This shows that \((\epsilon_k^d) \) and \(\sigma^{-w} \) define the same Köthe space so the proof is complete.

References

10. V. V. Kazarin, Subspaces of a finite center of an absolute Baire scale which are isomorphic to an infinity center, Siberian Math. J. 14 (1973), pp. 864-866 (Russian).

A nondental set without the tree property

by

J. Bourgain

(Prague)

Abstract. The existence is shown of a bounded, closed, convex and nondental subset of \(X^* \), which does not contain a tree.

Introduction. Let \(X, || \) be a Banach space with dual \(X^* \). If \(x \in X \) and \(\epsilon > 0 \), then \(B(x, \epsilon) \) denotes the open ball with midpoint \(x \) and radius \(\epsilon \). For sets \(A \subset X \), let \(e(A) \) be the convex hull and \(\epsilon(A) \) the closed convex hull of \(A \). We will say that \(A \) is denetal if for all \(\epsilon > 0 \) there exists \(x \in A \) satisfying \(x \notin e(A \setminus B(x, \epsilon)) \). The Banach space \(X \) is said to be denetal if every nonempty, bounded subset of \(X \) is denetal. We say that \(X \) has the Radon–Nikodým property (RNP) provided for every measure space \((\Omega, \Sigma, \mu) \) with \(\mu(\Omega) < \infty \) and every \(\mu \)-continuous measure \(\mu : \Sigma \to X \), there exists a Bochner integrable function \(f : \Omega \to X \) such that \(\mu(E) = \int_E f d\mu \) for every \(E \subset \Sigma \). The RNP of \(X \) is equivalent with the fact that any uniformly bounded \(X \)-valued martingale on a finite measure space is convergent a.e. (cf. [3], [18]). It is known that \(X \) is a denetal Banach space if and only if \(X \) has RNP. The reader will find the history of the equivalence between these two properties in the survey paper [6] of J. Diezelt and J. J. Uhl.

A set with the Radon–Nikodým property (RNP-set) is a bounded, closed and convex subset of \(X \) such that each of its nonempty subsets is denetal. For some remarkable properties of these sets, I refer the reader to [1], [2] and [15].

Definition 1. A bush \(B \) is a bounded subset of \(X \) such that for some \(\epsilon > 0 \) the property \(x \in B \) holds for all \(x \in B \).

A tree \(T \) is a bounded subset of \(X \) such that for some \(\epsilon > 0 \) we have that each point \(x \in T \) is the midpoint of 2 points \(y, z \in T \) with \(\|y - z\| \geq \epsilon \).

* Aspirant, N. F. W. O., Belgium.
Obviously every tree is a bush. It is also routine to check that every
bush (resp. tree) contains a countable bush (resp. tree).

We say that a subset of X possesses the bush (resp. tree) property if it contains a bush (resp. tree). The interest of these notions will be clear from the following 2 results:

Proposition 1 (Hull-Morris, see [9]). All nondentable bounded,
closed and convex subsets and therefore all Banach spaces failing RNP have the bush-property.

Proposition 2 (Stogoll, see [14]). Every nondentable convex w^*-
compact subset of a conjugate space has the tree property. All duals without RNP have the tree property.

This leads to the natural questions:

Problem 1. Is it true that every Banach space failing RNP has the tree-property?

Problem 2. If a bounded, closed and convex set in a Banach space is not dentable, does it necessarily contain a tree?

Clearly an affirmative answer to Problem 2 would solve Problem 1 affirmatively. Unfortunately the answer to the second question is negative as will be shown in this paper and hence Problem 1 remains open.

If A is a subset of X and Y a subspace of X^*, we agree to call Y
\mathcal{A}-norming provided $\iota^*: X^* \to Y^*$ maps A viewed as a subset of X^* isometrically on $\iota^*(A)$, where $\iota: Y \to X^*$ is the canonical imbedding. The following is related to the problems mentioned above.

Proposition 3. (1) If C is a nondentable bounded, closed and convex
subset of X and Y is a C-norming subspace of X^*, then either C has the tree-property or Y imbeds isomorphically in Y^*.

