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Damit sind die von Pelezynski in Studia Math. 38 (1970), 8. 476 vorge-
schlagenen Probleme 38, 39, 40 vollstdndig gelost.

Wir haben ferner sogar bewisen, daf es keinen (F'S)-Raum gibt,
der sdmtliche nuklearen (F)-Réume aly Quotienten hat (zur Nichbexi-
stenz eines universellen (F§)-Raumes bzgl. Unterrdumen s. [8]). Da wir
die Konstruktion von 1(4) in 3.6 ohne Schwicrigkeiten so gestalten kénnen,
daf A(4) s-nuklear (s. [6], [9]) oder auch A (a)-nuklear in einem heliebigen
Sinne (s. z.B. [3]) ist, folgt, daB aunch kein (F'S)-Raum (und damit kein
nuklearer, s-nuklearer usw. Raum) existiort, der alle diese Riume zu
Quotienten hat. :

Literatur

[11 C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968),
pp. 307-318. ) )

[21 M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl.
(2) 93 (1970), pp. 61-82 (Engl. Ubersetzung von Mat. Sbh. 68 (110) (1965)
p. 153-173). ’

{3] E. Dubinsky and M. 8. Ramanujan, On A-nuclearity, Mem. Amer. Math.
Soc. 128 (1972).

[4] — and 'W. Robinson, Kéthe Spaces Which are Quotient Spaces of (s), preprint
(summary).

[6]1 A. Grothendieck, Produits tensoriels topologi 4

) guques et espdces nucléair .
Amer. Math. Soc. 16 (1955). ! ” Hahes, Hom

[6] A. Maxrtineau, Sur une propriété universelle de Vespace des distrabutions de
M. .Schufa/rtz, G‘ R. Acad. Sci. Paris 259 (1964), pp. 3162-3164.

[71 B. 8. Mityagin, Approvimative dimension and bases in.nuclear spaces, Russian
Math. Surveys 16 (1961), No. 4, pp. 59-127 (Engl. Ubersetzung von Usp. Math.
Nauk 16 (1961), No 4, pp. 63-132).

[8] A. Pelezytigki, On the appromimation of S-spaces by finite di !

7 - ite d 1
Bu.ll..AcaJd. Polon. Sei. 5 (1957), pp. 8'79—881.1J v AN spaces,
[g] A. Pietsch, Nukleare lokalkonvere Réume, Berlin 1969.
1 D. L8t i
{103 109_‘;(1)’%1;, Oharaliterisierung der Unterrdwme von s, Math. 7. 165 (1977), pp.

— Tensorprodukte von (F) -mit (DF)-Rdumen und ein I z 2. Wi
ersohetan, ein TFortsetzungssate, wird

s de g ~
3 n von S f W’
M. J. Wagner Uber 2wer 8?8’16”0 Klassen von T fenrd MeI,

V. P. Zaha.riuta, On the isomorphism of cartesian products of locall
spaces, Studia Math. 46 (1973), pp. 201-221.

[117
1
[12] Diplomarbeit,

(13]

Y convem

" Received August 8, 1977 (1336)

icm®

STUDIA MATHEMATICA, T. LXVIL (1980)

Tempered nontangential boundedness

by
B. MARSHALIL (Princeton, N. J.)

Absteact. Wo prove regults on the growth and convergence properties of distri-
butions and their derivatives, with the help of results from our earlier paper [3].

The object of this article is to show that with certain necessary
modifications all the standard results on nontangential boundedness
of harmonic functions are true when any mollifier is used, not just the
Poigson kernel. ‘

Let (v, 1) be a harmonic function of the upper half space QF = {(z, t):
seR® t> 0} u is said to be nontangentially bounded at a point , if
there exist constants 4 > 0, a > 0, h > 0 such that

gup |u (@, £)| < oo
ag)

where I™(m,) = {(#,?): |&—u,| < at, 0 <t<h}. It has been shown that
if % is nontangentially bounded at almost every point of a set E, then
it is nontangentially convergent at almost every point of that set. In
addition, every harmonic conjugate of u is nontangentially bounded
almost everywhere in H.

With this in mind we attempt to apply the notion of nontangential
boundedness to the study of a distribution f at a point ,. Let ¢ be a C%
function. such that f(p(w)dm';éo. Detine w(x,t) = fro,(x). I ¢ is the
Poisson kernel, then the results quoted above are statements about the
good behavior of f on the set F. In view of the work of Fefferman and
Stein on the real variable theory of H? spaces [2], it is reasonable to expect
that any mollifier could be used, not only the Poisson kernel. ‘

Tt is thereforo surprising to discover that this is not the case. We will
gee in Chapter IT that there oxist a tempered distribution fe &’ anfi
Schwartz functions @ and @ with mean value one guch that fre(2) is
nontangentially bounded almost everywhere but fx®,(») is nontangen-
tially bounded almost nowhere. )

It is possible to stremgthen the definition of nontangential boundeq-
ness in such a way that we can eliminate this dependence on the molli-
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fier. We do this by defining tempered nontangential boundedness, In
Chapter I we will show that this does not depend on the mollificr being
used.

Let fe s and ¢ e & such that [g()dz + 0. f is said to be tempered
nontangentiolly bounded at x, if there exist constants A and A wuch thas

sup [ frey (@) < A (14 a)?

@0l gy

for all > 0.

Thus we are requiring that fsgp,(x) is nontangentially bounded and the
nontangential bound increases slowly as a function of the apoerture a.

This stronger requirement that is forced on us is not however a great
restriction. In fact if we have any reasonable eontrol over [ then f will
be tempered nontangentially bounded; for example, if fe H? or if f is
locally integrable in some open getb.

