icm®

206 V. Mandrekar and J. Zinn STUDIA MATHEMATICA, T. LXVIL. (1980)

[25] G. Pisier, Type des espaces normes, C. R. A. 8. Paris 276 (1973-1976).

[26] — Le théoréme de la limite centrale ot al loi du logaritlme ilere dans les espaces
de Bamach, Bxposé No. III, 8éminaire Maurey—Schwartz (1975~1976).

[27] — and J.Zinn, Limit theorems in p-stable Banach spaces (1977), preprint.

[28] A. Tortrat, Sur les lois e(1) dans les espaces wectoriels; Applications au lois
stables, preprint, Lab. de Prob. Univ. of Paris (1975).

[20] W. A. Woyczynski, Olassical conditions in the contral limst problem in Banach '
spaces I (1977) preprint.

[30] J.X. Krivine, Sous-ospaces de dimension finic des espaces do Banach réticulés, Weighted norm inequalities for the Lusin area integral
Annals of Math. 104 (1976), pp. 1-29. and the nontangential maximal functions for

fumctions harmenic in a Lipschitz domain
' DEPARTMENT OF STATISTICS AND PROBABILITY v
MICHIGAN STATE UNIVERSITY i by
WAST LANSING, MICHIGAN 48824

BJORN . J. DAULBERG (Giteborg)

Received October 18, 1977 (1855)
Abstract. We prove weighted integral inequalitics between the Lusin area inte-
gral and the nontangential maximal funetion of a funetion harmonic in a Lipschitz
m—— ' domain. These inequalitics are extensions to the Lipschitz case of inequalities obtained
by Gundy and Wheeden [7] for functions harmonie in a half space.

1. Imiroduction. In this paper we shall prove integral inequalitics
between area integrals and nontangential maximal funetions for functions
barmonic in 4 Lipschitz domain @ < R That is, we shall assume thatb
to each boundary point P e 92 there is associated an open cone I'(P)
with vertex at P such that I'(P) = €. If now u is harmonic in Q we define

Afw, P) = [1P=QF"Pu(@)am (@)
I,
and "
N(u, P) = sup|u(Q)].
(P)

Tere Vu denotes the gradient of « and m denotes the Lebesgue measure.
Our main result is that if the cones I'(P) satisfy suitable regularity con-
ditions (to be formulated later) then for all harmonic funections « vanishing
at a fixed point I* wo have

(1.1) 0, [olA)ap< [ BN ()< Oy [ P4 (w)dp.

kel aq a9
Tlere w is ollowed to vary over & wide class of meagures which includes
the surface measure of 9 and the harmonic measure. The precige assump-
tion on g is that u is positive, nonvanishing on any component of 9L
and that there are numbers 4 > 0 and 0 > 0 sueh that for all P & 82 and
all > 0 we have that whenever B < A(P,r) then

wlB) o@ \° (D o < (1 N
az A(’?}V(Ql(’l;ﬂ)’)) and (AR, 20) < OulA (R, 7).
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Here o denotes the surface measure of 0@ and A(P,r) == 8QnB(I,r),
where B(P,r) denotes the ball with eenter P and radius 7. A measure
satisfying these assumptions is said to satisfy condition 4 .. (The fact
that the harmonic measure satisfies condition A4, is a consequence of
the results in Dahlberg [4].) The assumption on &: [0, co[-> [0, oof
are that & is unbounded, nondecreasing, continuous and &' (2¢) = 0P (1).
Inequalities of the type (1.1) have been proved by many authors.
Tor the classical case (®(4) == 7, p > 1) we refer to Stein [13], When 2
is a halfspace, Fefferman and Stein. [6] showed (1.1) for u being the surface
meagure and @(f) =¥, p > 0. This was generalized by Burkholder and
Gundy [2] to include the general clags of @ introduced above. Their resulty
were then extended by Guody and Wheeden [7] to the general clags of
weights (1.2) (but still for Q2 being a balf-space).
© The plan of the paper is the following. After some preliminary matoerial
in Sections 2 and 3 we prove in Section 4 our basic estimates, which compare
the behaviour of 4 and N on special sets. The key ingredient in the proof
of this is a comparison of the harmonic measures of certain sets, which
is made possible by the fact that. the density of the harmonic meagure
with respect to the surface measure satisfies a reversed Holder inequality
(see Dahlberg [4]). In Section b we prove our main result and we conclude
with some final remarks in Section 6.

2. Statement of results. We recall that a bounded domain £ < RB"
is called a Lipschitz domain if 92 can be covered by finitely many open.
right cireular eylinders whose bases have positive distance from 92 and
corresponding to each cylinder I there is a coordinate system (x, y) with
x e R"', y e R, with the y-axis parallel to the axis of I, and a function
@: R ! > R gatisfying a Lipschitz condition (i.e. |p(®) —¢(2)] < M |z —2|)
such that ZnQ = {(z,y):y > ¢@)}nLand LndQ = {(=, y):y = p(2)}L.
(We shall gay that  is defined inside L by ¢.)