(2) If X is a separable Banach space failing RNP, then X has the tree-property provided ι^* is not isomorphic to a quotient-space of X.

Proof. (1) If $\iota: Y \to X^*$ is the canonical embedding, then $\iota^*(C)$ is a nondentable subset of Y^*. From Theorem 1 of [2], the required result is obtained.

(2) This is an immediate consequence of (1) and [19].

Counterexample to Problem 2. We will first establish a result about the convergence of martingales in finite-dimensional spaces.

If a is a positive real number, let $[a]$ denotes its integer part. For each integer d, $\mathcal{P}(d)$ will be the d-dimensional euclidean space.

Lemma 1. Let $d \in \mathbb{N}$ and (ξ_k, Σ_k) be an $\mathcal{P}(d)$-valued martingale on a probability space (Ω, Σ, μ), which is uniformly bounded by $M > 0$. Then for every $\varepsilon > 0$ there exists some $k \leq [M^d \varepsilon^{-1}] + 1$ satisfying $\|\xi_k - \xi_{k+1}\| < \varepsilon$.

Proof. Since for every coordinate $i = 1, \ldots, d$, $(\xi_k)_i$ is a real
martingale, we obtain $\sum_{j=1}^{d} \xi_k^i \xi_{k+1}^i \mu d \xi_k = \|\xi_k\|^2$ and hence

$$\|\xi_k - \xi_{k+1}\| = \|\xi_k - \xi_{k+1}\| - \|\xi_k - \xi_k\|.$$

Therefore

$$\|\xi_{k+1} - \xi_k\| = \sum_{i=1}^{d} \|\xi_{k+1}^i - \xi_k^i\| = \|\xi_{k+1}^i - \xi_k^i\|. $$

Now suppose $n \in \mathbb{N}$ such that $\|\xi_{k+1} - \xi_k\| > \varepsilon$ for all $k = 1, \ldots, n$. Then we find

$$\sum_{k=1}^{n} \|\xi_{k+1} - \xi_k\| \leq \sum_{k=1}^{n} \|\xi_{k+1} - \xi_k\| = \|\xi_{k+1} - \xi_k\| \leq M^d \varepsilon^{-1}.$$

and hence $n \leq M^d \varepsilon^{-1}$. This completes the proof.

Proposition 4. Let F be a real d-dimensional Banach space and let (ξ_t, Σ_t) be an $\mathcal{P}(d)$-valued martingale on a probability space (Ω, Σ, μ) which is uniformly bounded by $M > 0$. Then for every $\varepsilon > 0$ there exists some $k \leq [M^d \varepsilon^{-1}] + 1$ satisfying $\|\xi_{k+1} - \xi_k\| < \varepsilon$.

Proof. It is known that F admits a biorthogonal sequence (e_i, e_i^*) where $\|e_i\| = \|e_i^*\| = 1$. If $T: F \to F(d)$ is the operator defined by $Te_i = (e_i^*)^*(\xi_t)$, then it is easily verified that $\|T\| = \sqrt{d}$ and $\|T^{-1}\| = \sqrt{d}$. Since the $\mathcal{P}(d)$-valued martingale $(T\xi_t, \Sigma_t)$ is bounded by $\sqrt{d} M$, there is some $k \leq [M^d \varepsilon^{-1}] + 1$ so that $\|T\xi_{k+1} - T\xi_k\| < \varepsilon$ and thus $\|\xi_{k+1} - \xi_k\| < \varepsilon$.

For all $r, s \in \mathbb{N}$ with $r < s$, we let B_{rs} be the Banach space \mathbb{F}^r. Define $B = \bigotimes_{r=1}^{s} B_{rs}$ as the \mathbb{F}^s-sum of the spaces B_{rs}. If $r \leq s$, then there is a natural projection $p_{rs}: B \to B_{rs}$. Take $\|e_i\| = \|e_i^*\| = \|e_i\| = \sup_{s \in \mathbb{F}^s} \|e_i^*\|$ for each $s \in B$.

The next section is devoted to the proof of the following result.

Theorem 1. Let $\eta: \mathbb{N} \to \mathbb{N}$ be any function which increases in both variables.

