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tion O(§)F = C(j)&, ces homomorphismes coincident sur les mesures
de Dirac {8;,: @ X}, et done sur le sous- gemigroupe convexe faible-
ment fermé ongendré par cet ensemble, e’est-d-dire sur P(V(X)). 11
g'ensuit que F’ et G’ coincident sur I’enveloppe convexe équilibrée faible-
ment fermée de P(V (X)), et donc sur un voiginage de 0. On en déduit
que F' =@, d'olt F =G.
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On basic sequences in non-loeally convex spaces
by
J. R. MORROW (Worcester, Mass.)

Abstract. The results in this paper concern linear topological spaces that are
not necessarily locally convex and basic sequences in such spaces. The main result
is a characterization of a block basic sequence which is a subsequence of a basis. Other
sequences gencrated by a basis are considered.

0. Introduction. This paper deals with basic sequences in linear

topological spaces which are not necessarily locally convex. The purpose

of this paper is to study several types of sequences generated by a basis.
One of these types is the block perturbation introduced by Pelezynski
and Singer [10]; a second type is the block basie sequence; and the third

(3
type studied has the form (y,)2.;, where y,= > »; and (x,)5-, is 2 basis.
f=1

i=

Section 1 contains the essential definitions and terminology for the
remainder of the paper.

Two important properties of basic sequences in F-spaces are con-
tained in Section 2. An elementary proof of the “selection principle” of
Bessaga and Pelezyniski [2], in the context of an F-space, is given following
closely the work of N. J. Kalton [7].

Section 3 contains a characterization of the space ¢,.

Block perturbations are used in Section 4 to characterize the locally
bounded gpaces among F-spaces with a bounded, regular basis.

Seetion 5 contains results concerning when a block basic sequence
iy a subsequence of a basis.

The paper is concluded with an elementary proof of a result of L. Drew-
nowski [4] concerning. the weak basis theorem.

The author wishes to thank the veferee for his/her helpful comments.

1. Definitions and terminology. Let X denote an arbitrary linear
topological space in this section unless otherwise specified. Let (y,) be
a sequence contained in X; then [v,] denotes the closed linear span of
{#/,)- Two basic sequences ( z/n) and (Hn) are said to be equivalent provided

that Z a,y, converges if and only if Z“nm converges. A basic sequence
n=1 n=1
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w
(9,) is called unconditional if whenever ¥ a,y, converges and (s,) is a se-
ﬂn <1

quence with ¢, = +1 (v =1,2,3,...), then Z ety i, also converges.

=1
A sequence (y,)n., is called regular provided Lhmt there is a neighborhood
N of zero such that 9, ¢ N (n =1,2,3,...).
Let ||-|| be a non-negative, 1'eal-valued function defined on X, let
p bein (0,1] and let K be any positive constant. Consider the following
properties:

(1) llo+yll < i+ ly It

(2) lle-+yh < K (ol =+ w1,

(3) ]l = 2] el

(4) Il = 121 Jlll,

(5) Il < llewlf if 2] <1

(6) Lim [jfz| = 0.

=0

IE |-l satisfies (1) and (3), it is called & semi-norm; if |- | satisties (1 )
(b) and (6), it is called an. F-semi-norm; if. ||| satisfies (1) and (4) it is
called a p-semi-norm; and if ||| mtmﬁus (2) and (3) it is called a quasi-
norm. In the ecase that, in addition || == 0 implies that x = 0, a semi-

norm is a norm, an F-semi-norm is an F-norm, and a p-semi-norm is
& P-norm.

It is well known that the topology of a metrizable space X may al-
ways be defined by an F-norm. A complete linear metric space is called
an F-space. The phrase “let (X, [|-]|) be an F-space” will mean that X
is an F-space whose topology is defined by an F-norm, |- |-

Let N be a neighborhood base at zero for the space X. Let § = {co(V):
N e N}. Then N is a neighborhood base at zero for a linear topology on
X ; this topology is called the Mackey topology of X. If the original topology
on 'X is denoted by u then the associated Mackey topology of X is denoted
by m(u) and the two linear topological spaces are designated by (X, u)
and (X ym(u). ¥ X is metrizable, then X with the Mackey topology is
semi-metrizable, and the Mackey topology is the strongest locally con-
vex topology on X with the same topological dual (see [12]). Thus, for X
metrizable, the use here of the term “Mackey topology” is consistent with
the usc of the term in locally eonvex space theory. (Cf. page 203 of [5].)