From now on a cone means & non-empty, convex, truncated and
circular cone. )

Suppose that {I'(P): P e 80} is a family of cones such that the vertex
of I'(P) is P for all P € 6Q. We say that this family is regular with regpect
to the Lipschitz domain R if there is a covering of 02 with finitely many
opensets U such that the following requirements are satistied: To each
set U there is-an open, right circular cylinder I such that U < I and 0Q
is defined inside L by a Lipschitz function. Algo, to this U there are agso-
ciated three cones y;, 4 =1,2,38, all with its vertex at 0 and its axis
along the axis of L such that y; < ¥,— {0} = y; and for all P e LnoR wo
have

n-+P < I'(P) = I(P)—{P} < y,+P

and - yp+P < QnL.
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We shall put

A(u, T, P) = ([ I7ul2|P —QP~*am (@)}
)
and
N(u, I', P) = sup [u(Q)|-
)

We recall that a positive measure p on 0Q satisfies an A -condition
if condition (1.2) holds. For a discussion of the propertios of such meagures
wo refor to Coifman and Feflerman [3] and Gundy and Wheeden [7].

We can now formulate our main result.

" Tumormm 1. Let @ B, n>2, be a Lipschite domain and let @:
[0, cof - [0, oo be an unbounded nondecreasing, continwous function such
that @ (0) = 0 and B(22) < OB (A). Let P* denote a fived point in Q. Suppose
that {I'(P): P e 0R} is a regular family of comes. Suppose u is & positive
measure on 0 satisfying condition A,. Then there are positive constanis Oy
and Oy such that if w is harmonic in £ and vanishes at P*, then

Oy [ )< [ DAY < 0y [ D)o,

where N and A denotes N (u, I', Y and A (u, I, ) respectively. The constants Cy
and O, are independent of w but depend on 2, B, P* and the family {I'(P)}.
We would like to remark that in Dahlberg [5] it is proved that if
oz p = 2,then
(2.1) (f ¥ao)" <0, [ utdo |
an a
and if © is assumed to be (%, then (2.1) holds for 1 < p < co. Therefore,
it follows from (2.1) that if «(P*) = 0, then for the appropriate range
of p: s the I? (¢)-noxm of u : s boundary values and the Z”-norm of 4 (u, r,-)
are equivalent.
As wo ghall see in Section 6, there.are positive constants 0y, ¢ =1, 2,
such that if w(P*) == 0, then

0 [Ardo< [ IPuld(@)dm(@Q) < o [ A%do,
n

where d¢(Q) denotes the digtance from @ to 69, Hence it follows from (2.1)
that if « is havmonic in Q and « (%) == 0, then the L2-norm of w : s boundary
values iy equivalent to the I*-norm of thoe gradient with respect to the
megsure d(Q)dm.

3. Technical preliminaries. In this section wo shall establish some
technical tools for proving our basic estimates in Seetion 4.

Weo gtart by recalling some concepts. The Lipschitz constant of a Lip-
schitz function ¢ is the smallest number M such that the  inequality
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lp (@) — ()| < M |z —2| holds. Tf @ is a Lipschitz domain we say.that the
Lipschitz constant of  is less than M if tho Lipschitz congtants of those
Tipschitz functions appearing in the definition of @ can be chosen to
be < M.

We recall that a Lipschitz domain R is called starshaped with respect
to P* with standard inner cone I' if P* e I'(P) < @ for all I’ € 02, whore,
I'(P) denotes the cone with vertex P having its axig along the line be-
tween P and P* and being congruent to I

We ghall from now on in this seetion agsume that & is a Lipschitz
domain with Lipschitz constant less than M, being starshapod with regpect
to 0 with standard inner cone I In the sequel we shall make cerbain exti-
mates and in those estimates the letters ¢ and K will denote eonstants
which may depend on the dimension s, M and I" but not on anything clse.

We ghall let @ denote the Green function of Q2 and g == C(-, 0). If
P e welet o(P,*) denote the harmonic measure of Q2 evaluated at P.
If P = 0 we write, however, w(0, *) = . As is easily seen that there is
a number 7, = ro(M, I') > 0 such that B(0, 107,) = Q. We will write £+
= Q—B(0,7,). It PecQ—{0} wo let P denote the intersection of 20
with {rP: r > 0}

We start by giving the following variant of Dahlberg [4], Lomma 1.

LeMMA 1. Let d(P) denote the distance from P to 6. Then there is a num-
ber K > 0.such that for all P e Q% we have

(3.1) E-'4(PP*g(P) < oA (P, a(P))) < Ka(P)*g(P).

Proof. We shall assume » 2> 3 and leave the easy modifications for
the cage n = 2 to the reader. _

There is & number K > 0 such that 0 ¢ B(P, 2Kd(P)) = J“(.Z-a). Let B
denote B(P, Kd(P)). If @ ¢ B then
(P, Q) <E(P,Q) < P—Q ",
where g is the Green function of B(P, 2K d(P)). From. the oxplicit repre-
gentation of ¢, see Helms [8], follows inf{g(P,Q): @ e B} > Kd(Py"
Choose the number ¢ € (0, 1) such that th = P and let w denote the func-
tion. % (@) = G(P, Q). Then w is non-negative and superharmonic in £.
It @ c AP, Kd(P)) then [tQ —iP| = [tQ—P| < Kd(P). Henco it follows
from. the left hand side of (3.2) that Ka(PY" (@)= 1. Since
V= cu(‘, A(f’, Kd(P))) is harmonie, < 1 with vanishing boundary values

outside A(f’, Ka(P)) it follows from the maximum principle thatb
Ka(P)"*u(Q) = »(Q) for all @ € Q. Taking @ = 0 yields that

(3.2)

Ka(Py2g(P) > (4P, Ka(p))).
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It is now a well known fact that

(3.3) w4 (P, 2r) < E(A(P, 1)),

see Hunt—Wheeden [9], p. 311. This yields the right-hand side of inequality
(3.1). i

To prove the remaining part of (3.1) we recall that there is a number
¢ > 0 such that m(Q, AP, (,'l(l’))) = 0 for all @ € B, sec HMunt—-Wheeden
[97, Lemma L. Trom (3.2) follows that if @ e 8B, then G(P, Q) < Cd(P)—™.
Sinee the function ¢ (P, ) is harmonic in @ —B with vanishing boundary
valnes on 89, it follows from the maximam prineiple that OG(P, @)d(P)2
< o(@, AP, d(P))) tor all Q e Q—B. Taking @ = 0 yiclds the remaining
part of the lemma.