Then there exist a subspace X of B, a sequence (e_t) in B and for each $s \in \mathbb{N}$ an operator $q_s: B \to B_s$ such that the following conditions are satisfied:

(1) $X = \text{span}(e_t; I)$;

(2) $\|e_t\| \leq r^{-1}$;

(3) $(e_t; I)$ is a bush in X;

(4) The restriction $q_s X$ of each operator q_s has finite rank, which is denoted by rk_s;

(5) $\|p_{rs}\| \leq 3$;

(6) $s = \lim sup q_s(x)$ for all $x \in X$.

...
Let \(r \leq s, s \leq n \leq \eta(r, n, \rho, \tau, \epsilon) \) and \(\lambda_1, \ldots, \lambda_n \geq 0 \), then the inequality
\[
\left\| \sum_{m=1}^{n} \lambda_m \phi_m \right\|_{\ell^{\infty}_{\rho, \tau, \epsilon}} \geq \frac{1}{r+1} \sum_{m=1}^{n} \lambda_m \|\phi_m - \phi_0\| \geq \frac{1}{r+1} \sum_{m=1}^{n} \lambda_m \|\phi_m - \phi_0\|'
\]
holds.

Using Theorem 1, a counterexample to Problem 2 will be obtained. More precisely:

Lemma 2. Define \(\eta : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) by \(\eta(t, r) = 2^{2^t + 1} + 1 \) and let \(\ell_x = \{0, 1\} \omega \) and \((\mu_{x,k}) \) be as in Theorem 1. Then \(G = \ell_x \) is a non-dentable subset of \(X \) without the tree-property.

Proof. Assume that \(\|\phi\| \leq r \) if \(x \in G \) and in particular \(G \) is contained in the unit ball of \(X \). The fact that \(G \) is not dentable is an immediate consequence of (3). It remains to show that \(G \) does not possess the tree-property. If we assume the converse, then there is an \(s > 0 \) and a system \((\eta_{x,s})_{x = 1, \ldots, k} \) in \(G \) such that \(\eta_{x,1} = \eta_{x,2} = \cdots = \eta_{x,s} = \eta_{x,s+1} = \cdots = \eta_{x,k} \) and \(\|\phi_{x,s} - \phi_{x,s+1}\| \geq s \).

For each \(k \) let \(\Sigma_k \) be the algebra of subsets of \(\{0, 1\} \) generated by the intervals \([(t-1)2^{-k}, t2^{-k}] \) and \(\Sigma_k = \Sigma_k \cap \ell_x \). Then \((\Sigma_k, L_k) \) is a \(\mathcal{X} \)-valued martingale on the Lebesgue space \([0, 1], \Sigma_k, \mu_{x,k}\) and is uniformly bounded by \(1 \). Hence by (4) and (5), for each \(s \), the martingale \((\phi_{x,s}, L_k) \) ranges in an \(\mathbb{R}^k \)-dimensional space and is uniformly bounded by \(1 \). Since \(\eta_{x,s} \) is uniformly bounded by \(\eta(t) \), it is clear that \(\eta_{x,s} \) is uniformly bounded by \(\eta(t) \), for each \(s \), \(r \geq 1 \), and therefore \(\|\phi - \phi_{x,s}\| \geq \eta(t)/(t+1) \) for \(s \geq r \) and \(k \leq b \), then \(\gamma^2 \leq 2^{b+1} \leq \eta(r, n, \rho, \tau, \epsilon) \) and we deduce from (7)
\[
\|\phi - \phi_{x,s}\| \geq (\Sigma_{2^{-b}} - \Sigma_{2^{b-2}} - \Sigma_{2^{b-4}}) \|\phi_{x,s}\| \geq \frac{1}{r+1} \int \|\phi_{x,s}(t) - \phi_{x,s}(t)\|dt
\]
and the same with \(k \) replaced by \(k+1 \). This implies that
\[
2\|\phi_{x,s} - \phi_{x,s}\| \geq \frac{1}{r+1} \int \|\phi_{x,s}(t) - \phi_{x,s}(t)\|dt - \frac{1}{r+1} \int \|\phi_{x,s+1}(t) - \phi_{x,s}(t)\|dt
\]
For each \(s \) \(\geq r \) some \(k \leq b \), so that \(\|\phi - \phi_{x,s}\| \leq 1/r^2 \). It follows that \(\|\phi_{x,s} - \phi_{x,s}\| \geq 1/(r+1) \). From (6), we get the required contradiction.