‘In the third chapter we review the theory of certain # functions
and the corresponding Banach spaces AB*(@y). As in the case of Lusin’s
ares integral, the operations of differentiation and singular integral oper-
atiors are best handled by using various integral expressions, rather than
by tempered nontangential boundedness. The proofs of the results of
this ehapter can be found in [3].

‘The spaces A2*(m,) are defined by

A2 @) = {f e #': N2A(f)(w,) < oo}
where

NEA(f) (o) = F2A(f) (@) + “harmless terms”.

The important parameter is y e R. This gives the order of differenti-
ability of f at z,. We will recall that differentiation and certain pgeudo-
differential operators are bounded on these spaces.

In the final chapter we will discuss the conrection between tempered
nontangential boundedness and the spaces /;(H). For a set B of positive
measure, the space /A (H) is defined by

A(B) = {fe: feaiiz,) :lUAf;A(mo) for almost overy w, e B}
>0
={fe: F4(f)(xy) < oo for some 4> 0 and & >y for a.o. 2, € B},

We Wﬂl prove that w(w,t) = fxe,(z) is tempered nontangentially
b'ognded it and only if f e A%(H). Since f e A3(B) is equivalent to the
finiteness of some Littlewood-Paley ¢} function, this result will be our
analog of the theorem for harmonic functions that nontangential bounded-
ness a.e. B iy equivalent to the finiteness of the ares integral a.e. B.

) For harmonic functions, if f is nontangentially bounded at every
Pomﬁ of 5 set ¥, then f is nontangentially convergent almost everywhere
in B. By taking advantage of this result and using the 42(E) spaces we
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can prove a similar theorem. Let fe 5’ and ¢ e & with [p()dw # 0.
‘We will prove that if fxg,(2) is tempered nontangentially bounded every-
where in I, then it is tempered nontangentially convergent almost every-
where in B.

A funetion f is said to be differentiable in the harmonic sense at ax,
it u(m, 1) = f+Z () and all its first order derivatives are nontangentially
convergent at @,. The corresponding notion of differentiability for tem-
pered nontangential boundedness is closely connected with our spaces
A (). For any nonnegative integer &, f is in /3 (H) if and only if all its kth
order derivatives are tempered nontangentially convergent at almost
every point of I,

I£ w, ..., %, ave conjugate harmonic functions and u, is nontangen-
tially bounded almost everywhere in F then all of u,, ..., %, are nontan-
gentially bounded almost everywhere in . If f € L?(R™) then the problem
of finding a harmonic conjugate of fx#;(x) is solved by applying a Riesz
transform to f. With this in mind we see that our generalization of this
theorem will be a result about singuldr integral operators. By using the
boundedness of singular integral operators on the spaces AP*(z,) we
will be able to prove that if f has compact support and f is tempered
nontangentially bounded at almost every point of F, then Tf is tempered
nontangentially bounded almost everywhere in F, where T is a singular
integral operator.

‘We have made the necessary extra assumption that our expressions
arc tempered in some sense. Once this has been done however we see that
all the standard results about nontangential boundedness of harmonic
functions are true also for any function « of the form w(zx,?) = f+@; ().

I thank my teacher, Charles Fefferman, for the various comments
and suggestions that he has made. This paper and its compan;on [3]
were my doctoral dissertation, written under his direction. .

1. TEMPERED NONTANGENTIAL BOUNDEDNESS

§ 1. Change of approximate identity. Let & denote the set of Schwartz
functions on R* and let & = {p € & [p(z)dw %0}, the set of Schwartz
functions whose mean value is nonzero. & will then be the space of all
tempered distributions on R™

@ () will be used to denote dilation by ¢. Thus

' 1
(@) =-t—,r¢(—f—)-

In fact we will adopt the convention that whenever t or s appears as a sub-
seript then that subscript indicates dilation.
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Our chief tool for studying distributions f will be convolution. If f e It
then we form

wa, 1) = Frp@) = [FWe@—y)y.
. Bno

If [p(x)dr =1 then ¢, is an approximate identity and ¢ will be referred
to as a mollifier.
The cone of height h, aperture a, and vertex =z, is the set

I @) = {(w,8) € 2% |w—ay| < at, 0 <t <h}.

A function w(z, t) on Q" is said to be nontangentially bounded ab w, if there
exist o and & such that the supremum of |u(w, t)| over I (x,) is finite.

This condition involves using only one cone at each point @, but,
except for a set of @, of measure zero, boundedness over one cone implies
boundedness over all cones. More precisely,

LevmA 1 (Stein [5], p. 201).. If u is continuous in Q* and u is non-
tangentially bounded at every point of B, B < R", then for every ¢ > 0, a>0,
h> 0 there ewists a compact subset By < H such that |B—H8y| < & and for
all ©, e B, there exists A = A (a,h, &) so that

sup  u(z, 1) < 4.
(@ ey

For f in & and ¢ in &,, consider u(z,t) = frp,(z). Tt turns out
that the set B of all #, in R® where » is nontangentially bounded depends
very strongly on ¢. We will see an example to illustrate this in the next
chapter. In order to eliminate the dependence of B on the mollifier @
whait is needed therefore is a stronger type of nontangential boundedness.

DeriNrtioN. We will say that wu(w, ) is tempered nontangentiolly
bounded (TNTB) af x, if there exist 4, b, and A such that

sup  u(z, 1) < A(L+a)

@ 1)er )

for all a> 0.

The extra condition then is that the nontangential bound grows
slowly as a function of the aperture. This condition is not vory restrictive.
- Consider any fixed @ in &,. If f is a tempered L? function then g (@)
is tempered nontangentially bounded almost everywhere. Similarly if f
is an HP distribution (p > 0) then fxg¢,() is TNTB almost everywhere

and 1 can be any number > x/p (Fefferman and Stein [2], p. 166). If f -

is a tempered distribution such that on an open set 7 it is equal to a locally

integrable function then fxg, () is TNTB at almost every point of .
Also, using Harnack’s theorem, it is possible to show that if u(w, t)

is a positive harmonic funetion in Q* that is nontangentially bounded
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at @,, then wu(wx,?) is TNTB at x,. A similar proof shows that if u(», ?)
is TNTB below at x,, then u(z, f) is TNTB above at @,, and vice versa.