‘We shall now study the relationship between w and o, where o denotes
the surface measure of 02. It is known that o and o are mutually absol-
utely continuous (see Dahlberg [4]) and if we write do = kdo, then & e L%(0)
and & satisfies a reversed Holder condition. What is of decisive importance
to us is that the constants only depend on n, M and I

Lmmwma 2. There is o number K > 0 such that for all P e 0Q and all
r >0 we have
J kdo,

A,

1 AT |
oy [ <xgy

“where A == A(P, ),

Proof. We first observe that there is no loss in generality in assuming
0<r<ry. Pub v = rdg/0r. Then it is well known that v is non-negative
(see Warschawski [14]), superharmonic in Q and harmonic in 2 —{0}.
Hence v hag non-tangential boundary values a.e. on 9RQ (see Hunt—Wheeden
[9]), which we denote by f. Since thero are constants 0y > 0, ¢ = 1, 2,
such that (9" 5 o(d(P, 7)) < 02" for all PedQ it follows from
Lemma 1. that

(3.4) Ok Lfes Ok ne on 0Q.

Lot ¢ denoto the charactoerigtic funetion of 4 and let % be the Poisson,
integral of fg. Then 0 =5 w <5 0 and % has vanishing boundary values outside
A. I P, denotos the point on the line segment between P and 0 having
distance » to P, then. it is well known that

(3.5) w(0) < Ou(P,) o (4),

soe Hunt—Whooeden [10], p. 512. Now there is a number ¢ > 0 such that
B(P,, or) =B < . Wo now recall that if a function % is non-negative
and harmonice in a ball B(Q, o), then |VA(Q)| < Oh(0)o™*, where ¢ only
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depends on n. Since g is non-negative and harmonic in B it follows that
w(P,) < v(P,) < OVg(P,)| < 0r~*g(P,). Recalling Lemma 1 and (3.3)
it follows that

w(4)

o(4)

uw(P,) < Cw(d)yrr " <0
Hence we have from (3.5) that
o(4)u(0) < Olo(4)).
However o(4) = [kdo and u(0) = [fhdo > 0y [ o by (3.4), which
A A A

yields the lemma.

The following consequence from Lemma 2 is woll known. (see Coifman,
and Fefferman [3]): There are pogitive constants 0, K, a, b such that for
all P e 042 and all 7 > 0 and all subsets B of 4 = A(P,r) wo have

o(B) <O(w(E))“ w(B) (a(E))" ]

s <Ga "™ @ <"\@

(3.6)

o(4) o(4)

We shall recall some maximal inequalities that will be useful. First
if f e I*(w) and if

@) =sup [ Ifldo

BnoD
@(BAID)
where B runs over all bally with center at 8D and containing P, then
it follows from Besicovitch’ theory of differentiation [1] that

@.1) o{f*> 1< 027" [If|do,
where C' only depends on .

Also, it is known that if f € L' () and Hf denotes the Poisson integral
of f, then
- (3.8) sup |Hf | < Of*(P),
¥(P)
see Hunt and Wheeden [9], Lemma 4.

We conclude by remarking that the estimates in this section are
invariant under a change of scale.

4. Main estimates. Weo ghall in this section compare the boundary
behaviour of the Lusin area integral and the non-tangential maximal

function.

We let (2, y), # € B, y € R be a fixed eoordinate systexm. We denote
by 8 the set of all cones with vertex at the origin and having its axis along
the y-axis.

We shall work with a Lipschitz function ¢: R*"'-»R having its
Lipschitz constant less than M and ¢(0) = 0. 'We shall agsume that I'e §

icm
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is a cone such that there iy a cone I™ e S with the properties that I' — {0}
™ and I™+4-P <D for all PedD, where D = {(#,9): ¥y > p(@)h
A well-known property of Lipschitz functions is that we can #ind numbers
po=ro(M, 1, & ==a(M,I) L = L(M,I") and a cone T 8§ such that
whenover P == (g, ¥o) € 0D, 0 <r<r and H < {[m0@)): |o—a <7}
then [JI'+@Qn{(@,y): y<2ar} =D, P,r) is a starshaped Lip-

Qeld
gehitz domain, with stareenter I’--(0, ar) and standard inner cone 7'
with Lipschibz constant loss than. L. (Notice that the diamater of D (H, P, r)
is ~ 1)

‘We shall agsumoe that y € § and 7 —{0} = I' and 7, is very small
compared to the height of y.

We ghall assume that « is harmonie in a neighbourhood of 0 and in
the next lemma wo ghall use the notation

AP) = ([ 7ulrp—Qp-tam(@))f
W)
where y(P) = y--P and I'(P) = I'4-P, P e dD.