Proof of Theorem 1. Let \(\mu \) denote the Lebesgue measure on \([0, 1] \). By induction we define sequences \((\xi_{n,k}) \) and \((\lambda_{n,k}) \) of positive integers, taking
\[
\xi_{n,k} = 1, \quad \lambda_{n+1} = \eta(\xi_{n+1}, \lambda_{n+1}, \ldots, \xi_{n}, \lambda_{n}) \quad \text{and} \quad \lambda_{n+1} = \mu_{x,n+1}.
\]
For each integer \(s \), let \(\mathcal{F} \) be the algebra of subsets of \([0, 1] \) generated by the intervals \(\{(i-1)\xi_{n+1}, i\xi_{n+1}\} \) where \(i = 1, \ldots, \xi_{n+1} \), which will be called \(s \)-primitive. We consider the algebra \(\mathcal{F} = \bigcup \mathcal{F} \). We say that an interval is \(s \)-primitive if it is \(s \)-primitive for some \(s \). Remark that \(2 \) primitive intervals are either disjoint or comparable. For each integer \(s \), let \(\mathcal{F} \to \mathcal{F} \) be the mapping defined by \(\mathcal{F} \to \mathcal{F} \).

Let \(\mathcal{F}_{r,s} \) consist of the intervals which are \(r \)-primitive for some \(r \). Assume now \(\mathcal{F}_{r,s} \to \mathcal{F}_{r+1,s} \) obtained. \(\mathcal{F}_{r+1,s} \to \mathcal{F}_{r+1,s+1} \) will contain all sets of the form \(\bigcup_{k=1}^{n} (S_k \cup S_k) \) where \(n \leq \eta(\xi_{n+1}, r) \) and \(S_k \cup \bigcup_{k=1}^{n} (S_k \cup S_k) \) for each \(k \leq b \).

Take \(\mu_{x,s} = \eta(\xi_{n+1}, r) \) and \(\mu_{x,s} = \eta(\xi_{n+1}, 1) \). Then \(\mu_{x,s} \) increases when \(r \) increases and decreases when \(s \) increases. Moreover, we have

Lemma 3. If \(r \in \mathbb{N} \), then \(\lim \mu_{x,s} = 0 \).

Lemma 4. If \(B \in \mathcal{F}_{r,s} \), \(s \geq r \) and \(t \geq s \), then \(\mu(B) \leq \mu_{x,s} \) and \(\mu(B \setminus S) \leq \mu_{x,t} \).

Proof. (By induction on \(r \))

For \(r = 1 \), the statement is almost obvious. Assume now the property true for \(1 = 1, \ldots, r \) and let \(B \in \mathcal{F}_{r,s} \).

Then \(B = \bigcup_{k} (S_k \cup S_k) \) where \(n \leq \eta(\xi_{n+1}, r) \) and \(S_k \cup \bigcup_{k=1}^{n} (S_k \cup S_k) \) for all \(k = 1, \ldots, r \).

Hence we show if \(n \leq s \leq r \), \(T \in \mathcal{F}_{r,s} \) and \(s+1 > r \), then \(m(T \setminus S) \leq \mu_{x,s} \).

We use the induction hypothesis and distinguish 2 cases:

(i) \(v \leq u \leq m(T \setminus S) \leq m(T) \leq \mu_{x,n} \leq \mu_{x,n+1} \leq \mu_{x,n+1} \);

(ii) \(u \geq v \geq m(T \setminus S) \leq \mu_{x,n+1} \leq \mu_{x,n+1} \).

