spectrum on a Banach gpace X is called
a C™-operator [217] if there is a closed interval I =2 ¢(T) and a continuous
homomorphism u: C"(I) — #(X) with u(2) = T'. These operators coincide
with the generalized scalar operators with real spectrum having o spectral
distribution of order # which are discussed in [11], Chapter 8. Improving
an earlier result of Vrbova [30], Foias and Vasilescu [19] prove that
it T' is a ("-operator, then () (T —AI)""X = {0}. Hence 7' has no non-

ieC

trivial divisible subspaces. As a congequence we have:

3.2. LemyA. If p: O =B = u(0™), n=0, is a continuous homo-
morphism, the operator of multiplication on B by u(z) has no non-trivial
divisible subspaces. :

3.3. TunorREM. Let n>1 and v: C" - B = y(0™) be a homomorphism
with singularity set F = {y,, ..., v,}. The following statements are equiv-
alent:

(1) » s O*"*l-continuous;

,
(i) The continuity ideal s (v) contains the polynomial v = [ (2 —p,)"*

il
(iii) The operator on B of multiplication by v(2) has no non-trivial
divisible subspaces;
(iv) #(»)* = {0};
(V) L)t = {0} for some &> 3.

Proof. The equivalence of (i) and (ii) is implicit in the arguments of
[8]. In the proof of [8], Theorem 2.5, it is shown that (*-continuity of Y
for some k > » implies that #(»;) contains a power of (¢ —v;). Arguing
as in the proof of [8], Corollary 2.3, we get (s —y,;)*+ EF(w), t=1,..,,7
Then it follows from Lemma 3.1 that v € .# (»). The proof of [8], Corollary
2.4 shows that (i) — (i).(?)

To prove that (ii) - (iii), suppose that. v e s (») and that D is a
»()-divisible subspace of B. Define B, = »(0)B and ¢: (" - #(B,) by

P(H)®) =»(f)b, beB, felOm

(®) In [8], page 266, line 25, read “F(v)” for “M,

”
nmty v

icm
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We show ¢ is a continuous homomorphism by showing (@) = {0}.
If B € &(¢), there is a sequence f,, = 0 in " such that ¢(f,) = R in #(B,).
However, if b = »(v)b" ev(v)B, E(v) =limy(f,)»(»)d =0, as v ef(»).
Thus B = 0. Sinee »(v).D = D, we have D < B,. Also
(p(2) =7I)D = v(2)—»)D =D, yeC,

80 D is p(#)-divisible. Lemma 3.2 shows D = {0}.

We prove next thab (iii) — (i). Let »*" = »|0®", where O°" has.its
natural norm. By [8], Corollary 1.1, »*® is bounded on the subalgebra
0"~ J(F). Thus we have

23 (2) = u(f)+A(f),

where x is the unique (*™continuous extension of »*® to My, .. (F), p
and A are homomorphisms, and 4 # 0if and only if » is discontinuous
for the C*"-norm. If v is (*"-continuous we are done. Therefore suppose
A % 0. Then

f € M21L,2n(F)7

P (2) = A My g (F)) = () € & (v),
and
1 (M 0 (F) & (2) = {0}.

(See the arguments of [4], page 601.)
r s
Let ¢ = [] (2—y)*"*", where F ={y;,...,y} is the singularity
1

set for ». We apply Corollary 1.3 to the mappings 8 =4, Tf = g-f,
feMy, (), and Rs = A(q)-s, s € ¥(4). It follows that there exists
a non-zero polynomial p whose roots lie in o(R) such that

p (M) F (B € W(£(2), ~

where W(&(A)) is the closure of the largest A(g)-divisible subspace D
in #(A). Since o(R) = {0}, p = 2~ for some positive integer N.
We next show that W(# (1)) = {0}. For each yeC,
D = (Ag)—¥)D = ((g) —u(@) —»)D = ((9)—¥) D,

so D is »(g)-divisible. Let D, = D be the largest »(g)-divisible subsp-a,ee
in B. We show that D, must be »(e)-divisible, and hence {0} by assumption.
If y € ¢, we can select y, 50 that # —y is a factor of ¢ —y,. Since by Lemma
1.4 D, i an ideal in B, it suffices to show D, < (»(2)—y)Dy. If dy & Dy,
select dy € D, so that dy = (v(g) =yo)ds. Then