2. Some properties of hasic sequences. Proposition
essentially to N. J. Kalton [6]. (See also [13].)

ProrosirionN 2.1. Let (X, ||-])) be an F-space with a basis (
For any subsequence (@, )71, (2,
equicontinuous.

2.1 below is due

7147 f'Vb =1

ij)n 1 48 regular if and only %f j,,} je1 48

icm
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Proof. Assume that ( fn
defined by g(z) = sup | fn(

g(@) <1} is a nelghborhood of zero and mngé_N (3
(@) 1s regular.

Suppose now that ( fn],) is not equicontinuous. It may be assumed
without loss of generality that |if, (z)a, /< |zl (n =1,2,3,...). Since
fn is not equicontinuous, there exist ¢ > 0, a subsequence (m;) of (n;),
a.nd a sequence (y;) contained in X such that lly;ll < 1/f, but | fm](yl)] > e
Choose an integer M such that ¢>1/M. Then, for j =1,2,3,..

is equicontinuous. Then the function g,
|, is continuous. It follows that N = {# € X:

=1,2,3,...). Thus

]

1
> =7 Il

~. l \
- = ”y]H > H.fmj(yj)mmj” = Hawmj” = H'ﬂw’nj‘

Thus (.zn ) is mnot regular.

The next result is the “selectmn principle” of Bessaga and Pelczynski,
given here in the context of an F-space. The proof, for Banach spaces,
was given in [2]; the principle was also stated without proof in [2] for
each of the cases of locally bounded F-spaces and locally convex F-spaces.
An extension of the principle to the case of locally pseudo-convex F-spaces
was made in [13]. The proof below follows rather easily from some results
of N. J. Kalton [7]. Note that a sequence (2,) is called a block basic sequence
with respect to a basis (z,) provided that there exists a strictly incereasing -
sequence of positive integers, (m,), and a sequence of scalars (a,) such
that :

() F— Toaw; (n=1,2,3,...).
E=my_1+1

PrOPOSITION 2.2. Let X be an F-space with o basis (2, , fr)me1
that (1/,,) s a sequence salisfying
lunfl Yo) =0 (j =1,2,3,..

. Assume

.) and

(2) (yn) 8 regular.

T'hen there is a subsequence ( ynj of (Yn)y with ¥, = Y, that 48 a basic
sequence equivalent to a block basic sequence of (x,).

Proof. Let x4 denote the original topology of X and let ¢ be the top-
ology generated by the sequence of semi-norms (||- |l,), where [#ll, = |fn(®)]-
Then o is a Hausdorff vector topology on X that is weaker than u, and
4,0 in the g topology. Therefore, by Proposition 2.2 (i) of [7], there exist
vector topologies o and §, with ¢ < a < f < u such that § is metrizable
and a-polar (i.e., § has a neighborhood base at zero consisting of a-closed
sets), ¥,—0 in the a topology, but y,-+>0 in the § topology. Then by The-
orem 3.2 of [7] there exists a aubsequence ( Jn ) of (y,) sueh that (y;j)
is basic for the g topology and 3 Jn = y,. Now, usmd (1) and (2), it is easy
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=4, and a block bhasgic
) I 3 4y, =0
=1 7

to choose a subsequence (y”j) of (y;l].), with g,

sequence (zj) of (z,) so that [ly,, —2,l| < 1/29(j =1,2,38,...

in the x topology, then thynj = 0 in the § topology, and hence # =0
§=1

(j =1,2,3,...). Thus 4/,,, =2+ U, — %

2 g —24ll < o0 and 2

Thelefole Lemma 4.3 of [7 ] nnphcs that; (ynj) iy a Dbasis sequence (and
it is easy to see that (ynj) is equivalent to (z)).m

;) (%) is a regular basis sequence

=0 implies that & =0(j ==1,2,3,...).

3. A characterization of the space ¢,. Lot (2,)7., De a basis of an

n
F-space X. Let y, = Yw; (n=1,2,3,
i=1
denotes the unit-vectors basis, the sequence (¥,)r.; is a basis. Theorem
3.2 shows that such a condition provides a characterization of ¢,.