From this it follows that \(m(S) \leq \eta(\xi_{n+1}, r) \mu_{x,s} = \mu_{x,t} \). Let further \(t \geq s \). It is clear that
\[
S \setminus S = \bigcup_{k=1}^{n} (S_k \cup S_k \setminus (S_k \cup S_k)) \]
But since \(\cup_{i=1}^{n} S_{i} = S \), it follows that \(S \setminus S_{i} = S_{i+1} \setminus S_{i} \), and hence

\[
m(S \setminus S_{i}) = \eta(\Omega_{n+1}, r) \mu_{n+1} \leq \eta(\Omega_{1}, r) \mu_{1} = \mu_{n+1} \mu_{n+1}.
\]

So the proof is complete.

Lemma 5. If \(S \in \mathcal{G}_{r,e} \), then \(\mu_{e} = 0 \).

Proof. By Lemma 4, \(m(S) \leq \mu_{e} \leq \eta(\Omega_{1}, r) \mu_{1} \), the measure of the \(e \)-primitive intervals.

From Lemma 3 and Lemma 4, we obtain

Lemma 6. If \(r \in \mathbb{N} \), then \(\lim_{n \to \infty} m(S_{n}) = 0 \).

It is clear that for \(e > 0 \) the family \(\mathcal{G}_{r,e} \) is infinite and therefore can be identified with \(\mathbb{N} \). For each primitive interval \(I \), we introduce an element

\[
e_{I} = \frac{m(I)}{m(I)} e_{I}
\]

in \(\mathcal{G}_{r,e} \). Let \(X = \text{span}(e_{I} ; I \text{ primitive}) \).

Lemma 7. \((e_{I}) \) is a basis in \(X \).

Proof. If \(I \) is an \(e \)-primitive interval, then \(I \) is the disjoint union of \(n = e_{e+1} \) \((e+1)\)-primitive intervals \(I_{1}, \ldots, I_{n} \). It is easily verified that

\[
e_{I} = \frac{m(I_{1})}{m(I)} e_{I_{1}} + \cdots + \frac{m(I_{n})}{m(I)} e_{I_{n}} = \frac{1}{n} e_{I_{1}} + \cdots + \frac{1}{n} e_{I_{n}}.
\]

For each \(n = 1, \ldots, e \) we have that

\[
||e_{I} - e_{I_{n}}|| = \frac{m(I_{1})}{m(I)} ||e_{I_{1}} - e_{I_{n}}|| = \frac{1}{n} \geq \frac{1}{e}.
\]

For each \(e \leq e_{I} \), we define \(q_{I} : 0 \to B \) by

\[
q_{I}(x) = \frac{1}{e} e_{I} + \frac{1}{e} x - e_{I}
\]

Obviously \(q_{I} \) is a linear operator and \(||q_{I}|| \leq 3 \).

Lemma 8. The rank \(r_{k} \) of the restriction \(q_{I} \) is at most \(O_{(1)} \).

Proof. In fact \(q_{I}(X) = \text{span}(e_{I} ; I \text{ primitive}) \). To see this, let \(J \) be a \(k \)-primitive interval. If \(u < t \), then using Lemma 7, we obtain \(e_{J} \in q_{I}(e_{J}) \) and hence \(q_{I}(e_{J}) \in \text{span}(q_{I}(e_{J}); I \text{ primitive}) \).

If \(u \geq t \), then \(J \) is contained in some \(e \)-primitive interval \(I \). For \(e \in \mathbb{N} \), we find

\[
q_{I}(e_{J}) = \frac{m(I \cap S)}{m(I)} e_{I} + \frac{m(S \setminus S_{J})}{m(I)} e_{I}
\]

and

\[
q_{I}(e_{J}) = \frac{m(S \setminus S_{J})}{m(I)} e_{I}
\]

showing that \(q_{I}(e_{J}) = q_{I}(e_{J}) \).

Lemma 9. \(x = \lim_{n \to \infty} q_{I}(x) \) for each \(x \in \mathbb{N} \).