4, = ("(Q) "70) dy = ("’(z) "7")”({11) g

for some polynomial ¢,, and hence d; € (v(2) —y)D;. We conclude thab
W (& (4) = {0}, so the polynomial ¢~ belongs to S (vEM) =7 (A). 'iFrom
the implication (ii) — (i) applied to »*, we find that » is C¢*"*'-con-

—.»x
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tinuous, and hence is 0***'-continuous by [8], Theorem 2.5. This completes
the proof that (iii) — (i). )
To prove that (i) — (iv) let F = {y,, ..., »} be the singulavity set

for » and write
r
¥ = pyt 2 Vi

f=l
28 in Lemma 3.1, Cleatly » is (*"*'.continuous if and only if each », is.
It sutfices to show & (»)® = {0}, ¢ = 1,...,r, because then

F0) =D v(@)ps P = 3 pla)2 ) < Y &) = {0}

i=1 i=1 il
r
(Here we have used a0; =0, ¢ %4, and 1 — 2 @ €7 (v).) Now » hag
: d=l

singulaxity set {y;} and M, .(y,)* < #(») by [8], Theorem. 2.1, and the
fact (z _Vi)]l-/[n,n('yi) = |z'-yiu'-{n,n('yi)' If 81y 85,83 € .SP(',U,,:) = ‘(/(7/)7 there
exist sequences {f,}, {¢.} in M, ,(;) sueh that f,, — 0, g, — 0, and »(f,,)
_>817 ’”(gm) - 82' But "(fmgm)y(’”i) = 07 50

. 1883 z}rf-nli‘(fmgm)ss = 0.
It iy trivial that (iv) — (v).

Finally we prove that (v) — (i). Let »: C" — B be a homomorphism
satisfying & (»)* = {0} for some % > 3. Consider the splitting 12 = J7RR
The proof that (iii) — (i) shows that either the polynomial ¢~ ig in & (»&m),

" and hence » is (***!-continuous, or else there is a non-trivial A(q)-divisible
subspace D in & (»). Since A{g) € &(») and & (v) is nilpotent, D = {0},
80 this alternative does not oceur. This completes the proof of the equiv-
alences.

A. slight modification of the proof that (v) — (i) yields

3.4. COROLLARY. Letn > landv: 0" - B — v(C™) be a homomorphism..
If rad B is totally reduced, then v is O™ '-continuous. If B is in addition
semi-prime, then » is continuous.

3.5. COROLLARY. If »: G([0,1]) > B = »(C[0, 1])is a homomorphism,
then v s continuous on O* if and only if the operator om B of multiplication
by v(2) has no non-trivial divisible subspace. : ‘

Proof. In the proof of Theorem 3.3 the implications (i) -» (ii) — (iii)
are valid when # = 0. To prove (iii) — (i) we apply the previous argmment
0 ! = 9|01 to get that »® is continuous. We now apply [8], Theorem 2.5,
to get that »¥ is continuous.

One should note that the absence of non-trivial divisible subspaces
for »(#) does not imply that » is continuous on ¢ [0, 17 (cf. Theorem 2.8),
for assuming the continuum hypothesis there exists a discontinuous
homomorphism » on C'[0, 1] such that » vanishes on the principal ideal
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20[0,1]. In fact Hsterle shows in [18] that » may vanish on a prime
ideal of O[0, 1] containing 200, 1].

3.6. COROLLARY. Let »: O" -~ B be a homomorphism with separating
space & (v). Then

S =L0P  for all & > 3.

Proof. We may assume that B = m Then &(») 2 &(»)*
220 2...2.£0)Fis a descending chain of ideals. Let k> 3 and
congider B/‘?(—v—)—’r If P: B > B[¥ () is the natural map, then Py is a
homomoprhism with :57’(1’_1:)" =P&(»" = {0}. Hence &(P»)* = {0} by
Theorem 3.8, i.e. P& (#)® = {0} or ¥ (»)® = L (»).

The same type of argument can be used to prove an analogous stability
result.

