measure is in $L^1(\Omega)$ it follows that to each compact set $K \subset \Omega$ there is a number C such that
\[|V_n| \leq C \cdot L \text{ in } K. \]
Hence
\[\int_{\Omega} F_n^2 d(Q) d\mu(Q) \leq \int_{\Omega} \frac{1}{\mu} \int_{\Gamma} Q(P) d\sigma + C L^2 \int_{\Omega} w^2 d\sigma, \]
which completes the proof of the corollary.

References

Repeated Monday 7, 1977

1560

STUDIA MATHEMATICA, T. LXVII. (1979)

Lifting subnormal double commutants

by

ARThUR LUBIN (Chicago Ill.).

Abstract. We give a necessary condition for elements of the commutant of a subnormal operator on a Hilbert space to lift to the commutant of the minimal normal extension, and based on this condition we show there exists a subnormal operator having elements in its double commutant that do not lift. Our example is also irreducible and finitely cyclic.

1. Let T be a subnormal operator on a Hilbert space H with minimal normal extension (m.n.e.) N on K. Thus, N is a normal operator on a space K containing H, H is invariant for N, the restriction $N|_H = T$, and K, the smallest reducing subspace of N containing H, is the closed linear span of \(\{ N^n h : j = 0, 1, \ldots, n \in H \} \). Clearly, for any polynomial p, $p(N)|_H = p(T)$ and it is therefore easy to see that every element in the weakly closed algebra generated by T lifts to, i.e. is the restriction to H of, some element in the commutant of N. This result is included in the well-known paper of J. Bram, who gave the following necessary and sufficient condition for an element of $\{ T^n \}$, the commutant of T, to lift to $\{ N^n \}$:

THEOREM II [2, p. 87]. A necessary and sufficient condition that $A \in \{ T^n \} \subset B(H)$ have an extension $B \in \{ N^n \} \subset B(K)$ is that there exist a positive constant ϵ such that for every finite set h_1, \ldots, h_m in H we have
\[\sum_{n=1}^{m} \sum_{k=1}^{n} (T^n A h_k, T^n A h_k) < \epsilon \sum_{n=1}^{m} \sum_{k=1}^{n} (T^n h_k, T^n h_k). \]

If the extension B exists, then it is unique.

Bram pointed out that there exist subnormal operators T such that not every element of $\{ T^n \}$ lifts to $\{ N^n \}$. T. Yoshino, however, showed that every element of $\{ T^n \}$ does lift to $\{ N^n \}$ if T has a cyclic vector [6], p. 49. (Note that there is an error in the proof of this theorem but the result is true.) M.B. Abramovsky and C. Berger raised the question of whether

* Research supported by NSF Grant 70–06518 A01.
for a general subnormal \(T \) every element of \((T')'\), the double commutant of \(T \), lifts to \((N)' \) [1], Problem 2. Abramson also asked whether every element of \((T')'\) must lift to \((N)'\) if \(T \) is irreducible [1], Problem 1. We give an example below which provides a negative answer to both questions; we note the R. Ohm and J. Thomson independently discovered an example with the same properties. Although the main idea underlying their example is similar to ours, we present a somewhat different approach to the problem. We conclude by showing that a certain class of subnormal operators considered by Baum [2] is finitely cyclic.

2. Our example is based on the following theorem which describes a situation in which elements of \((T)'\) do not lift. In Section 3 we will construct an operator satisfying the conditions of Theorem 1.

For operators \(T_{1} \in B(H_{1}) \) and \(T_{2} \in B(H_{2}) \), we denote \(I(T_{1}, T_{2}) = \{ X \in B(H_{1}, H_{2}); X T_{1} = T_{2} X \} \). Two subspaces \(\mathcal{H}_{1} \) and \(\mathcal{H}_{2} \) of \(H \) are called complementary if \(\mathcal{H}_{1} \cap \mathcal{H}_{2} = \{0\} \) and \(H = \mathcal{H}_{1} + \mathcal{H}_{2} = \{ m_{1} + m_{2}; m_{1} \in \mathcal{H}_{1}; m_{2} \in \mathcal{H}_{2} \} \) (note that this implies that \(\mathcal{H}_{1} + \mathcal{H}_{2} \) is closed), and we denote such a sum by \(\mathcal{H}_{1} + \mathcal{H}_{2} \).