The following theorem shows that tempered nontangential bounded-
ness is independent of the mollifier used.

TauorEM 1. Suppose that

(1) sup  [(fxp) (@) < By(l+a)
(m,t)el",:(mo)

for all a>0

where @ is a O function such that ¢ is of dlass OV in some neighborhood of
the origin and @ (0) 7 0. Here N is some integer greater than n+ A and B,
is a nondecreasing function of h.

Then

sup  |(f* @) ()| < ABr [P (L+0)*  for all a>0

(@ el (zg) ‘
where |D|= 3 [(1+ [y|)* leqf(y)[dy and K is a constant depending only
on p. The fglilgoxmg norm may also be used:
H®ll] = lé’vf(lﬂyl)“’w@(y)xdy-
NS,

Proof. If ¢ is dilated or translated the corresponding function in the
upper half plane remains nontangentially bounded. In fact, if ¢ is a smooth
function with compact support and

@) B(2) = [ o (@—9)pH)dy = (@ %) (@),
Rn

then )

(3) FrBy(@) = [ (Frou)@—t)p@)dy.

If (z, t) is in a cone with vertex at , and y is in the support of v, then
(@ —ty, st) is in a slightly larger cone with vertex x,. Hence f*®; is non-
tangentially bounded at #, and an estimate like (1) holds. The strategy
of the proof will be to express @ as a sum of expressions like (2) and then
to use estimate (1).

Let No={xeR" |g|<l), N,={weB": }2/<|p|<2} for

" j=1,2,... Let n; be a O partition of unity subordinate to this open

covering of R” guch that »; > 0 for all j and
(4) |D? 5y ()] < 4,27 for

Sinee ¢ (0) = [p(w)dw == 0, there exists a positive constant K such
that if |¢| < K then | ()} = m > 0 for some fixed m and ¢ is QN in this
small neighborhood of the origin.

j=1,2,..
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Now we break @ into pieces. Let &, = 77,-Q3 and let y; be such that
#;(2) = ®;(2) /p (K22~7). Note that if # is in the support of (5,, then |o| < 27
and [K»2277| < K. Hence ¢ (K2277) > m and so 9; is smooth. Finally define
$ir. = npy;. This gives the following decomposition of &:

B " qjj (@ = ZQQK”_]*QP 24 v q’]{n"] *¢jla (@)
F]

= 2 2 f (p[{z—-i ("l" - y)¢jk (f’/) d?/ .
J ok

Comparing this with (2) and (3) we see that
(5) (f+®)(2) = ) 2 S *g-p) (@
7

T (w,1) is in I(w,) and y is in the support of ¢y, < Ny, then
(& —1ty) —a0] < ab+ |yt < (a+2%)1 = 2/ (a2 K1 K127,

So (w—1ty, Ki2™%) is in the cone of aperture 2/(a--2%)K-! and height
Kh27J. Therefore, using (1),

(6) (F* Y@ < D) D [ 1(F 50 p0-i )@ —1) 950, (9)] Ay
ik

< D DA+ (@t 25 K gy () dy .
i ok

}2%. Thus
A+ K1+ a4- 25 < A (14291 + a)* (L 2%)
AL 42 (L4 a) (1 + )

Applying this to (6) and using the fact that b = My is supported in N,
yields

(D If*Pw

)‘/ch )

If y is in the support of ¢y, then‘Iy] >
{L1+2(a+25) K g

Az 2(1+2f (L +a) [(@+ 1)l (w)ldy

N

S2A(L+af T (1+20 [ (L1y)) wy (v)] dy.
7

The last ineguality used the fact that no point of B is in more than two
of the N,. Since

—

L+ 1y Iy ()] = 1T — 2y ()| < (T — 45y,

then
J@ -+ @)y < A [ @+ y»io=m=Dy, ()| dy

<
S AT = AP gyfly [ L+ ly )b ay = A (L — 4PV,
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Now (7) can be used to give

(8) If*®y(@)] < AL+ a) 2(1+2f>’n(1 A,

To estimate [(I— 4)*pl, recall that 9;(x) =, (2) B (2) [ (Ke2~).
Thus

(I —A)5y(2) = (I — AP iy (o) B (2) I (o2}

\ Y 1 ” N ‘
= _>_J nvzvaD 7;(2) D" [9}(1{22_]—)] D3 b (z).

1v1+votygl<N
Using (4) and the fact that

gives the following estimate
9) - D) < A- A2~ 4 (B2~ D7 B (2]
lyy+rvatval<N
<4 3 opteEI<d 3 D7 EE)
vy +val<N l7I<V

Remember that the support of D" #; is contained in N;. Therefore inte
grating both sides of (9) over that set gives

M —aph< A 3 [ DS (2)lde.
|7<N N;

Putting this into (8) completes the basic assertion of the theorem:

If+Pyo) < A(L+a) D 2 (1427 f]D”(P(z lde .
V<N j
<A(+ais ) K 1+[z|)’1 D7 (2)|de
<N T Nj
<2AA+0) 3 L+ DBl = AP (1+a)
<N

Nofe that in the above computation we again used the fact that the
sets V; do not overlap very much. The other norm mentioned in the the-
orem can be obtained by using the uniform boundedness of the Fourier
transform of an L' funetion:

a T T —
L+ 62V D7D (2)] = (I —AVV a7 B (2)] < (I — 2N o O ()]
<4 D WDol< 4 D 1+ (=) D ol,.
= <y

3 — Studia Mathematica 67.3
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Therefore

D i+ 1) D (@)l <

<N

o) = 2 I+ 1)V D7 B ()l (L + [y,

<N

< D4 DA+ EN D O|A = Al|B]]].