3.7. OOROLLARY. Let v: C" > B be a homomorphism and loi 9,
= & (»|0%) for every k= n. Then there emists N such that S = ?,Zc =Ly
for every k= N,

Proof. If v is eventually continuous, then the result is trivial as
&y, = {0} for every k> 2n+1. If v is permanently discontinuous, there
exists an integer N so__tha%}ji k>N, then &, = ¥y, by [22], Prop-
osition 2.1. Suppose F3 s Py and consider the natural map §: »(0F)

—v(C™) /5% . The composite homomorphism @ = So9|C0¥ hag a separating
space &(p) = §(Fy) = {0} and F(p)2 = S (&%) = {0}. This shows that
@ is eventually continuous (Theorem 3.3), hence & (p|C*N*') = {0} or
Lo S ?‘;’; But since Syy,,; = &y, this contradicts the assumption
that &% # Py. ‘ .

‘We next consider the problem whether eventual continuity for a
homomoprhism » of 0" implies ¢*"-continuity and related questions. For
this discussion we will need some further properties of ideals in O™

Let ' = {y;, ..., y,} be a finite set in [0,1] and p = [](z— y;)™
Define the algebra : = ’

Ay () ={fe0™[0,1] ~F)| [] =Y g? () >0
=1
ag b=y, t=1,...,r;j =0, ...,n}.
We give 4,(F) the norm

n 7

1 j o (4) ~

ey = ) 5sun | H b=y (0)]1 te0,1] ~F}.

7=0 =1 _

3.8. LmMMA. With the given norm A, (F) is a Banach alge.bra, w:&th a

bounded approwimate identity. The map T(g) = pyg, g € A (F) is a linear
homeomorphism of A,(F) onto M, ,(F).
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Proof. The proof that 4,(F) is a Banach algebra is straightforward
and ‘we omit it. If F = {y,..., 7}, then 4,(y;) € 4,(F), ¢ =1,...,7,
and the natural imbedding is continuous. Here 4,(y,;) is the algebra for
the case F = {y;}. The proof given in [6], Theorem 2.1, for the case I' = {0}
shows that 4,(y;) has a bounded approximate identity, and we obtain
a bounded approximate identity for 4,(F) by taking produets of the boun-
ded approximate identities for the A4,(y;). Now

* 7
Mn,n(-F) = Q J’[n,n('yi) = n (29—)/1;)"24.“()/,;) .
An element of the last Qet can be written

6 = (z—y)'ay = (F—p)"ay = ... = (2—p,)"0,
where a; € 4,(y;). We have

= (8 —y1)"01

where by == (2 —ys)"a; € A, ({y1, va}), 50 ¢ = (2 —71)" (2 —¥,)"b;. Repeating
this argument we get that ¢ = pb,, where b, € 4,,(F). Thus we have shown
that M, (F) = pA,(F). A detailed computation shows the reverse in-
clugion, and that T' carries A, (F) continuouslyito M, ,(F). The fact that T
iy & homeomorphism follows easily from the clo&od graph theorem.

3.9. COoROLLARY. Let' F' = {y;,..., 7} be a finite subset of [0,1]
‘ r -
and let p = [] (z—y;,)". Then
=1
nn 1'1)2 ﬂ 2, n(7i)2 = .pMn,n(F)‘

Proof. We note that

” »
-Zl‘/[r:.,n,(]j’)2 = q Mn,n(yi)z = p z"")/t n,n('}/w)
i= =1

An argument. like the one given in Lemma 3.8 shows that

ﬂ (z'*’}/¢) Mn,n('}’z =P ﬂ Mn 'Vi) —pMn n(F)
i=1
Finally by the Cohen factorization theorem we have A, (I) = A, (I3
50 by Lemma 3.8
PM o (F) = pPA,(F) =

PANTP = M, ().

The importance of this result lies in the fact that Mn #(F)? becomes
a Banach space, when it is given the graph norm

“f“p = “f”n""”f/.’p “m f € 'Zl/‘[n,n(l?')2
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for the map T'(g) = pg, g € M, ,(F) which carries M, ,(F) onto M, (F)
This norm is clearly also a Banach algebra norm.

We note if o € 4,(F), then the map g — ag defines a continuous
operator on M, (F): since the map @ — pa: A, (F) - M, ,(F) is bicon-
tinuous,

lagll < Oullag [Pl < Csllollam g /P)a,0m < OlolLy,mlgl, g & M, (F).
Thus A,(F) lies in the multiplier algebra of I, ,(F). We note next that
A (I leaves invariant continuity ideals.