Theorem 1. Suppose \(T_{1} \), a subnormal operator on \(H \) having m.n.c. \(N \) on \(K \), has a pair of complementary invariant subspaces \(\mathcal{H}_{1} \) and \(\mathcal{H}_{2} \). For \(i = 1, 2 \), denote \(T_{i} = T_{i} \vert_{\mathcal{H}_{i}} \) and let \(K_{i} \) be the closed linear span of \(\bigoplus_{j=0}^{N} \{ b_{j} \in \mathcal{H}_{j}; b_{j} \in \mathcal{H}_{j} \} \). Suppose \(I(T_{1}, T_{2}) = \{0\} \) and \(I(T_{2}, T_{1}) = \{0\} \). Suppose further that \(K_{1} \cap K_{2} = \{0\} \). Then there exist elements of \((T)'\) that do not lift to \((N)'.\)

Proof. With respect to the decomposition \(H = \mathcal{H}_{1} + \mathcal{H}_{2} \), we write \(T = T_{1} + T_{2} = \begin{bmatrix} T_{11} & 0 \\ 0 & T_{22} \end{bmatrix} \).

Matrix multiplication shows that \((T)' = \begin{bmatrix} A_{2} & X \\ Y & A_{1} \end{bmatrix} : A_{i} \in (T_{i})', X \in I(T_{1}, T_{2}), Y \in I(T_{2}, T_{1}) \), so under our hypotheses on the interwining spaces,

\((T)' = (T_{1})' + (T_{2})' = \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} : A_{1} \in (T_{1})' \).

It then follows that \((T)' = (T_{1})' + (T_{2})' = \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} : A_{1} \in (T_{1})' \).

Let \(A = A_{1} + A_{2} \in \{T\} \subset B(H) \) and suppose \(A \) lifts to \((N)' \). Then there exists \(B \in \{N\}' \subset B(K) \) such that \(B |_{K} = A \). Note that \(K_{1} \) reduces \(N \) and \(K_{1} = N |_{K_{1}} \) is the m.n.c. of \(T_{1} \). Then \(B_{1} = B |_{K_{1}} \) is an extension of \(A_{1} \)

and since

\[
B_{1}N_{t} = B_{1}N_{t} |_{K_{1}} = B_{1}N |_{K_{1}} = N_{t}B |_{K_{1}} = N_{t}R_{t}B_{1},
\]

we see that \(A_{1} \) lifts to \(\{N_{t}\}' \) and we denote that lifting by \(\bar{A}_{1} \). Since the lifting is unique by Theorem 1, we have that \(A_{1} = B_{1} \), \(t = 1, 2 \).

\[
\bar{A}_{1} |_{K_{1} \cap K_{2}} = B_{1} |_{K_{1} \cap K_{2}} = B_{1} |_{K_{1} \cap K_{2}} = B_{1} |_{K_{1} \cap K_{2}} = \bar{A}_{1} |_{K_{1} \cap K_{2}} \]

i.e., a necessary condition for \(A_{1} \mid A_{2} \) to lift to \((N)' \) is that \(A_{1} \) and \(A_{2} \) each lift to its respective m.n.c. space \(K_{1} \) and \(K_{2} \) and that the liftings agree on \(K_{1} \cap K_{2} \). This condition is clearly also sufficient.

Now, for the case in hand, let \(A_{1} = 0 |_{\mathcal{H}_{1}} \) and \(A_{2} = I |_{\mathcal{H}_{2}} \), so \(A_{1} + A_{2} \in \{T\}' \). Using the above notation, \(\bar{A}_{1} = 0 |_{\mathcal{H}_{1}} \) and \(\bar{A}_{2} = I |_{\mathcal{H}_{2}} \) and since \((K_{1} \cap K_{2}) \) is non-trivial, \(A \) does not lift to \((N)' \) and the theorem is proved.