Proof. Of course we can take \(x = e_{J} \) where \(I \) is primitive. If \(r \in \mathbb{N} \), \(e \geq r \) and \(S \in \mathcal{G}_{r,e} \), then

\[
(x - q_{I}(x)) = \frac{1}{m(I)} m(I \cap S)
\]

Choose \(e > 0 \) and \(r \in \mathbb{N} \) with \(\delta_{r} = \frac{1}{e} \). Take then \(t_{r} = t_{r} \) such that \(m(T) \leq \delta_{r} \) whenever \(r \leq t_{r} \), \(t_{r} \geq t_{r} \) and \(T \in \mathcal{G}_{r,e} \), which is possible by Lemma 6. We claim that \(\|x - q_{I}(x)\| \leq \delta_{r} \) if \(r \geq r_{e} \). Let us then \(r \in \mathbb{N} \), \(e \geq r \) and \(S \in \mathcal{G}_{r,e} \). If \(r > r_{e} \), then \((x - q_{I}(x)) \leq \frac{1}{e} \delta_{r} \leq \delta \). If \(r \leq r_{e} \), then \(r + 1 \leq r_{e} \) and \(m(S \setminus S_{J}) \leq m(S_{J}) \), since \(S \setminus S_{J} \in \mathcal{G}_{r_{e}+1,e} \). Therefore also \(\|x - q_{I}(x)\| \leq \delta \).

It remains to verify condition (7) of the theorem. By Lemma 8, it will be enough to prove

Lemma 10. If \(r \leq s, x \leq \eta(\Omega_{r}, r), x_{1}, \ldots, x_{n} \in q_{I}(x) \) (I primitive) and \(x_{1}, \ldots, x_{n} \geq \delta_{e} \), then

\[
\sum_{m=1}^{n} \delta_{m} := \frac{1}{m(I)} m(I \cap S_{m})
\]

Choose \(r \geq s \) and \(r \in \mathbb{N} \) with \(\delta_{r} = \frac{1}{e} \). Take then \(t_{r} = t_{r} \) such that \(m(T) \leq \delta_{r} \) whenever \(r \leq t_{r} \), \(t_{r} \geq t_{r} \) and \(T \in \mathcal{G}_{r,e} \), which is possible by Lemma 6. We claim that \(\|x - q_{I}(x)\| \leq \delta_{r} \) if \(r \geq r_{e} \). Let us then \(r \in \mathbb{N} \), \(e \geq r \) and \(S \in \mathcal{G}_{r,e} \). If \(r > r_{e} \), then \((x - q_{I}(x)) \leq \frac{1}{e} \delta_{r} \leq \delta \). If \(r \leq r_{e} \), then \(r + 1 \leq r_{e} \) and \(m(S \setminus S_{J}) \leq m(S_{J}) \), since \(S \setminus S_{J} \in \mathcal{G}_{r_{e}+1,e} \). Therefore also \(\|x - q_{I}(x)\| \leq \delta \).

It remains to verify condition (7) of the theorem. By Lemma 8, it will be enough to prove

Lemma 10. If \(r \leq s, x \leq \eta(\Omega_{r}, r), x_{1}, \ldots, x_{n} \in q_{I}(x) \) (I primitive) and \(x_{1}, \ldots, x_{n} \geq \delta_{e} \), then

\[
\sum_{m=1}^{n} \delta_{m} := \frac{1}{m(I)} m(I \cap S_{m})
\]

Choose \(r \geq s \) and \(r \in \mathbb{N} \) with \(\delta_{r} = \frac{1}{e} \). Take then \(t_{r} = t_{r} \) such that \(m(T) \leq \delta_{r} \) whenever \(r \leq t_{r} \), \(t_{r} \geq t_{r} \) and \(T \in \mathcal{G}_{r,e} \), which is possible by Lemma 6. We claim that \(\|x - q_{I}(x)\| \leq \delta_{r} \) if \(r \geq r_{e} \). Let us then \(r \in \mathbb{N} \), \(e \geq r \) and \(S \in \mathcal{G}_{r,e} \). If \(r > r_{e} \), then \((x - q_{I}(x)) \leq \frac{1}{e} \delta_{r} \leq \delta \). If \(r \leq r_{e} \), then \(r + 1 \leq r_{e} \) and \(m(S \setminus S_{J}) \leq m(S_{J}) \), since \(S \setminus S_{J} \in \mathcal{G}_{r_{e}+1,e} \). Therefore also \(\|x - q_{I}(x)\| \leq \delta \).
A nondentable set without the tree property

d\text{References}