3.10. Lovwa. Let »: C" — B be a homomorphism and let aye C™
Suppose that the multiplied homomorphism v,(f) = »(a,f), f € 0" is discon-
tinuous amd let T = hull(#£(v,)). Then A, (F)(F (vo) "M, ,(F)) S F(ve)n
NMy o(T). ‘

Proof. Since M, ,(F) is closed and has finite codimension in O,
f e #(#,) if and only if there is & constant K, such that [»,(fo)ll < Ellgll
for all g e M, (F). Let a e A,(F) and f e F(v) "M, ,(F). Then

vo(afg)] = lIvo(fag)ll < Elagl < K, Clalla,mlgl; g€ Lnnll).

"3.11. TanoreM. Let n>1 and »: 0" — B be a discontinuous homo-
morphism with singularity set F = {y,, ..., y,;. Consider the following
statements

(a) & (v) s finite dimensional;
(b) #(v) has finite codimension;
(c) F(v) s closed amd contains M, . ,(F);
(d) ()r = {0}; ‘
r
(e) p(e) =[] (2—m)" Ev°’(v);

i=1
(£) v 48 continuous on M, n(P)a = pM, () for the graph norm |fl,
= |fli+1f{pll;

(g) v is C*"-continuous.
We have the following implioations:
(a) = (b) < (0) = (&) = (e) = (f) = (g).

Proof. (a) = (b). Since f(v ={f 0" »(f)¥(») = {0}}, it follows
that C"/.#(») is faithfully represented on & (») by 8(f+£(»)(s) = »(f)s
feOr, s e P(»). Hence it &(») is finite dimensional, the same is true for
™15 (v).

(b) «

codimension, 8o iy each of the ideals £ (»;). If we show that each & (#;)
is cloged, then the fact that £ (») is closed follows from Lemma 3.1. So let »;

(c). We split » = Z”i as in Lemma 3.1. If #(v) is of finite
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be a multiplied homomorphism with one point singularity set which for
convenience we take to be {0}. Suppose () has codimension % and let
Ay = A,({0}). We shall prove that 2”4, < F(x), so My, =24, Hw).
To prove that 24, < £ (y) we claim that it is sufficient to show that
2"a*' e #(;) for every a € 4,. To see this we refer to a general version
of Oohen’s factorization theorem [3]: if b € 4,, then there exists o 4,
and {o} < A, such that b = ale; for j = 1,2, ... Thus &"b = 2"*lg,
e f(»;) by Lemma 3.10.

So let aed, and consider {"a,ze"a?, ..., """} < M, . Sinee
J(v;) is of codimension & there exist scalars ay, ..., a5, , such that

¢ =aq,2" + ... + a2 eI ().

Let ¢ be the first index for which a, # 0 and take o, = 1. Then ¢ <k
and '

+1

6 =2"a (1 +ag 0 + ... + 050" = (1 b).

Since b vanishes at 0 there is a neighborhood N of 0 such that 145 =£ 0
on N. Let ¢, e C" be supported on N and be identically 1 in some neigh-
borhood. N, of 0. The function % = aey(1-+5)~"! clearly belongs to 4,.
On N, we have ok = 2"a?"! and hence ¢k —2"a?"' vanishes near 0, and
thus belongs to 4 (»;). Since ¢k e S (»;), we obtain z"a?** &.# (%), hence
2"a"+' e #(v,) by Lemma 3.10. Thus we have ghown that & (%) is closed,
80 S (v) 2 M, ,(y;). But it follows then that ()2 My pa(ys). - The
argument to prove this is exactly as in the proof of [8], Lemma 1.7.
Consequently S (v) 2 M, ,o(F). Thus (b) = (c). If #(v) is closed, then
Sy 2 M, (F)=J(F)", so (¢) = (b).