A space X is called a locally bounded space if it containg a hounded
neighborhood of zero. Aoki [1] and Rolewicz [11] have shown that an
F-space X is a locally bounded space if and only if there is a number p,
0 < p < 1, such that the topology on X may be defined by a p-norm.

The following lemma is contained, essentially, in Proposition 3.1 of
[61.

Levma 3.1. Let (X, ||-]) be an F-space with a basis (,, f,)%... Then
{(®n)5=1 @8 bounded if and only if there is a bounded set A contained in X and
&> 0 such that suplfn >e(n=1,2,3,...).

..). In the space ¢,, where (a,)7_,

Proof. Assume that
n=1,2,3,..). ,
“ Now assume that A is a bounded subset of X such that

(#,)°_, is Dbounded. The

sup |fn (‘I'n)i =1
1w

suf\f“a)l}e (n=1,2,3,...).

It may be assumed without loss of generality that

| Z:fz

Choose a sequence (a,)>_; contained in A such that [fal®,)] > e. Suppose

that (4,);.; is a sequence of scalars and #,->0. Then

I fo ()

Since 4 is bounded, t,f,(a,
that ¢,x,—0. Therefore (2,);

veX,m<n.

&yl = ”fn(tna’n) 2l < "tna’n”

)a,—0; and since |f,(a,)] > e, this implies
1 18 bounded ]

icm
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TurorsM 3.2. Let X be a locally bounded F-spasce with a bounded
, let y, = dw;. Then
1

(Yp)2uy s @ basis of X if and only if (#,)p-. s equivalent to the unit-vectors
of ¢.

Proof. (i) The “if” part of the theorem is well-known.

(ii) Assume that (y,)2_, is a basis of X. It may be assumed without
Joss of generality that the topology of X is defined by a p-norm, |-|,
for some p (0 <p<1). Let ¢, = fr,—fop (0 =1,2,3,...). Then (g,)n1
is the sequence of coefficient functionals associated with (y,)i_;. Since
(2,)2.; is unconditional and X islocally bounded, it may be assumed without
loss of generality that

” Z 1f1 w)mzl

whenever m <, g/ <1 (# =1,2,...,n) and v € X.
Suppose that (z,)%_, is not regular. Then there is a subsequence (m_nj)]i'f;1

such that |lw,l<1/2’ (j =1,2,3, ..

to some # in X. But
nj—l nj—l

Z 9; m)?/,;-—— 2 f@ m)"” fnj(m)yn-—H

unconditional basis (%, fu)ye:. For n =1,2,3,

lleel
). It follows that anj converges
f=1

and

Uy () gl = Wgal < Il (G =1,2,8, ...

Therefore 2 g, (@), does not converge to #. Tt thus may be assumed that

=1

there exists 6 > 0 such that infj,| > 6
Let A = {@,: n =1,2,8, .. +¥z,: n =1,2,3,..
is hounded, 4 is bounded. Then

sup |g, ()] = sup [(fp —Fasen) (@] = [(fo—Frd) (@ + $0030)| =1 =% = 4
agd ae.

Therefore Lemma 3.1 implies that (y,)<., is bounded. Choose a number
M such that sup |y, < M
n

-} Since ()7

Suppose that a,, s, ..., @, are scalars. Then

n
dmax |a;|P<< ma.x IIT I[P = ma,xﬂa ;|| < ”
l<fi<<n 1< i=1
1S g |
ma,x 2, || = (max|a,])” x;
<| 3 maxioie = tmaxiogr] 3 o]
— (max|ay?) Iyl < Hmox [o,P.
i<i<n i<jisn

Therefore ), a,&, converges if and only if (a,)ec,. ®
n=1
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4. Block perturbations. A block perturbation is obtained in the
following way: Let (X, ||-[l) be an F-space with a basis (w,)72.;, let (m,)
and (n;) be strictly inereasing sequences of positive integers with m;_, <,
<my (j =1,2,3,...) and let (a;) be a "sequence of scalars. For cach
7, let

ny -1 mi
Uy = 2 a2, + Z a,m;.
i=my 1 Gl
Then let
it n s a, T e .
Y _..[w"’ Eall (n=1,2,8,...).

n 3 .
l%j +auy, i mo= oy

If there is a constant K > 0 such that sup ) < K, then (y,)2.; is called
. i

a block perturbation of (@,)m-;, With |- |-bounded blocks. (Cf. [107.) In the
case that X is locally bounded it will be assumed that the norm, -1,
above denotes a p-norm defining the topology of X; and hence (u,)T.,
is topologically bounded in this case. Pelezyriski and Singer [10] have
shown that each block perturbation of a normalized basis of a Banach
space X is also a basis of X. Part (a) of the next theorem is an extension
of the result of Pelezyriski and Singer. The proof of part (a) is omitted
since it is the same as that given in [10].