Loima 3. Let Vo= [(#, p(@)): @l <7} and assume that r <7, and
AP 5 A for some point Dye V. Given a> 1 and > 1 there is a number
5 0 which can be taken to depend only on M, I, v, a and f such that

ao{l € Vi A(P) > pA, N(P) < e} < o(V),
where o denoles the surface measure of 0D.

Proof. Wo shall first whow that the main contribution to A4 (P)
comes from the behaviour of » “near” P, For ¢ > 0 leb

U = {Q eI'(P): 1Q—P|> tr}.

and  N(P) =§%%(Q),

Then
[Wwun@-Prran@= [ +
J

fa TaD(Pg) v\1‘~(p03
Notice that there iy w function a(l)—~1 as - co such that |Q —Pp-n
< a(®)|@ —P " for @ e U, lenco

f Va3 |Q PP dm(Q) < a (1) 42 (Py).
ALy
Also notico that thoroe are numbers i, and O, tho choice of which only
depends on M and y such that if ¢ 3= %, then thoe surface area »(s) of the
set {(@,y): y == 8} U—I'(Py) wsatisties »(8) < Ors®%, Observing that
there is a number ¢ = O(I",y) such that Pu(Q)| < O¢|\P —@|™* for
Q e p(P) wo got

V| —PEmam(Q) < Oerar [ §™"v(s)ds < Oet2?.
U-11) »
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Hence we can choose ¢ and & go that given any nunber ¢ > 1 we have

[ 1Pulig—Pr-am@) < g7
U

Also

|Vul2| P —@QP*"dm(Q) = Ce2Atlog t
WPINQ: tr<|P—Q| <} v
Summing up, this means that given v > 0 there is an g, which only depoends
on f,7,I" and y such that if P el = {PeV: A(P) > i, N(P) < ei},
then
72| P —QP"dm(Q) > (ﬁi—f)a
»P)N{Q: |P-Q| <} 2
‘We shall next choose 7.

Let @ = D(®, 0,r) and let P* = (0, ar). Then there is a number 4
only depending on M and I' such that B(P*, #r) = Q. We now choosoe
only depending on M,y and I’ such that y,(P) = D —B(P*, ur), where
Yo(P) = p(P)nB(P, wv) and P e E.

Let P, Z el I @ € yo(P)nyy(Z),then Z € Q —py = {@ —Q': @' ey,
Let § denote the point on 62 below Q. Because of the construction of Q
we know that ¢ —I" is contained in the complement of Q. Flence thore
is a number ¢ only depending on y and I” such that Z e B(@, 0|Q —§|)n1.
Since I'+§ < £ there is a number O such that (@ —¢| < 0d(Q). Let as
in Section 3 @ denote the point at which a ray originating from P* and
going through @ hits 02 Then [Q—Q|< 0d(Q) and therefory

A

ZeAQ,0a(Q)).
Put a(P) = , ('IE )] Vu|2 [P—Q]Z"”dm(Q).'We get from Fubini’s theorem
0

that
]f (@P)do (P) < [IPua(@)" [ 4(P,Q)dw(P)im(Q),
& W u

where W = PL{] y(P) and o is the harmonic meagsure of Q evaluated at 0.
(=

The function y is defined by x(P, Q) = 1 if @ e y,(P) and zero otherwige.
From the above considerations and Lemma 1 follow

[ 2P, Q)do(P) < 0(4(Q, 04(@) < 0a@)"9(Q),

B

where g denotes the Green function of @ with pole at P*. Hence

Lja(P)dw(P)s VJ [Vul2g (@) dm(Q) < [17u®g(Q)dm (Q).
2
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Ginee Aud -+ 2)Vu)* it follows from the Riesz representation theorem
that

w(P¥) = [urdo 2 [ Vuizg(Q)dm(Q).

05
Tenee §(f-11) A2 () =5 [ a(l’)do (D) 5 6222,
Lot p denotie the surfuee measure of L. Then it Lollows from (3.6) that

o 20LY
wivy ék;('V)) '

Sineo there are constants I, and K&, only depending on the Tipschitz
congtant of £ and D respectively sueh that p(V) < XK, o™ " and o(V)
s S0 and w(B) = o(B) the lemma follows.

Remark, TE the assumption 4 (P) < 4 for some Py eV is dropped
we soe by congidering the function ¢ ingtead, that the following conclusion
ean. be wmade: There is & number v ==v(M,I',y)> 0 such that if
a(l) = f( Va2 |1 Q1 *dm(§), then given a>1 p>1 thero

Y BT
is o 11:1!'1;(13()51* £ ma )a:(a, B, Iy py M, 7) such that ac{P e V: o(P) > 24*, N (P)
< A} = o V). Wo alko remark that it is not necessary to assume that «
is harmonie in & neighbourhood of 0. In the case when « iy assumed to be
harmonie in {(z, ¥): |9 < Byp(®) < y < Iy} then the functions
== 14 (8, 4 -1 ) fultil the assumptions of Lemma 3 o the conclusion follows
in this cago also altor lofting j - oo.