(¢} == (d). X s;,8,6%(») we can choose {f,} = M, (I < ()
with »(f,,) = ;. Thus 0 = »(f,)s, = 5,8, as m — 00, showirlg (0) = (d).
Now suppose & (»)? = {0} and let 6: 0" - B(% ()} be detined by 0(f)(s)
="7(f)s, fe C" s € ¥ (v). By Lemma 2.9, 0 is continuous go ker(0) = .7 (»)
is closed. Thus (d) = (c). ’

r
(e) < (e). The function p(z) = [T (z—7,)" belongs to M, ,_,(F), so

4=1
(¢) = (e). Assuming (e) we have that (#—y,)" € #(»,), since 0" ig a Silov
algebra. Hence it follows from Lemma 3.10 that M, ,(y,) = (2 — )" A, (ve)
< (). Consequently #(») is closed for every i, so (e) = (c).
(e) = (f). I » is bounded on M, ,(F)* for the graph norm we have

(o)l < KLlgl-+llpgl1 < E'lighl, g & M, (F),

80 p &4 (v). Conversely, if p €.# (v), there is a constant ¢ such that v (2|
< Oligll < OTlgll+ lipgll], g 0™

The implication (e) = (g) follows from [8], Corollary 1.14, applied
to each of the maps ;.

icm°®
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3.12. Remarks. (i) In [57], p. 875, there is given an example of a
module derivation D: M, ;— . which is discontinuous and for which
& (D) is infinite dimensional. Using the standard method of obtaining a
homomorphism. from a derivation (as described in [26], Remark 8.1)
we obtain a homomorphism »: C* — C"@® A for which &(») is infinite
dimensional, but & (»)? = {0}, thus proving that in Theorem 3.11 (a) is
strietly stronger than (b). . :

(ii) The implication (a) — (g) provides us with a new proof of the
result of Dales and McClure [15] that higher point derivations on (™
are always O*"-continuous. (See the discussion in [8], Section 2.)

(iii) It is a curious consequence of Theorem 3.11 that if F is a finite
subset of [0, 1], the closed ideal M, ,(F) is never the continuity ideal
of a discontinunous homomorphism of 0"

(iv) Suppose B is finite dimensional and »: ¢* — B is a homomorphism
with singularity set F. Then ker(») has finite codimension. It follows
that ker(») = J(F). To see this let g, h e J(¥F) and suppose b is ident-
ically one on the support of g. There exists a polynomial P without eonstant
term such that P(h) € ker(v) and P(h)g = g. Thus g €ker(»). Now we have

J(F) = M, (F) s ker(s) <7 (£ ().
anlI), we have
v(llfn’n(lf’)z) < I () # () = {0}.
This answers a queéstion raised in [8], p. 266.
3.18. Remark. Theorems 3.3 and 3.11 raise the following questions.
QuzsTioN 1. Does there exist a C**'-comtinuous homomorphism
p: O* - B which is not ¢*"-continuous?(®)
QUESTION 2. Does there exist a 0*continuous homomorphism

v: O - B which is not continuous on Mn‘,ﬂ(ﬁ’)2 for the graph norm?
To place these questions in proper perspective we suppose for sim-
plicity that » is a homomorphism with singularity set {0}, and that #(»)
= M, ,. By [8], Theorem 1.9, i3 continuous for the graph norm on
M,,# (), i.e. there is a constant K such that
I (Il < KL +IFMN],  f € Mpn ().
Thuy we may write » = gu--1, where z is continuous on M}, for the
graph norm,
i M}, —1ad(B)

Since S(v) 2

and l(Mn,"'.f('u)) =0

(®) Added in proof. In the following paper FEventual con.ﬁnuiﬂy in Bfmaah
algebras of differentiable functions, H. G. Dales gives a negative solutl.on to .Questlon 1,
assuming the continuum hypothesis. He shows there is a sense in which one has
02n+e gontinuity for every &> 0.
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Now

— 2 on
Monsronsr S My on = M2, 0",

nyn

Algo
27+ 1 +1 0 __ amtl
M2n+1,2n+1 = g™t Aspyr € A("4,) = M,,,.

Suppose that » is eventually continuous. Then #"t'e.s (v) and hence
Moni1,m+1 M, .- (»). Thus necessarily MM ypi1,2041) = 0, showing that v
is always continuous for the graph norm on Mypi1,201- We now show the
following are equivalent:

(i) »ig C*-continuous;

() A(Myys) = 0

(i) » is continuous on M,,,, for the graph norm.

SBupposing (i) we get that A is (*-continuous on Moy 00y since 4, being
continuous for the graph norm, must be ¢**continuous. Now (i) follows,
since we can approximate each function in M,,, 4y, by functions in 7, 1,201
for the 0*"-norm. Clearly (ii) = (ili) = (i). Thus foxr the answer to Question 1
to be affirmative we must have » = #t+A with A(M,, ,,) # 0 and for
Question 2 we need A(My,,,) =0 but A(M2,) = 0.