TemOoREM 4.1. Let X be an F-space with a regular, bounded basis

B (mn7 fn);‘;l'

(a) If X is a locally bounded space, then each block perturbation of
(@)1 8 @& basis.

(b) If X is mot a locally bounded space, then for each F-norm, |,
defining the topology of X, there is a block perturbation of (@) ,, with
|-|-bounded blocks, which is not & basis of X.

Proof. (b) Assume that X is not locally bounded and |-]is an F-norm
defining the topology of X. An equivalent F-norm, |-}, may be defined
on X satisfying each of the following properties:

(1) fwlt = || and

3
(2) leell = | X fy(@)2,ll, if m and n are positive integers with m < n
i=m
(% e X).
Since the basis (z,)y.; is regular, it is easy to see by property (2)
that there is a constant s > 0 so that for each # € X thereis a scalar o — a(w)
such that

(3) llawm|| = 2e.

Sinece X is not locally bounded, {z: |»] < ¢} is not bounded. Thus,
using condition (3) and the boundedness of (mp)m-1, there exists a sequence
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{#,)7-, contained in X and a sequence (¢, , of scalars such that |z,

= ¢, inf |tz > 0, (£)72; is a decreasing sequence, lim#; = 0 and |[¢, 2|l
i i

<1/2" (n=1,2,3,..; K =1,2,3,...). Let 6 =infftz]l, let m;, =0,
i

n—1

and let #, = 1. Choose m, such that > |{t,f,(z,)a;ll = 6/2. The collection
=1

{fiey)) =4 =1,2,...,m;n =1,2,3,...} i3 bounded for each m since
& = |zl = If;(2,) @l for all » and all 4 and since condition (3) holds. There-
fore there is an integer m, > n, satisfying:

[|§1n2fi(:nl)'”;H< 5/:1.

Algo there is an integer m, < m, such that

my—1

H 2 tﬂzfi(zng)%i

t=my+1

> 6/2.

Using induction, it is easy to see that there exist strictly increasing se-
quences (n;)52; and (my)j2,; such that

mj—1
3ty fle)w) |=62, i=1,2,3,..
i=mj__1+1
Let
v — [, it n % my,
Yn = [mn,,.—]—uj, it n o= my,
my—1
where uw; = 3 f;(2,)®;. Then
gt my—~1
-
gl < Tl = > fulea )| < lougll =25
i=mj_1+1

hence (¥,) ., is a block perturbation of (#,)y., with |-|-bounded blocks.
Since |t 2.l <1/2" (n, K =1,2,3, ...),Zl‘ by CODVETZES to some
i=

element x  X. 0
Suppose that (,)_, isa basis of X. Then # = >’ a, y,for some sequence
(ay)i; of scalars. It follows that w=
-4} e

tnj = fmj (é\j tnimmi) = fmj(m) = fmj (neia’nywt)

g=1

(<]
=2anfmj(yn)=ami (.7 :172:37"')'
ne=1
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Also, for m = my,

0 =ru (12 f’rq’”m;) = fu (2_, ty f’/n) = Z O (¥
=1 71 M=l
=, + amjfm (zw) =y, - in,jfm (gﬂj) i
Therefore
amj = tnj (3=1,2,3,.. ) and == ""iwfm(zw) ((m'j—l e (T
JT=1,2,3,..).
oa
Choose N such that fov j> N, || 3't, @, < é/4. It j= N, then
inf

g1

7
:
o= 3 o
g=1

-1 =1

. \ I

= 2 tn,,;mm.i_ L WYy
i=1 =1

)
- H § tnimmi
i=j
771]"—'1

D N AN

i-—=mj__ 1+

— /A= 0)2— 84 = 5/4.