In the next lemma we shall switeh the role of I'and y for the defi-
nitions of 4 and N respoctively, .0, we put now

Ay < ([ VuiEp—Qr-"dn (@)
A ]
D(P) == sup V(@12 -, and  N(P) = sup (@)
pore )

‘Wo ghall lot ¢ denote the characteristic funetion of the set of all P e 0D
sueh that (1) s in the dowain of definition of w and A(P) > &h. We put

©sup f q do,
Lonn
“F(BABD)

()

where B runsg ovoer all balls in the eenter at 80 containing P,

ToammA 4. Lot Vo« (o, p(@): o] =0} and assume that * <7 and
N(Py) < A for somo Py V. Given az> 1, p> L thore are numbers &> 0
and 8 = 0 which ean be taken to depend only on M, Iy, a and B such that

ao{P ¢ Vi N(D) > fiy, D(P) < ohy A(D) < ey ¢ (P) < 03 < o(V)
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Proof. Let , = D(V*,0,5r), where V*={(z, ¢ (2)): o] < 5r} and let g,
denote the Green function of .. If @ € 2, let 4,(Q) denote the distance
from @ to 802, and let @ denote the radial projection of @ onto 942, from the
starcenter P* = (0, 5 ar).

‘We remark that we may assume that #o has been chosen. 50 small that.
9 Mr, < @ and if @ = (z, y) € £, and y < far, then {1Q--(L—)P*: ¢ > 1}
< @ —1I", where I" is an unbounded cone with opening angle strictly less
than the opening angle of I'. Put @, == {§) == (2, y) € @, ¥ < }ar}. Then,
there are positive numbers » and = such that if @ € ,nI"(Z) for some
Z e (e, p(@): |o] < 2r}, then
(41) A(Z,d,(Q) = {P e d: Q e I'(P)} and | —Z| < nd, (@) .

Put B ={PeV: NP> ¢"P)<8, AP)<eA}, F ={PeV:
FP)< 6 and H ={PeV: A(P)< el}. Let w, denote the harmonic

measure of , evaluated at P*. We notice that it P ¢ V and @ & y(P)nQ,,
then 4,(Q) < C|P —@|. Hence, we get from Fubini’s theorem. that

(42)  erx [A(P)de,(P)>0 [ Vul*d QP "f(@Q)dm(Q),
b4 a2,

where £(Q) = [ doy(P) and H(Q) = {P e H: QeI'(P)}. Let W= 0,
H(Q)
nl U P

PeF
From (4.1) follows that if @ € W, then there is a point Z € F such that

J(@) > o (Hn A),

where A = A(Z, vd,(Q)). ¥ B = A (@, d, (@)}, then it follows from Lemma 1
that
oy (HNA)

wy(B) ’

However, there is by (4.1) a number C such that B < 4% = A(Z, (d,(Q)).
Since ,(B) < ,(4%) we get from (3.8) that w,(B) < Cw,(4). Therefore
we geb

G (Q " (@) (@) =

wy(HnA)

w,(4)

(@ 9@ (@)= C
From (3.6) follows that

w,(HN 4)

21-0("(2))=1-08.
() )

Hence it follows from (4.2) that é may be chosen so small that

[ IPuj2g,(@) dm (Q) < Cerze.

w

(4.3)
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Lot now & == D(H, 0, br). Then for Q ¢ 2 —W we have iPu(@) < Cedr™2.
eneo

J 1Pl (@)dm(@) < 06227~ [ g,(Q) dm(Q)
alw

< et a2 j [P P* |27 i (P) < Ce? 2.

' Bson)
1f ¢ denotes the Green funetion of @ with pole at P, then g(P) < g4(P)
$0 1t Lollows from (4.3) that

(44 [ 1Vujzg (@) dm(Q) < gerz2.

@

Also notice that it @ ey (P)—W for some P eF, then there is a point
@y &y () such that [ —@| < Or and |Pu| < Osdr~" on the line segment
between @ and . Ience |u(@) < (1--Cs)d Consequently [u(P*)|
< (1L+]-Os) A and therefore wo can choose & so small

@5 sp{|V(Q): Qey(P)>Wy>3(f—1)4, PeB, where
V = u—u(PY).

TFrom (4.4) follows that if o denotes the harmonic moeasure of Q evaluated
at ¥, then
f Vide = 2f [Pu|*(g@)dm(Q) < Oe2i2.

i)
For I ¢ 04 let MV (P) = wap{|V{iP+(L—1)P*)|: 0<t<1}. From (3.7),
(3.8) and tho Mareinkiowicz interpolation theorem. (see Stein [13], p. 272)
follows

(4.6) [(MV)2de < Os22.

o0

I Pel and Qey(P)nW, then thore is o point @, e I'(P) such that

1 =@y =< 0P Q| andl || =% el |P —@|~! on-the line segment between @
and @y, Weneo wo doduce from (4.5) that

MVDP) o (J(pe1) —0O8)d 2z H (A1) dov

if e 18 choson sufficiontly small,
From (4.6) follows that

(HB—1))Fw(B) < 06 2.
Azrguing as in the conclusion of the proof of Lemma 3 yields the Lemma.
Remark. I tho assumption N () <5 4 for some Py e V is dropped,

we see by eonsidering the function V that the following conclusion camn
made: There is wnumbor v = 7 (M, I, y) such thatif o > 1, § > 1 are given

Pekl,
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and if [u(P*)| < }(f+1)4 then there are numbers s > 0 and ¢ > 0 depend-
ing on a, B, I,y and M such that

ac{P eV: N’(I’j > i, D(P) < el, A(P) < &d, g* < Sy o(V),
where N'(P) = sup {|u(@)]: Qiy(P)nB(P, =)}

5. Proof of Theorem 1. Welet £ — B n > 2, be a Lipschitz domain.
Before proving the Theorem we need some preliminary ogtimates. If &
is a8 in the Theorem we put @1 (f) == sup fw: O(a) = t}.