As shown in [8], Section 2, one may use discontinuous higher order
point derivations to econstruct discontinuous homomorphisms of ¢" into
finite dimengional Banach algebras. In [6] there is given a more complex
example of an isomorphism of ¢ which is discontinuous on overy dense
subalgebra of . This example has one-dimensional Separating space.

3.14. Remark. The only examples known to us of permanently
discontinuous homomorphisms of O™ are those that arige ag the restrictions
to 0" of discontinuous homomorphisms of (° = ¢ [0, 1]. Such homo-
morphisms have been constructed by Dales [14] and Bsterle [17]. Their
difficult constructions are made possible by the agsumption of the continuum
hypothesis. It would be very interesting to know if a permanently discon-
tinuous homomorphism of O™ can be constructed without this assumption.

Let €* = ¢>([0, 1]) be the space of all complex functions which are
infinitely differentiable on the closed interval [0,1]. We give (® the
Fréchet topology determined by the norms

o SEALU) N
il _ﬁ?ﬁgT’ m=1,2,...

3.15. THEOREM. Let v: C" — B be a homomorphism whose restriction
to. 0% is continuous. Then » is O*™+Loontinuous.

Proof. By hypothesis there exists a constant K and an integer
k> mn such that i

POI< Eifllky feC>.
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Thus there exists a continuous homomorphism u: 0% B such that
w{f) = »(f), fe0®. The operator T of multiplication by »(2) (= u(2)
on B, = »(C*) is then a (®-operator. By Lemma 3.2 and Theorem 3.3 (iii),
vy is O**+'-continuous, and hence 0***+lcontinuous.

In the same circle of ideas we have:

3.16. TuroREM. Let I be a closed interval and u: C™(I) -~ B be a
continuous homomorphism. Suppose v: C™(I) — B is any other homomorphism
Sfor which v(2) = u(2). Then

D) —=w()F =0,

Proof. We may suppose v is discontinuous and write » = nA
Then & (v) = &(4). We assert that &(v) = A(CHI)). Clearly % (»)
= A(C’”(I)). If f e O™(I) and {p,} is a sequence of polynomials with p, — f,
then

all fe CI).

V(=) = u(f =) +A(f) = A(f)

gince u is continmous and 1 vanishes on polynomials. Thus A(f) € & (»).
Now as in the last proof we conclude that the operator of multiplication
by »(2) has no non-trivial divisible subspaces, so » is G***l.continuous.
Thus A(f)*e & (»)® = {0} for all feC™I), by Theorem 3.3.

8.17. COROLLARY. The natural operational caleulus for a C™-operator
is unique, up to the addition of nilpotents of order three.
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Multiplier eriteria of Hormander type for Jacobi expansions

by
GEORGE GASPER* (Evanston, II.) and WALTER TREBELS (Darmstadt)

Abstract. Tt is shown how the multiplier criteria of Hormander type derived
in Connett and Schwartz [7] for Jacobi expansions by the use of finite differences
can be substantially improved by using fractional differences. The main result, stated
n Theorem 1, is in a certain sense best possible.

1. Introduction. In this paper we show how the multiplier eriteria
of Hormander type [14] derived in Connett and Schwartz [7] for Jacobi
expansions by the use of finite differences can be substantially improved
by using fractional differences. .

To state our results we shall employ the following notation which, for
the convenience of the reader, is essentially that in [7]. Fix a > p= —1/2,
a> —1/2andlet L? = Lf, ,,1 < p < oo, denote the space of measurable
funetions f(x) on (—1,1) for which

1

Ifly = [ if@dm(@) )" < oo,
-1 . - . . B,
where dm(m) = dmz(®) = (1 —2)(L+a)’ds. Also let R,(x) = R&P(x)

= P (@) |P{-(1), where P(P(z) ig the Jacobi polynomial of order
(ay B), [16]. Bach fe L” has an expansion of thé form

@) ~ Y f" (Wh,Ry0),

where "
F(n) = [ f@)Ry(e)dm(a)
and

_ (@ntatp+1) I (n+a+F+1)F(n+a+1)
TP M4 41) M(n+1) I'(a41) IMa-++1)”

hn = h(y:’ﬂ) = ”Rn”z—z
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