IPI<N i<N

This completes the proof of the theorem.

It is clear that if (1) is true for some truncation height % then it must
be frue for any other height %. It will, however, be necessary for us to exam-
ine the effect of this change on equation (1). The following lemma is
a simple consequence of Theorem 1.:

Lemma 2. Let o and N be as in Theorem 1. If

sup (@) (@) > B(L+ o)

(m1)el" 3 faxg)

for all a> 0,

hen for every O function D such that |P| is finite,

(10)  sup |(fxBy) ()] <

(@herzg)

ABQL4+EVIP(L+a)*  for all a> 0,

where A is a constant depending only on h, o, n, 4, and |D|| is the norm in
Theorem 1.

Proof. Apply Theorem 1 to ¥ = Qk(Kh)“l' Then
(11) sup  |f*Dy(a)| < ANPH(L+a)
(@ b)el (g
But
7| = 2 J @+ Iy |D7 { B (k(ER) )} | dy
i<
< D) (k(ER)Y-nrm [ @+ |EhG 21y | DB (2)| de.

I7l<N
I r< Kh then I(z,) < I'™(a,) 80 we can use Theorem 1. This gives
(12) sup |(Fx D) (w)] < AB|D|(1 + a)*.

(e ()

On the other hand if % > Kh, then

IEH< D) (B(ERY™)7 [ (1412 1D” B(2)| de < ABLY ]
IPI<N ;

Therefore putting this into (11) and using (12) completes the proof of the
lemma.
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The notion of tempered nontangential boundedness is equivalent
to the finiteness of a certain maximal funetion; namely,

2
M L) = sup |——— *@y (@
o0 = mp (] Fona)
where £, = {(z,%): ® e R*,0 <<t <h}. M;(f)(@,) is equivalent to the
smallest B such that
sup |fxep ()] <

)

B(1+a).

Theorem 1 and Lemma 2 show that using a different ¢ and & produces
little change in ., (f)(%,). In fact,

-/lz,w,k(f (#0) < A X+ R)Y DI (f) (o)

where 4; 4, denotes the maximal function obtained by using @ and %
instead of ¢ and &.
If we assume a certain type of nontangential convergence, then we
can change the mollifier ¢ and still preserve the convergence.
DEFINITION. We will say that f is fempered nontangentially conver-
gent at o, if there exists an increasing function B, such that B; approaches
zero as h—0 and

(13)  sup [(fxpy ) (@) — (1+a)*  for all a> 0.

T o)

(F*@i,) (@) < By,

THEOREM 2. Let ¢ and N be as in Theorem 1. If f is tempered non-
tangentially convergent at x,, then for any smooth @,

SuP (f*Py) (1) — (f % Py, ) ()| < ABgy [P (1 + a)t;

I (:co)

A is a constant independent of f, %y, By, D, a.

If fo(w,) denotes the nontangential lzmn of f+@,(x) and if p and @
both have mean walue one, then
(14) Jol#) = fo(o).

Proof. The verification is essentially a repetition of the proof of The-
orem 1, and we adopt the notation of that proof. Using (5) and the in-
equality (13) we get

[{f 5 Dy, ) (#12) — (F * Py,) (w2)]

=| 2 D) AP P —ys) =y 00 — Yo () O |

<j2 %3 AByy (L+2 B (a+29)" [ s (y)l dy.
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The expression on the right-hand side is the same asg (6). Thus the proot
of Theorem 1 says that it is dominated by 4By, |®| (1 a)t.
Now we look at the nontangential limit. As before

(15) C L B0) = X3 [ (Fepp ) (@ — iy (v) dy

ik .
We have alveady seen that this series converges absolutely, Therefore
taking the limit as (2, t) = (@, 0) in I'm,), the right-hand side of (15)
becomes

Fol@e) ) D) [ bu)iy = £, () § 2wy =fo@) 3 [y m)ay.
i k I 7

But [y;(y)dy = #(0) = nj(Q)i’(O)/(ﬁ(O) = 7;(0). Sineo {n,} is a partition
of unity the limit is in fact Jo(®y).

§ 2. The Poisson kernel. Since much of this paper is devoted to
generalizing theorems about harmonic funetions it is natural to examine
the problem of changing the mollifier o and from the Poisson kernel #.
Since the Poisson kernel and its derivatives might not decrease rapidly
enough Theorem 1 cannot be applied directly. To change to the Poisson
kernel we will have to assime boundedness over untruncated cones (b = oo),
This is not however a serioug restriction because we will see in the next

section that if f is bounded over truncated cones, then by subtracting -

a very good distribution g, f — g will be bounded over untruncated cones
(Theorem 9).

THROREM 3. Let ¢ and N be as in Theorem 1 of the first section. If

sup) @) < B(L+a)*  for all o> 0,
@)

then
SUD |f+Zy(@)| S AB(L+a)*  for all ¢ 0.

T'oftg)

Proof. Let {n,}=> bea ¢ vartition of unity such that 7y () = n(a27)
for j > 1 where 5 is supported in {# < 2| € 2}. Then

2(0) = 3 n@2 () = 3 @)
i=0 =1

where @y(s) = n(2)? () is supported in {4 < o] < 2} for j > 1 and B,(x)
= no(%)? (%). Therefore ‘

Zi(0) = D278, (o)
i=0

Tempered nontangential boundedness 251

and .
If*2y @) < 327 f2(S;),,, (@)

If (», ) is in I',(,) then so is (z, 274). Henece applying Theorem 1 gives

(16) If+2y(@)] < D)2/ AB)|&,]||(1+ o).
j=0
Therefore if we can show that |||®]]] < 4277"+) we will be done.
Buf
MBI = D [ A+ 12))¥ 1D &, (w)|dew
IPI<N

<4 D' [+ D @)2" D22 0) ds.