ToMMA B. Assume {I(P)} is o family of conos which 4s regular with
respect to £2. Let w be harmontc in 2 and put N(P) == 511(1]]')) ju| and suppose

that | ®(N)du = L < co for some measure i satisfying an A -condilion,
aQ

where ® is as in the Theorem. Then given any compact seb I < L there is
a number C independent of w such that

|+ ul < 0P~H(CL)  in K.

Proof. For > 0 let @, = {P e Q: d(P) > 1}.

Since {I'(R)}is regular there is & number , > 0 such that if 0 < 1< ¥,
then there is a partition {U;} of 89 into (small) nonempty open subsets
such that if P; € Uy, then 89; = UI'(P;). Notice that in order to show the
lemma, it is sufficient to show that |u[< ¢ (G L) in each domain
2,0 < t<t. It is a well-known property of functions satistying an A -
condition that the density function is nonvanishing a.e. Hence inf u(U;)
=¢e>0. Pub A =2L/s. Then u{P €dQ: ¢(N(P)) > 3} < }e. Henco fo
each j there is a point P; € U; such that N(P;) < 4. Since 02, = Ur(ey)
it follows from the maximum principle that |u| < A in £,, which proves
the Lemma.

We shall now introduce a concept that will be useful to us. Suppose
that By = {I3(P)}, j = 1,2 are two families of cones hoth bheing regular
for Q. We shall say that F is strictly in side T, if there i o finite fanily
of open sets {U} which covers 82 and to each U there i agsociated an
open set ¥ and an open, right circular cylinder I such that U = TevV
c L8R and I'(P) € y;+P < y+P < I (P), where y, and y, are !
cones with vertex 0 and axis parallel to the axis of L such that ¥, —{0} < ya

LuMMA 6. Assume {I'(P)} is a family of cones which ds vregular with
vespect to Q. Let P* € Q and assume u is o function harmonic in Q vanishing
at P*, Put

APy =( [I7uf1P—QP - dm(Q) )
I(P)

and suppose that [ D(A)du = L < oo for a measure u satisfying an Ao
a0

icm
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condition, where P is as in the Theorem. Then given any compact set K < Q
there s a number C independent of w such that
[l -+ |Pu| < O™ (OL).

Proof. Let {IM(P)} be a family of cones, which is regular for and
is strietly ingide {{'(P)}. Then it is well known, sece Stein [12, Lemma 5]
that

AQ) Vu(@)] =< CA(P), Qel'(P).
Arguing as in the proof of Lemma 5 it follows that we can find points
Pye 8@ such that 002, = | JIV(P) and 4(P) <o (CL). Hence |Vu|
£ O™ (0L) in @, and sinee u(P*) = 0 the lemma follows by inte-
eration.

The next lemma is an adaption of Lemma 1 in Gundy and Whe-
eden [7].

ImMMA 7. Let By = {I3(P)}, j =1, 2 be families of cones, which are
both regular for Q. Assume that Iy is strictly inside I'y and u is o measure
on 09 satisfying condition A.. Let w be harmonic in Q and put N, (P)
== gup |u|. Then there are positive numbers b and O such that

(P)
p{Vy > 2} < Ou(Ny > 2),
where Ny(P) = sup{lu(@)|: @ e IL(P)nB(P, h)}.
Proof. Lot f denote the characteristic function of {P € 02: N,(P) > A}
= H., If N,(P)> A there is a @ elL(P)nB(P, k) such that |u(@)| > A
T# b is chosen sutficiently small thereis a P, & 1 such that 4 = A(P,, ¢d(Q))
. . B
c B and |[P—P<0d(Q). Put f*(P) = sup H—(-(;%, where B .runs
]
over all balls with center on 0Q containing P.
We choose the number & such that

A < Ay = AP, KD(Q)) = A(P,, 2Kd(Q)) = A*.
Sinee p(A*) = Ou(d), we have

ey A e ) g,

TP : (A "(M(A) 0>0 |

Trom Besicoviteh’ theory of differentiation follows w(Ny > ) << u(f* > )
% Ou(Ny > A), which proves the lemma.

Suppose now that {U} is finite covering with open sets of 992 such
that to each U there iy an open set V and an open, right eircular eylinder L
guch that U « V < LndQ and 49 is defined inside L by a Lipschitz
function . We now observe that given J > 0 it is possible to find a nurmber
7o > 0 such that for all P e 042 there is & U such that 4 (P, Kr,) « U and
it P o= e, @(£)) then for suitable ¢ and b it holds V(P, ar) < AP, r)
e V(P, br), where V(P,r) = {pe@,): |[#—& <<r} and 0<r <7y

S (A)
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Leania 8. Lot Ty = {Ty(P)}, § = 1,2, be two families of cones, both
being regular for Q. Suppose that I, is stricly inside Fy. Suppose p is
o measure on 82 which satisfies condition A, . Let u be harmonic in Q and put

NPy =sup ul, AP =( [ 1FuP—Qrdm(@)"
)