0
This shows that 3, a, ¥, cannot converge to w. It must then be concluded
n=1

that (y,)m-; is not a basis of X. m

‘ Remark. The space (s) is a non-locally bounded F-space with abounded
bz'ms. It is easy to see, following the proof given by Pelezyriski and
Singer for Theorem 4.1 part (a), that each block perturbation of a basis

of (s) is also a basis of (3). Hence the condition of regularity may not be
removed in Theorem 4.1.

5. Block extensions. Let ()5, be a block basic sequence of the form
(*) given in Section 2. If (y,)n, is & sequence in X with ¥, = 2 and
Yn € [#:]i2m;  41. Whenever oy, <n<my (j=1,2,3,..; “n = 1,2,
3,...), then the sequence (y,)>, is called a block eatension of ()2, .
Zippin [16] has proved that each block basic sequence of a bagis of a Ba-
nach space X has a block extension that is a basis of X. Tocally convex
spaces are characterized by means of block extensions in this section (see
Theorem 5.8).

The proof of the next lemma iy the same as that of Zippin in [16]

Lemma B.1. Let F be an n-dimensional Housdorff linear topological
spaoce and assume that the topology on F is defined by & p-morm, |||, for
some p €(0,1]. If H and G are any two hyperplanes in F, then there evists
an isomorplhism T:H — G satisfying

1) 3ol < 1Tzl < 3@l (v e H) and

(ii) Tz =2 (re HNG).
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TaroREM 5.2. Let (X, u) be a locally bounded F-space whose topology
is defined by a p-novm, |-|. Let (z,)no, be & basis of X and let (2,)7-: be
a normalized block basic sequence of the form

’le
() @ = aw,  (j=1,2,8,...).
i=nj_1+1

Then the following are equivalent:

(1) The block basis (2,)me, has o block estension that is o basis of X.

(2) There is @ constant K such that for each j there is a continuous
linear functional g; defined on [3;1i1,,_ 41 satisfying

(@ gz =1 and (b) sup lg(o)<KE.
lzf|<1

(3) The block basis (2,)n=y s regular for the topology m(u).

Proof. For w#eX, define |of, =inffi>0: zetd}, where A4
= co({w: |l <1}). Then |-[, is a norm and m(p) is defined by || {l-

(1) implies (2): Assume that (z,);-, has a block extension (¥,)m=:
that is a basis of X. Then there is a constant K’ such that for positive
integers I, m and n, with I <n, and scalars 4, tp1y -1 bugn

M
<K ”Z; t:Y;
im

It follows that T;: X;—X; defined by

"
| S
i=l

nj '!L]'—].
TJ‘( Z t't?/i) = Z ty;  (where X; = [mi]?inj_l-l-l)
i=nj_1+1 i=nj_1+1
is a continuous projection of norm less than or equal to K’ and I-T;
is o continuous projection of X; onto [#] of norm less than or equal to
K41 (j =1,2,3,...). Let £ = K'++1 and define a functional g; on.

X; by g5 (~_ g’ﬂ ;) = t,;- Then g;(%;) = 1 and
o 7'Lj 77,1
(I—Tj)( 2 tf%') = by %= gj( Z tiyi)zj'
t=n1+1 i=n_1+1
Mg N
1t ﬁ’ tsl <1, then ng( 27 t9:)% |<x.

d=n4._1+1 i=nj_1+1
Sinee gl =1 (j =1,2,...),
sup {lg;(@)|: @ € X;, ol < 1} < K.

(2) implies (1): The proof that conditions (a) and (b) imply (1) has.
been given essentially in [16]. It is therefore omitted here.
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(2) implies (3): Assume that condition (2) holds, and suppose that

(%, )m1 18 DOt regular for the topology m(u). Then llznjﬂl—->0 for some sub-

sequence (n;). Since sup |g;(#)] < K implies that sup |g; () <K
llzl}<1 I

lafl< lkeily =t

(1 =1,2,3,...), (g.)2, is an equicontinuous family for the topology
m(p). Hence 11§ngnj (znj) = (. Bub Iy (z,,j) =1 for each j, so (2,)5.; must

be regular for m(u).