I +7a <N

Since |.D™%(2/x)| < A2~ +mD, the right-hand side is dominated by

A 2’ 2_]‘(’”1)f(l—l‘[ﬂ?l)NlDyl?y(m)[dw =A2—:i(n+1)”m]” = A2~ in+1)
I7+7a <N
Using this in (1) completes the proof of the theorem.

If in the last theorem we were willing to restriet ourselves to the
case 4 <1, then it is possible to modify the proof of Theorem 1 so that
we can change from ¢ to £ without assuming boundedness over untrune-
ated eones. )

In order to change the mollifier from the Poisson kernel to a Schwartz
function it is not necessary to restriet ourselves to boundedness over
untruncated cones:

TaEOREM 4. If

sup |f*Z(w)| < B(L+a)*  for all >0,
)

then for any ¢ € &,
sup |frg(o)| < AB1+a)*  for all a> 0.

¥
I'eg)

Proof. It will be sufficient to change from & to a function ¢ sqch
that we can apply Theorem 1. Fix N > n--A. Let g(t) be a (% function
supported in [1, 27 such that

fomat =1,
(17) [tgat =0 for k=1,.., M+N—1.
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Consider ¢(2) = [‘?,(#)g(t)dt. Then frp,(w) :f(f*ﬂ,s(w))g(s)ds. Thug
Ifs@@ < [ AL +a)lig(s)ids = A(L+af i (2,8) e I(a,).

Clearly ¢ is a €% function. Therefore in order to be able to apply The-
orem 1 we need only show that ||p|| is finite. Since

o) = [ e g(t)dt,
it can be shown by induction that

[7]—1

. 1 A - _
(18) D) = W“(TzT""’iT) f ot eIt g () ag
J=0

where p; is a polynomial.
Congider

F(e) = [e™igyat  for > o.
0
Integrating by parts M times gives
F(e) = o [ W@ ()t
0

where @ (%) is obtained by integrating #* ¢(8) M times. It can be shown that

ot ‘

G@) = [s*g(s)p(s)ds
o

where p is a polynomi'al of degree M —1. Therefore because of amn G
has compact support if k--(M —1) < M+ N —1 (that is, it k< N). In
particular ¢ e I1(0, ), and so

1P (@) < o1 [ |@@)dt = A |p™.
0
Using this estimate in (18) gives

=1

. 1
D% (@) < ) A AR S AT o <1,
j=0

Therefore if ZII ‘is large enough .D*p will be continuous for all v < N
Also D9 is rapidly decreasing because by (18)

[yl=1

D73 (2) < ) Ld-o™™ [T 1g@)|dt = Ae™®  for |o>1.

J=0

Thus |lp|| is finite and we can apply Theorem 1,
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The proof of the last result can also be used to show that we can
preserve tempered nontangential convergence when changing from &
to .

TeEoREM 5. If f is tempered nontangentially convergent at x, with molli-
fier 2, then [ is tempered nontangentially convergent at &, with any mollifier
@ € &. The new bound is the same as in Theorem 2.

§ 3. Multiplication and restriction, In this section we examine the
operation of multiplying f by & smooth . The results of this section are
all consequences of Theorems 1 and 2.

THEOREM 6. Let N be an integer > n-+ 1. Suppose that y is a OV funciion
such that

ID?y(@)| < BAL+I2)™  for all |y|<N.
17t .
sup [fre (o)) < A1+a),
Ilzg)
then
sup [(yf)*By(2)] < ABI®lI(1+ o),

I 2(330)

. where @] = 3 [(1+ [y)VH| D" D (y)| dy and A is aconstant independent
17I<N

of f, o, o, 9.
Proof. Consider a fixed (z,t) e I''(s,). Notice that

W)+ B(@) = [plo—9)f@—9 Oy = [F@—p)b(y)dy
R

where ¢(y) = O(y)p(z—1ty). By Theorem 1
(19) I(wf) * @, (@)] < A ll(L+a)

where [|fll« is the second norm in Theorem 1. Although ¢ depends on »
and ¢ we will be able to get a bound for |¢[ that is independent of these
variables. Note that

20)  Iglh<A D [+ )Y ID" By Dy (e —1y)l dy.
Y1+ val<V
But

D" y(e—1ty) < BA+lo—ty))” < B(L+ |z —w)™ (1 -+ )™
< AB(1+a)™ (14 y)™.

Therefore (20) simplifies to [[#lls < AB{1+ «)M|[@|. Putting this into (19)
completes the proof of the theorem.
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TamoreM 7. Let N be an integer > n-+ A Suppose that y is o OV+?
Sfumetion with

D" p(@)] < B+ )™ for all [y| < N+1.

If f is tempered nontangentially convergent (TNTO) at 2y (with bound (1 a)*),
then f is also TNTC at @, (with bound (L+ )™ 2+4Y, If the first limit is
denoted by “f(w,)”, then the second limit is v (a,)** f(2,)”.

Proof. As in the previous proof we write

(0F) % Dy (@) — (pf ) By (@) = [ {Fl@y—y) —f (@2 —y)}p(wy —) B, () dy +
+ [ F@a—y) {p (@, —9) —pl@a—9)} Dily) dy
=I,+1,.