Ty(P) P,
Assume [ D(N)du = L < oo, where @ is as in the Theorem. Then thore is
i

a number O independent of w such that if 4> Oy~ 1(O1D), then given « > 1,
B> 1 there is am &> 0 such that ap{d > fa, N < ed} < wld > A).
Proof. We may without loss of generality assume that lim y..(@)
PACY o

= (@) for all @ e R®, where g, denotes the characteristic function of
I',(P). Hence it follows from Fatou’s theorem that 4 is lower semicondi-
nuous on 8. Hence the set § = {4 > 1} is open in 2Q. For P e d lot
r(P) = sup {t < 7o A(P, %) = 8} Then r(P)> 0 and we can find ecount-
ably many P; e 8 such that (UB; = UB(P, r(P)), where By = B(P;, r),
7; = (P,) and no point in R" lies in more than ¢ = C(n) balls By, sec
Landkof [11]. To each j there is one out of finitely many cylinders I such
that B;n 8@ < InoQ and 8 is defined inside L by a Lipschitz function
o. It Py = (my, (z;)) let V; be the smallest set of the form {{w, p(2)):
|o—u,| <7} which containg B;ndQ. Then o(V;) < Co(By). I 7,<ry
it follows from the maximality of R, that A (P,) <A for some I, e V.
¥ B = {4 > pi, N < e}, then it follows from Lemma 3 that

ac(BnB;)) < o(B)).

{Here we used that o(V;) < Co(B;).) It 7; = r, it follows from the remark

after Lemma 3 that if §' > 1 is given, then ¢ can be chosen so that
ac(B' nBy) < o(By),
where B = {4'> f'1, N<el}, A'(P)=( [ [Fuf|P—QF "dm(Q)), and
: )

Ty
Ty (P) = Iy (P)NB(P, nr)-
It follows from Lemma 5 that A (P)< A'(P)-Op~'(0L). Hence if
A > Op~(OL) where O is chosen sufficiently large we have that HnJ,
< E'n By, where we have chosen § = }(f-1). Henco

ac(BnB) < o(By) for all j.
Using (1.2) we find
p(IB) < Zw(BAB) < Aa™"3 u(B;n 0Q) < Aa~"O(m)ul( UB)noQ)

= Aa~"C(n)pu{d > 1},
which yields the lemma. i
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Lamma 9. Let P* e Q be o fived point and let Ty = {I}(P)}, § =1, 2,
be two families of econes, both being reqular for Q. Suppose that Iy is strictly
inside Iy, Suppose u is a measure on 9Q satisfying condition A, . Let u
be harmonic in Q, vanisking at P*, and put

N(P) =sguplu|, D(P) =I§E¥))|I7¢L(Q)HP-Q]"1 and
2

ry(r)

AR) = ([ WVu|P—Qr~"am (@)}

T'o(P)
Assume [ ®(A)dy = L < oo, where P is as in the Theorem. Then there
[

is o number O independent of u such that if A > Op~" (OL), then given ¢ > 1,
B> 1 there is an ¢ > 0 and a 6 > 0 such that

ap{N > Ay A <ed, DL ed, * < 8} < o{N > 1},
where g* is dafmed by
o(FnB)

o(B) '’

g*(P) = sup

where ' == {A > 1} and B runs over all balls with center at 0Q containing P.

Proof. Since the proof is patterned on the proof of Lemma 8 we
content ourselves with a sketeh. Tirst there is no loss in generality in

r; (0, 7] such that § =(UB;)ndQ, where B; = B(P;,r) and
E;n(é)!)——b‘) #% @ if r; <r, and no point lies in more than O(n) of the
s Put B = {N > B4, A < ek, D < ed, ¢* < 6} If vy <7y, then Lemma 4
yields ao(EnB;) < o(By), for suitable ¢ and 4. If ; = 7, then it follows
from Liemma 6 and the remark following Lemma 4 that ao(EnB;) < ¢(By)
algo holds in this case. The rest of the proof carried out as in the proof of
Lemma 8, which yields Lemma 9.
Weo can now prove our main result,
Proof of Theorem 1. First we suppose that [ H(N)dp = L < oo.
mn
Ghooge a family of cones {I”(P)} regular for @ such that {I(P)} is strietly

ingide {I"(P)}. From Lemmas B and 7 follow that if ¢ is chosen large
enough, then

(h.1) WV > D<K 0u(NV>1), Az00~'(0L),
where N’ (1) == gup [u|. Trom (5.1) follows
1'"(P)
(5.2) [ @ au = [ w(' > )P (A)ar< 0.
00 0 :

7 — Sludia Mathematica 67.3
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Let 7' be a large positive number. Then

T/ 7
(5.3) fy,(A>Z YO (2) A—sz(A>2/1 )P (22)dA< O [ p(A > 20)P'(A)da

Put v = CP~*(OL), where C is chosen sufficiently large. Then D(7) < OL.
From Lemma 8 follows that if a > 1 is given and if ¢ > 0 is chosen suffi-

ciently small, then
r e

fM(A>2z)¢'(z)da<0f @(N')d+—i~f w(A> 1)@ (A)da.

k4 0 0

Hence it follows from (5.2) and (5.3) that if o is chosen sufficiently large,

then
[ a
f u(d >N (A)dZ<OL+%f w(A >0 (1)da,

0
which yields [ u(4d>2)P (Wi = [ P(4A)du< CL. '
0 a2
To prove the remaining part of Theorem 1 we assume now that
w(P*) =0 and f D(A)dy = L < co. Choose two families of cones

F; = {I3(P)}, j =1, 2, such that both are regular with respect to Q and I,
is strietly inside F; and F, is strictly inside {I'(P)}. Put now

N'(P) =suplu|, D(P) =sup|Vu(@)||P-Q™*, and -
To(P) Iy(P)

“(P) = sup 24 > 4}nB)
g*(P) = sup o (B) ’

where B runs over all balls with center on Q containing P. Since it follows
from [12], Lemma 5, that D < CA, it follows from Lemma 9 that if
A= 7 = Cp~'(CL), where  ig chosen sufficiently small, then given a > 1
there are positive numbers ¢ and § such that

au(N > 22, A < ed, ¢* < 8) < u(N > 4).