(3) implies (2): Now assume that there is a constant 4> 0 such that
lslli =6 (4 =1,2,3,...). For each j there is a continuons lineaxr funetional
¢; defined on X such that

sup gy (#)| = -,

(lefl<: flelly

This implies that sup |g;(2)|<1/6 (j =1,2,3 refore conditi

@ ol Sup, g; ()] /6 (j , 2,3, ...). Therefore condition
CoROLLARY 5.3. Let X be o locally bounded T-space with a basis ()0, .

Then, f;a(:h block basic sequence of (,)2., has a block extension that is o basis

of X if and only if X is a Banach space.

. _:Pr(?of.. If X is a Banach space then the previously mentioned result
of Zippin in [16] states that each Dblock basic sequence of ()., has
a block extension that is a basis of X. o

Conversely, if X is not a Banach space, then X is not locally convex.
?’Jet # denote the topol‘og'y of X. Then there is a sequence (¢,)3., contained
in X such that y,—0 in the topology m (u), but Y,+0 in the topology u.
Let ||| be a p-norm defining u, and let |||, be defined by

llxlly = inf{t > 0: 2 14}, A = co({m: ol < 1}).

Tt may be assumed without loss of generality that there is a constant
6> 0 such .tha;t 9al = 6 (n =1,2,38,...). Since y,—0 in the weak top-
olog_y also, it is easy to see that there is a subsequence (Yu,)iz1 and a block
basic sequence (z,)2 , such that 9, ~2ll <1 (5 =1, 2{ ,3,...). It fol-
lows that |l > ¢’ for some constant ¢’ > 0 and that llzslly < Wl Nl —
Yl < Wil +lles =915 = 1,2, 3, ...). But lim(”yn]_[}l»;- lle; _—"y',b,n):-:lo,

i

gi(%) =1 and

where

80 111;1”57”1 = 0. Since for each j lle;li = &', it follows that lim e B |
1 ‘ i Al
Therefore by Theorem 5.2 (2,/lle,[)., (and consequently (z“‘)‘”]) ]:;LH no

block extengion that is a basis of X. m v

COROLLARY 5.4. Let (2,)=_; be a block basic sequence of the unit-vectors
. o0 . » ”‘
basis, (e,)nn1, in 1, (0 < p < 1). Assume that g o=, 3
3,...) and that (2,)>., is normalized with respect tom[’]]:ﬂ,l Jr'tlhe usual p-norm

of 1.

=a;6,(f = 1,2,
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(a) The seQ@wnce (8, has a block extension that is a basis of 1, if
and only if (2, 98 vegular in the 1,-topology vestricted to 1,.

() If inf max e >0, then (z,)7., has a block exlension that

4 nj_l<i<n]-

4s a basis of 1.

Proof. (a) This is immediate from Theorem 5.2 since the associated
Mackey topology of 1, is the I,-topology restricted to I,.

(b) Choose m; such that |4, | = max |l ; leb

N1 <EKNY

Iy o= oy -1,y +2, e, and G =F{m} (=1,2,3,..).

For each j also define a linear functional g; on [6;}en,bY gji%‘ (t8;,-F12;) =1,
&

where > #e;+1tz; is the unique representation of a vector @ e [e,.]ieyj in
6 5

terms 0([" the basis {¢;: 4 e Gufy}. It Hg t,0,+ 1] < 1, then [ta,, |7 < 1.

Hence if |z)|<1 for @& [¢ler,, igj(w)ijg 1/{am| < 1/6. Therefore, by

part (2) of Theorem 5.2, (7,)m-; has a block extension that is a basis of

1, ® '

COROLLARY B5.5. Let X be o locally bounded F-space with a basis
(@, Fi) - Assume that (2,)5., 18 @ block basis of the form () given in The-
orem 3.5. If sup(m;—mn;_1) < oo, then (#,),., has @ block extension that is
a basis. I ; m

Proof. Tt may be assumed without loss of generality that ”izlt,.wi”

n .
< || 3 ty;|| for m <, and that [lg,[| = 1(n =1, 2,3, ...). Choose m; so
=1

that n_, < m; <#n; and []amjmmjll = max {lo;2;]: My << Nk Let 7,
= {ny_y+1, ny_y +2, ..., m} and G; = F;/{m;}.