Let (@, %), (@, b)) € (). We handle the first integral by writing
é(y) = P(y)p(x,—ty) and using Theorem 2. To take care of the gecond
integral we let ¢(y) = P(y {w(a&‘l—m) p(®2—1ty)}. Now since f must
be TNTB at 2, we can use Themem 1.

gl = 3 [@+wh¥ D" @)™ Dy (a; ~ty) ~ D (@, —ty)| dy
[r1+ygl<N ‘
Sloy =@l AB D [ (14 1N D7 B (y)|dy (1 + )
lyI<N

= AB |, —m,| [ B (1 + a)*

Since |, —,]| < af < ah, this shows that yf is TNTO at 2.
Suppose that [P(x)dw = 1. We write

v * (@) = p(@0) [f(y) Byla—y)dy + [ 1) v (@0) — (@ —)) 8,(y)dy.

The sécond integral is handled like I, above. So it approaches zero, By
assumption the first integral approaches () “f(,)”.
Levovaa 8. If f = 0 in anetghborhood of %y, then f is TNTC to sero at &g
Proof. Take a mollifier ¢ with compact support. Qutside & neighbor-
hood of @, in Q" we have fxp,(z) = 0. This and the fact that .4t~
for some M can be combined to prove the assertion of the theorem.

THEOREM 8. Let v be C and p(w,) # 0. If v f s TNTB (or TNTC)
at %y, then so is f.

Proof. Multiply uf by 1/p(») in a small neighborhood of %o. Then
use Lemma 3.
THEOREM 9. If f is TNTB at every point of some bounded set B, then

there ewist f; and g such that f = f, +g and g = 0 in a neighborhood of B and f;
is TNTB over untruncated cones at every point of B.
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Remark. This simple decomposition will- be important when we
want to use harmonic functions in Chapter IV. g is very good and causes
no problems. f; is bounded over untruncated cones so we can use The-
orem 3 to change to the Poisson kernel.

Proof. Since fe &, it can be written as the derivative of a slowly
increasing continuous function. Let f = D”h, where h is slowly increasing.
Let- g be a C* function with compact support that is identically one in
a neighborhood of H. Let f, = D?(xh); then clearly g =f—f, = 0 in
a neighborhood of E. Also f; is TNTB over untruncated cones because

1 Al | D" gl
Fen@)] = B (Do) < P £

H. A COUNTEREXAMPLE

It was shown in the last section that the notion of tempered nontan-
gential boundedness does not depend on the mollifier . Such is mot
the case for nontangential boundedness. In fact even if we require nontan-
gential convergence it is not always possible to change the mollifier and
retain nontangential boundedness. This section will be devoted to construct-
ing an example to illustrate that the set of points of nontangential bound-
edness depends on the mollifier that is used. '

TumorEM 1, There exists o tempered distribution f and mollifiers P
and Q in &Py such that f+P, () is nontangentially convergent almost everywhere
but f+Q;(z) is nontangentially bounded almost nowhere.

It should be noted that f can be made to have compaet support.
In this case the conclusion will be that f+@,(z) is nontangentially bounded
almost nowhere in the interior of the support of f.

This construction works for any dimension #, but for simplicity
we will assume that # = 1. No new ideas are needed for the general case.

Consider ¢ e C°(R). We require that gz is supported in [2, 3] and
J#(z)d = 1. et P e be such that P(z) =1 for all |o|.<4. We will
let y denote the characteristic function of [ —%, £]. ANOW define ¢ = x*¢.

Note that ¢ is supported in [1, 4]. Therefore Py = ¢ and s0

-sin (n)

Pxrpz) = (@) = @(z).

ki

We now list the properties of P and ¢ that will be of interest to us.
) [P(@)dw = P(0) =1,

(i) Pe Z,pes,

(if) w(0,1) = Pap(0) = $(0) = [d(z)ds =1,
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(iv) 2 (j, 1) = Prp(j) = BnM) iy 0 tor i€z, j#o0,

(v) [otp(@)ds = D*p(0) = 0 for all keZ, k> 0.
For any @ in & define :
w2, 1) = p+Q(0) = [p(@—y)Qy)dy

_a,nd let u(2,1) = uF (2, t). This function will be the bagic building block
in the construetion of f. Note that #(0, 1) = pxP(0) = 1. We will now
show that w decreases rapidly at infinity.

LemmA 1. For all N,

(@, )] < A1QI(L+ || +1)~Y

where Q1 = Q1L+ [V Q (2l + 1DV Q). + 1Y DY Q(2)],, and A is a con-
stant depending ont N and ¢ but independent of Q, @, and .

Proof.

w0 (z, t)= p(a) QWay+ [ Q) {p@—y)—p@)}do+
lyl<ilzl 1Y) <3|
+ [ ewel@—yay.
lw1>Ftel :

The first integral is dominated by |p(s <4 -
v 15 majonsast by P(@){ [l < 41Qll; [#=~. The second

{ sup

le=ai<ilal Wi<dai

The last integral is taken care of by using
R <YV IRYQ (Al < A RVQUR) I 0]V for
Therefore putting these estimates together we get
) [0% (@, ) < A{IQlh+ 1:¥Q ()} lo ™  for ¢ <1
We will now obtain a similar estimate for large 1.
@ @y = [on e (T - [om 00 (2) (4w

@s M

fOI some ¢ = ¢, v bet ween o and x Y Nobe bha.b the flI‘St} N bernls Of bhe

Ta:?lor series of Q a:])olltl x [t make no contribu (10N, because a 1 Ile moments
/ b

For |y] > § 2| we can use the estimate

(D¥Q) (ti)

<1,

< IDVQlly

iom

Do (2)[} fIQz(y)llyldy<AHzN“D¢(z)llle“NHQIIi———AHQIlllwl"N-'
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but if |y] < %a|, then

(D¥Q) (—;i)\ < sup

[e—zl< |yl

£ N+1
<4 (“15;[) DY Q (@)

2
a3
Therefore dividing the integral in (2) into two parts and using these esti-
mates

1
(3) 0 (@, 1) < ANDY Qoo T e () idy +
lyi=tlz]

+ARDYQU T [ Ve (y)ldy

lvl<}lz|
< A{DVQI+ [T DYQ (2} el TVt for all 1.
Observe that it also follows from (2) that
) W@ (@, 8)] < 47V [DY Q-
Estimates (1), (3), and (4), together with
[ (@, )] < lpll@dl, = A 19l
can be combined to complete the proof of the lemma.