Arguing as above it follows that if « is chosen sufticiently large, then
T oo by
(54) [ u(¥>Ne@)at < OL+ [ u(g* > e d+} [ w(N > p(2)d
§ 0 0

Since u satisfies condition A there are numbers ¢ > 0 and a > 0 such
that if P ¢ 9D and B < A(P,7) = 4, then

o(T\* _ u(B)
O(a(A)') S uld)
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Putting
A >eAinB
f(P) == sup - { eAnB
wB)

where B rung over all balls with center on 02 containing P, wo see that
w(g* > ) < p(f > 00 < Cu(d > &),
Considering (5.4) now yields
[ oy = [ w(V> NP (A)di< CL.
28] o

Arguing ag in the proof of (5.2) we infor
[oMau< 0 [SN)au< 0L
re an

which completes the proof of Theorem 1.

6. A corollary. In this section we shall prove the following corollary
of Theorem 1.

CororrAry. Let Q < R", nz 2, be a Lipschitz domain. Put d(P)

== dist (I, 8Q). Fix a point P* cl) am,d suppose w is harmonic in Q and
vawishing at P*. Then there is @ constant O > 0 such that
(6.1) 5t [utde < [ (Pulrd(@)am(Q) < ¢ [wdo,
a4 e

where o denotes the surface measure of 09.

Proof. Let {I'(P)} be a regular family of cones and put a(P)
= [ |Vul2d (@Y “dm(Q). Since ([P —Q| < d(Q) < |[P—@| for @ e I'(P) it
follows i’l'nm Theorem 1 that

ffuzdrr { a(P)do < Ofu do.
a0
It follows from Fubini’s theorem that

[a(Pyio = f|l7n|'d (@1 "1(Q)dm (),

pIe]

where f(Q)) = o{l’ € 8Q: @ e I'(P)}. If the height of the cones I'(P) i3

wueklic mntly mmm thon {P e 8Q: Q el (1’ } & AP, 04(@)) for some P e 0@

which implies 07 [wdde <5 [ a(L)do < (J“{ [Vui2d(Q)dm(Q), "which. yields
(

05 o
the left-hand side of (6.1). To prove the right-hand side inequality we

agsume [ wtdo == I* <2 co, Wo can find & noighbourhood V of @ such
that if (f';ue U = V&, then for some P < 902 wo have

AP, 0d(Q) = {PedQ: QeI'(P)}.
Honee [a(P)do o J [Pu|2d( Q)(Zm(Q ). Since the density of the harmonie
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measure is in L%(o) it follows that to each compact set X = Q2 there ig
a number ¢ such that

N \Vu| << 0L in K.
Hence

f]VMPd(Q)dm(Q) << f-'[« f 5 (/'f(g (P)do -+ CL* f(l‘l)’l/ = () fuﬁ(fi;r,
& 7 ulu iae I
o0

which completes the proof of the covollary.
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Lifting subnormal double commutanis®
by
ARTHUR LUBIN (Chicago TI.)

Abstract.. We give a necessary condition for clements of tho commutant of
o subnormal oporator on Hilbert space o 1ilh to tho commutant of the minimal nornial
extension, and based on this condition wo show there exists a gubnormal operator
having elements in ity double commutant that do not lift. Our example is also irredue-
ible and finitely eyclic.

1. Lot T be a subnormal operator on a Hilbert space H with mini-
mal normal extension (m.ne) N on K. Thus, N iy a normal operator
on a space K containing H, H is invariant for N, the restriction N|y = T,
and I, the sallest redncing subspaee of N containing H, is the closed
linoar span of {N¥h: § = 0,1, ..., he H} Clearly, for any polynomial p,
PNy == p(T) and it is thevefore easy to see that every clement in the
weakly closed algebra generated by I lifts to, i.e. is the restriction to H
of, some olement in the commutant of N. This result is included in 131'19
woll-known, paper of J. Bram, who gave the following necessary and
qufficiont condition for an clement of {T}’, the commutant of 7, to litt
to {N}':

Trmorum B [2, p. 87). A necessary and sufficient condition that 4 e {T}
< B(H) hdave an extension B e {N} < B(K) is that there exist a positive
constamt ¢ such that for every finile set by, ..., Iy, in H we have

r "
ST (@ Ay, T AT) <0 D] (T TR
NN Pt
T the ewtension B ewists, then b s wniquo.

Bram pointed out that thero exist subnormal operators 7' such that
not evoery element of {T} lifts to {N}. T. Yoshino, however, showed that
overy clement of {1} does lift o {N}if 17 has & cyclie vector [61, p. 49.
(Note that there is an crror in the proof of this theorem but the result
is true.) M.B. Abrahamse and O. Berger raised the question of whether
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