1
Suppose that sup(n;—ny_;) =K < co. Let g =—a———fmj. Then

7?1]'

J
i || ZG,‘ t, 7| < 1, ity B || < 1. Bub
el

n,
"
S a || < =) -

1=yl = ||
i=nj_1+1
Thus '
3 1 1/ 1
(78 =] e — (1 — P K
"4/1 ;g—l ;12 I [t < Hamjmmjuup ( 'y /i P
'

Theorem 5.2 then implies that (2,)%., has a block extension that is a basis
of X. m

Tindenstrauss and Tzafrivi have considered projections in Banach
spaces onto subspaces spanned by block basic sequences. In [8] they
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proved that a Banhach space X with an unconditional basis (@,);.; is iso-
morphie to either ¢, or I,, 1 < p < oo, if and only if for each permutation
@ of the integers and each block basic sequence (2,)51 0f (%ag)5-; there
exists a projection in X onto the block subspace [z,]n.;. Corollary 5.7
is an extension of this result to the case of a locally bounded I-gpace.
TuroreM 5.6. Let X be a locally bounded I'-space with a basis (a,)7 ;.
Assume that for each block basic sequence (2,)n.1 Of (Tn)mw1y [#nTomy 48 (::);n—
plemented in X. Then X must be locally convex, and hence normed.

Proof. Let | -|| be a p-norm defining the topology of X. By Corollary .

5.3 it suffices to show that cach normalized block basie sequence of ()5
has a block extension that is a basis of X. ' e

I;}(;t (#,)2_, be a normalized block basic sequence of (#,)2,, sy 2
=_ 2+1“imi (j =1,2,3,...). By Theorem 5.2 it suffices to show that

=01+

there exist a constant K > 0 and a sequence of continuous linear functionals
(gn)e., such that

(a) g; is defined on [a:i:[?_i_nj_ﬁl,

(b) gi(zj) =1, and

(c) sup |g;(2)| < K (j =1,2,3,...).

lzll<t

By renorming the subspace [z,]5-, it may be assumed without loss
of generality that “121 bz || = bzl for each 4, whenever Y bye; converges
= i=1

in fe,]pm-

Since [#,],-, is complemented in X, there is a projection P of X onto
[zn];.'le. Thus, by renorming X, it may be assumed without loss of gen-
erality that |lzj| = [Px||4 (I —P)x| (2 € X). For each j, define a linear

function g; by the following: g;(z) =1; if Py = 3,7, Then g;(2;) =1
i=1

7

.
(j=1,2,8,..). Also if @ = 3 b, and lo < S P
bv= i=%1+11 5 el <1, lot I.Jo—izlt“i,

0@ = 117 = i < | ) ;]| = WPell < 1Pl
4=l

Therefore conditions (a), (b) and (c) are satisfied. wm
The next corollary iy an immediate congequence of Theorem $.11

and the result of Lindenstrauss and Tzafriri menti in t
Iollowing Goreliaty 5.6, rentioned in the paragraph

‘COROLLAL.RY. 5.7. A locally bounded F-space X with an unconditional
basis (2,)e, is isomorphic o either ¢y or 1, (L < p < oo) if and only if for
each permutation = of the integers and each block basis (2,)°_1 of ()
there ewists a projection in X whose range is [2,12.,. . T
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The next theorem is a refinement of some of the ideas of Theorem
5.2 and Corollary 5.3.

TamorEM 5.8, Lot X be an F-space with o Dasis (), Lf each block
Dasic sequence of (@,)5.1 has @ block extension that is a basis of X, then X
48 locally conver.

Proof. Assume that each block basie sequence has a block extension
that is & bagis of X. Lot u denote the topology of X.

Suppose that X is not locally convex. Then there exists a sequence
()., contained in X such that a,—>0 in the topology m(u), bt (24,)5
is vegular for the topology u. It follows that there exists a block basic se-
quenee (2,)5%; of ()51 such that 2,0 in the topology m(u), bub (Zn)me1
iy regular for the topology u.

Tt (y,)2., denote a block extension of (2,)°., that is a basis of X,
with y,, =# (j =1,2,3,...). Tet (g,)°., denote the sequence of coef-
ficient functionals associated with (¥,)2.,. By an observation of J. H.
Shapiro (see p. 1296 of [14]), (¥, 9,)%-, may be considered a bagis of
the completion of (X, m( ). By Proposition 2.1, (gnj);’f=1 is equicontinuous
for the topology u; hence (gnj)ff=1 is also equicontinuous for the topology
am(u). But then, according to Proposition 2.1, (ynj)§=1 must be regular for
the topology m (). However, this i3 impossible since z,— 0 in the topology
().