Now we know that u(x, t) decreases very rapidly at infinify. We will,
however, need a better majorant. Define

1
20 = e a0l
lz|+t=r
This means that
: 1
5 e, ) < ——s.
®) B

Lemma 1 asserts that p is a rapidly increasing function.

We are now in a position to construct a function U (w, t), which will
turn out to be f#P,(z). In view of Theorem 1 of Section I U(z,?) will
be nontangentially bounded but the nontangential bound will increase
very rapidly as a function of the aperture. The strategy therefore will
be to make U(x,t) big at certain carefully located points of the upper
half plane.

{&:} and {M,} are positive sequences that will be defined sghortly.
{(jd,,, 1/M): jeZ, b =1,2,...} are the points where U(w,?) will be
Dbig. They will be referred to as the lattice points. The set {(jds, 1/My): J € Z}
will be called the k-th level and will be denoted by L. Thus the distance
between consecutive lattice points on the kth level will be d,. The kth
level is at a distance 1/M;, from the real line.

To each lattice point (jd,, 1/M;) there corresponds a dilate of w:

JV[H‘((W — ) My, ch) .
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The value of this function at the lattice point is M, the reciprocal of
its distance to the real line. Define

Uw,0) = D' 3 Myu® (0 —jdy) I, t2,)
k=1j=—c0
and set U(z, 1) = UF(x, 1) , ‘
We will now find appropriate sequences M, and dy and then verity
the relevant properties of U.
Let m;, be a sequence of positive integers inereasing to infinity. Define
M, = (p(m,c))*. By taking subsequences we can ensure that wmy, satistics
the following conditions
k-1
W) M= 3,
i=1
@ 3L <,
i=k+1 Mi
&1
i) M—<3
;él Moy ’
(iv) Mp>1, mi< M,.

) Oondition (i) guarantees that the first k —1 levels do not interfers
with the kth, and condition (ii) prevents interference between later levels
a‘nd the Zth. (iii) is needed to show that the set of points of nontangen-
tial boundednees has positive measure and the inequalities in (iv) are pure-
ly for convenience.

Define d, = mi/M,, and note that the second inequality in (iv)
says that d, < 1.

In order to show that the series defining U%wx, 1) is convergent
everywhere we use the estimate

(6) I“Q((m_jdk)Mka tMIc)I <A1+ —J | M A- ¢ 2, )0,
The: sum of the right-hand side over j can be dominated by an integral
ag in the integral test: o

(M QO+ o—ja M) <2 3 (1 jd, M+ t2,)
={
S 20+ 0M) 7 2 [ Tt rdy I, + 1M, dr
0

B 1
= AT e (L 0M) ™ < A ()
g ]

Putting this into the series for U%(x, t) we get

® 1T, ) <4 D) My A (M) = A < co,
. k=1
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Therefore the series for UY(x,t) converges abspdutely in the upper half
plane. ’

Tn order to estimate U?(w,t) at the lattice points of the kth level
we must show that the contribution of the other levels is small. More
precisely, ’
(9) T LJ 2 Jl[k

itk =—00

Denote the left-hand side of (9) by S. Estimates (6) and (7) yield

o< Sl i o 2

i M.
ZM. by uQ<(w-jd7,)M- l—){ < AME.

£ i, e, \TTH,
- M \"?
<A M M (1+=4) .
A 4M1 (1+ Mk)
ik

If i <k, then we may ignore the denominator and use inequality (i).
For 4> k, eliminate the one from the denominator. Now condition (ii)
handles the sum over these ¢. Thus

S| < A{MELMEAM;?} = AME.

This proves (9).
‘ Now we would like to show that U9(jd,, 1/M,) is approximately
equal to M;. First we prove that

(10) | 2, >0 ((jy—idy) M, M [ ,)| < 3.
) i#]
Note that the left-hand side of (10) equals M| 3 wu(id, M, 1)|. Again
170

use Lemma 1 and dominate the resulting series by an integral. Let §
denote the left-hand side of (10). Then

18] < Mid D) (2+[ildp M) < 24 M, [ (24, M) dr
0

270
1 A AM, 1

=AM, —— = — = ——— M, for all large %.
V@, T d,  my & R

Since % (0, 1) = 1, the estimates (9) and (10) mean that U(jd;, 1/M,)
is roughly equal to M. In fact :

(1) UGy 1[My) =My < AME+LM, < 3,

Next we define & set on which we hope U is nontangentially bounded.
Suppose ¢, = mj and define

B = {p: dist(z, L) > ¢,/ M, for all %},

for large k.
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where dist (z, I,) is the distance between # and the kth level, L. Let M
be 2 big integer. Congider I = [ —M, M]. We will show that Bl contains
most points of I. Hence I has positive measure.

Bnl =I—{zrel: 3k such that dist (v, L) <
=1- U {w el: dist(w, Ly) < e,/ M}

6/ Ny}

The set In{w: dist(z, L) < e,/M,} is contained in 2 /d), -+ 2 intervals
of length 2e, /M. So 1ts measure is less than or equal to

2M 2¢, (4M) 20, e, 4
gt g =4 I| = —|I|.
( dy, i )Mk d MI A M, ol iy, M

But the complement of BnI in I is the union of these sets. Therefore

Y 4 1
<%WIII<3[II-

&

L —HEnI|

The second inequality follows from. condition (iii). Hence [BnI| = %|I|.