3. Let \(\mu \) be Lebesgue area measure on the annulus \(A = \{ \frac{1}{2} \leq |z| \leq 3 \} \) and consider the overlapping subannuli \(A_{1} = \{ \frac{1}{2} \leq |z| \leq 2 \} \) and \(A_{2} = \{ \frac{1}{2} \leq |z| \leq 3 \} \) with characteristic functions \(\chi_{1} \) and \(\chi_{2} \) respectively. (The specific radii are chosen to simplify a following computation and are not essential to the example.) For \(\varepsilon = 1, 2 \), let \(\mathcal{H}_{\varepsilon} = (\chi_{\varepsilon}(z) \mathcal{D}(\mathbb{Z}); f \text{ is holomorphic on } A_{\varepsilon}). \)

Then \(\langle g_{\varepsilon} \rangle_{\varepsilon} = \{ g_{\varepsilon} \in \mathcal{D}(\mathbb{Z}); f \text{ is holomorphic on } A_{\varepsilon} \} \) is an orthogonal basis for \(\mathcal{H}_{\varepsilon} \) and \(\chi_{1} \rho_{1} \) is orthogonal to \(\chi_{2} \rho_{2} \) for \(\rho_{1}, \rho_{2} \) on \(\mathcal{H}_{\varepsilon} \). Thus \(\chi_{1} \rho_{1} \) and \(\chi_{2} \rho_{2} \) are orthogonal to \(\chi_{1} \rho_{1} \) and \(\chi_{2} \rho_{2} \) on \(\mathcal{H}_{\varepsilon} \).

We clearly have \(\mathcal{H}_{\varepsilon} \cap \mathcal{H}_{\bar{\varepsilon}} = \{0\} \). We claim that \(\mathcal{H}_{1} + \mathcal{H}_{2} \) is closed in \(L^{2}(\mu) \).

To see this, let \(f(z) = \sum_{n=0}^{\infty} f_{n} \chi_{1} \rho_{1} \in \mathcal{H}_{1} \) and \(g(z) = \sum_{n=0}^{\infty} g_{n} \chi_{2} \rho_{2} \in \mathcal{H}_{2} \).

Then

\[
\frac{1}{2\pi i} \langle f; g \rangle_{\lambda, \mu} = \int_{\mu} \sum_{n=0}^{\infty} f_{n} \overline{g_{n}} \, d\mu = \sum_{n=0}^{\infty} \int_{\mu} f_{n} \overline{g_{n}} \, d\mu.
\]
Thus, the angle between the subspaces \(\mathcal{N}_1 \) and \(\mathcal{N}_2 \) is strictly positive and hence \(\mathcal{N}_1 + \mathcal{N}_2 \) is closed [4], p. 339. We note that this can also be shown directly.

Thus, using the notation of Theorem 1, we let \(H \) be the Hilbert space \(\mathcal{N}_1 + \mathcal{N}_2 \), and \(T \) be multiplication by \(s \) on \(H \). \(T \) is subnormal with m.n.e. equal to multiplication by \(s \) on \(L^2(\mu) \), and since \(T^* = T_{\mathcal{N}_2} \), we have \(K_1 = L^2(\mu_{\mathcal{N}_1}) = \{ \chi f \in L^2(\mu) \} \). Thus, \(K_1 \cap K_2 = \{ \chi f \in L^2(\mu) \} = L^2(\mu_{\mathcal{N}_1 \cap \mathcal{N}_2}) \neq 0 \). It remains to show that the intertwining spaces are trivial.

Suppose \(X \in B(\mathcal{N}_1, \mathcal{N}_2) \) with \(T_X X = X T \). For \(\chi f \in \mathcal{N}_1 \), let \(X(\chi f) = \chi g \) with \(g \) holomorphic in \(\mathcal{A}_1 \). Since \(T^* \mathcal{N}_1 = \mathcal{N}_1 \mathcal{N}_2 \), for \(n = 1, 2, \ldots \), we have \(X(\chi f) = \chi g \in \mathcal{A}_n \mathcal{N}_2 \). We have