Therefore X must be locally convex. B

6. The weak basis theorem. Section 6 concludes with an elementary

_proof of a result concerning weak bases which has been proved by L.

Drewnowski [4]. It is well known that each wealk basis of a Fréchet space
is a basis; this fact was first stated for Banach spaces by Banach and
improvements were made by Bessaga and Petezyriski [3] and by McArthur
[9]. W. J. Stiles [15] showed that the theorem fails in 7, (0 <p <1)
and J. T, Shapiro [14] proved that the theorem fails in any F-space
which bhas a weak basis and which admits a confinuous norm. Finally,
L. Drewnowski [4] has shown that the weak basis theorem fails in each
non-locally convex F-gpace.

TymorsM 6.1. Let (X, u) be an F-space with a basis (@, fu)ow. Lot
X denote the completion of (X, m (), and assume that X is isomorphic to
{s). Then the weak basis theorem holds in X if and only if X is isomorphic
10 (8). ‘

Proof. Assume that X is nob isomorphie to (s). It may be assumed,
without loss of generality, that limm, = 0. Since X is isomorphic to (s},

13
X is not locally convex. Therefore there exists a sequence (Yn)os contained
in X such that y,—0 in the topology m(u), but (y,)2., is regular in the
topology k.

.
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Now (w,, f,), may be considered a basis of X. Since cach basis of
(s) is equivalent to the unit-vectors basis of (s), it may be assumed that
the topology of X is defined by an F-norm, |||, with the property that
(o] (=]
% 1 ey
Uy )| = PR
\ =1 nel ~ n
for each sequence of scalars (a,)2,.
Sinee limf(y,) =0 (1 =1,2,3,...) and ()., is rogular in the

N=>00 -
topology u, it is easy to see that there exists a regular block basic sequence
my -
d
(Bnloes, Withgy= 3 az;;my=0,7=1,2,3,..., having the property:

) .’L'=177,j,_1+1
SI}p izl <1/2? (j=1,2,38,..). It may be assumed, without loss of
generality, that a, = 0.
Let %, = 2,42, (n =1,2,3,...); then (y)n=y is & regular sequence

in the t&pology 4. Suppose that f t,u,= 0 (convergence in X). Then
0= fl(,glt"%") =t+tha =1. Grn;flul any integer n, with n > 1, there
is a uniq;m integer j, with j < n, such that @, occurs in the basis expan-
sion of z; thus 0 =fn(i§i tu;) = t,-+4a,. Hence, by induction, it is
easy to see oElmt t,=0(n = 1,2,3,...). Since (#,)3, is & basic sequence
in X and ngl llEall < oo, Lemma 4.3 of [9] implies that (U )=y 18 @ bagic

sequence in bd

Define an infinite matrix A in the following way: the (¢, §) entry is
zero unless © = j or m,;_y << § < my; the (¢, ©) entry is one; the (¢, m,_,+ k)
entry is a,, .. for k=1,2,..., My —My_y and 4> 1; and the (1, k)

. o0

entry is a; for k¥ =1,2,..., m. Since 4 hag a left inverse and 3 b,u,
X N =1

converges in X for each sequence of gcalars (bp)z, each element , can

be represented in XA in terms of the basic sequence (u,).,. Thercfore

o s . e o
(Up)nea 18 & basis of X. This implies that (tn)i-1 15 & weak basis of X (be-
cause the coefficient functionals associated with (%y)iy are continuous).

To finish the proof it suffices to show that (ty)ney 18 DO @ basis of
X. To that end, assume that (u,)2., is a basis of X. Let (g,)., denote the
associated sequence of coefficient functionals. Since (m,)5.4 18 a regular
basis, (g,)e%1 18 equicontinnous by Proposition 2.2. Therefore (g,,);‘f;l is
a,1§o equicontinuous for the topology m(u). But then, again by Prop-
osition 2.2, (u,)?, is regular in the topology wm(u). Since U,—>0 in
m(p), it must be the case that (tn)pm1 18 DOt 2 basis of X. m
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