\[
\|X \xi f \|^2 = \int_{\mathcal{A}_1} |\xi f|^2 \, d\mu = \int_{\mathcal{A}_1} \phi_n |f|^2 \, d\mu < 4^n \|\chi f\|^2
\]

and

\[
\|X \xi g \|^2 = \int_{\mathcal{A}_2} |\xi g|^2 \, d\mu = \Gamma_{\mathcal{A}_2} \int_{\mathcal{A}_2} |\xi g|^2 \, d\mu = \int_{\mathcal{A}_2} \phi_n |g|^2 \, d\mu
\]

\[
\geq (\frac{1}{2^n})^2 \int_{\mathcal{A}_2} |\xi g|^2 \, d\mu = (\frac{1}{2^n})^2 \|\chi g\|^2,
\]

where \(A_{22} = \{ \frac{1}{2} < s < 1 \} \subset A_1 \), since \(X \) is bounded, we have

\[
\|X\| \geq \|X \xi g\| / \|X \xi f\| \geq 4^n \|\xi g\| / \|\xi f\|
\]

for all \(n \); hence \(X \xi g = 0 \) and therefore, since \(g \) is holomorphic, \(g = 0 \).

Thus, \(X = 0 \).

A similar argument works for \(Y \mathcal{N}_2 = \mathcal{N}_2 \) since \(Y(\chi g \Phi^\nu g) = \sigma^\nu \chi f \) for all \(n \). Hence, our example satisfies the conditions of Theorem 1 and we have:

Theorem 2. There exists a subnormal operator \(T \) such that not every element of \(\{ T \}' \) lifts to \(\{ N \}' \).

Since in our example each \(T \) is an injective bilateral weighted shift, we know that [5], p. 62,

\[
\{ T \}' = \{ T \}_r + \{ M_{\xi} \in B(\mathcal{N}_2) : \}
\]

\[
M_{\xi} f = \psi f, \quad \psi(s) = \sum_{n=0}^\infty \varphi(n)s^n, \quad \text{and} \quad \varphi, \varphi^* \in \mathcal{A}_2.
\]

Hence, \(S = M_{\xi} + M_{\xi}^* \in \{ T \}' \) lifts to \(\{ N \}' \) if and only if \(\psi(s) = \psi^*(s) \) for \(s \leq 2 \). I.e., \(\varphi(s) = \chi \varphi(s) \) for some \(\varphi(s) \) holomorphic on \(A \). Thus, we have [5], p. 91.

Corollary 3. Every element of \(\{ T \}' \) that lifts to \(\{ N \}' \) is the limit in the strong operator topology of a sequence of Laurent polynomials in \(T \).

Our description of \(\{ T \}' \) also yields the following, which answers the second question of Abrahamian.

Corollary 4. \(T \) is irreducible.

Proof. \(T \) has a reducing subspace if and only if there is an orthogonal projection in \(\{ T \}' \). Since the only idempotent holomorphic function on a connected domain is 0 or 1, we see the only idempotents in \(\{ T \}' \) are \(1 + 0 \) and \(0 + 1 \). However, neither of these is self-adjoint.

By Yoshino's results [6], it follows that \(T \) is not cyclic, Bram, in fact, showed that each \(T \) is not cyclic although its m.n.e. multiplication by \(s \) on \(L^2(\mu) \) is clearly cyclic. In fact, each \(T \) is 2-cyclic and hence \(T \) is finitely cyclic. This result follows from the more general.

Theorem 5. Let \(\{ a_n \}_{n=0} \) be a weight sequence for the bilateral weighted shift \(T_n = a_n a_{n+1} \), \(a_n = 0, \pm 1, \ldots \) Then \(T \) is 2-cyclic.

Proof. Let \(T \) project into \(H' \), the closed linear span of \(\{ a_n \} \) \(n \leq 0 \) and consider \(S = \Phi T H' \), the compression of \(T \) to \(H' \). Clearly, \(S \) is unitarily equivalent to a unilateral shift and by [3, p. 82], \(S \) has a cyclic vector \(f \). Then \(\langle f, e_n \rangle \) is cyclic for \(T \) so the theorem follows.

References

Received November 7, 1977 (1363)