‘We will now show that U is nontangentially bounded at every point
of F for every aperture. Gonsider a specific point #, in B. Take any pogitive
integer %.

The first claim is that there are only a finite number of lattice points
in T, (w,). Suppose that (jd;, 1/M;) is one such lattice point. Then |w,—jd;|
< ¢,/M;. But since x, is in B, |z, —jd,| > €;/M,. Since ¢, is increasing these
two inequalities imply that i< % This proves the assertion that there
are only & finite number of lattice points in I, (). Therefore the sum
of the dilates of u associated with these points iy a function bounded
on the upper half plane by some big constant, say B.

Congider a point (#,t) el op(%o). To estimate U at this point onIy
the lattice points outside I, (wo) need be considered. Let (jd;, 1/M;) be
such a lattice pomt Then

(12) M, jo—jdy|+ M > Mo —jdy +50, 22 =%
I
i, , M, 6 e
=L (e —id —p ) >t id i A
o (I —jdy o —mo|) = o |@o —jdy| = o M»t o

since @€, (@), 6, > 1, and w, € B.
2" Z" "Will denote the sum over 4and J such that (jd;, 1/M) ¢ I, (w,)-
Using this notation U(w, ?) is dominated by

U@, )< B+ 3" 3" Mi1“(Mi(m —jd;), M‘t)| .

icm®
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It is at this point that the function p is needed. Estimates (5) and (12) yiéld

(13) \U (2, t)] < B+2 2 M, 2 ———_*p(ei/ek A

=1 i=0
The sum over j is dominated by the integral

bed

1 dr
(14) + .
D(e;/e,) f D6+ & Myr)
For large 4, p(6;/ex) = p(mie,) = p(m;) = M. Substituting this into (14)

gives the larger “expression
1 1 £ @ 1 1 1 2 b
<t [ <=+
M3 4, M, 5 plelo+r) ~ Mi A, plefe)” 5[ ples/e,+ 1)

1+1“1f°dr<1 4 _ 4
S T aa i) o s T E S

Putting this into (13) completes the estimate of U(x, t):

U (%, 2

U(2, 1) < B+ %Miw <B4,
Since U(z,t) is bounded by a constant independent of (z,%) e T, (wo)
then U is nontangentially bounded at z,.
~ 'We wish also to show that U(, ) is nontangentially convergent at a,.
Given ¢ > 0. Take I and J to be so large that I > & and

o

1
(15) —————— < s,
S A m:p(e [+ M)
Thig leaves a finite sum
I J
U'w,8) = Y 3 Myuf (M (2 —jdy), M.
i=1j=1

Since U'(x, t) is continuous in the closed upper half plane we can take h
so small that if (y, #;) and (w,, 1,) ave both in I} (), then
(16) [T (@, 31) — U’ (s, 12)| < }e.

Therefore (15) and (16) give nontangential convergence: for all ¢ > 0
there exists h > 0 such that if (4, 2,), (@, 5) ETQ,(%); then

[U (@1, 8) = U@, 1)| < 36+ 24e=e.
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Tt is of interest to show that U does not satisfy the hypothesis of the
change of approximate identity theorem. In other words, the nontangential
bound of U increases mpidlv a8 a funetion of the aperture.

Let o = 3d, M, = 4mi. Consider I, (%), where x, is arbitrary. There
exists a jd, that is at a distance no greater than %d;, from zy. So |z, —jd,|
< §d, = a/M,. Hence (jd, 1/M,) is in I (w,). Therefore, using (11),
an s (U@, 01> 1T, 1/Ha)| > §0 = b me)f = 4o ( V2a)t

al®y,
Since p(a) increases faster than any polynomial, then so does the ex-
pression on the right-hand side of (17).
.'We have yet to show that U(z,?) iy actually of the form (fxP;)(x)
for some tempered distribution f. Let » be any Schwartz function and use
the notation ¢ (%) = y(—x). A simple change of variables shows that

[ (M (2 —5d), t M) p(a)de = [w¥(M(—2—jdy), M) Py(w) do

Since the sums defining U and U” are absolutely convergent we get from
thig

JU@, typ@)do = [ U¥(—w, 1)P,(2)do.
Since U"N’( +, 1) is continuous the limit of the right-hand side as ¢— 0 ig
U”(0, 1). Use this to define a functional on &,

f) =lim [ T(o, hy(a)do = T7(0,1).

(8) gave an estimate of U';(m, t) but if we had uséd Lemma 1 instead of (6)
we would have been able to isolate the dependence on . Doing this yields
(U0, 1) < Allpll
‘where by [y]l; we mean the norm in Lemma 1 with N = 8. This shows
that f is a tempered distribution. If we write ¢ (y) = @Q,(y — o), then

(F*@) (@) =f(§) = U”(0,1) = U%(w,1).

Now we approach the problem of finding a new mollifier @ such that
f*@; is not nontangentially bounded. @ will be formed as & sum of trans-
lates of P. Define q(z) = [p(«t) ] and

- i 1 X
Q(x) = Z m Pz —1).

Note fivst of all that since P is a Schwartz function and ¢ increases £&ster
than any polynomial then @ must also be a Schwartz function.

Tempered nontangential boundedness 263

49 and U? can be written in terms of 4 and U:

(=] 1 o0
o) = (pe0)@) = 3 o @eR)o—in = 3 —eu@—it, ),
U9z, 1) = 2 Z Mk lzl) (M0 —jd, —it), M1).
k=1 j=—o0 z:==——oo

We will be interested in estimating U?(z, ¢) at points of the form
(J | My, 1/ M) where J is an integer. These points have the property
that for any fixed %,, any cone of aperture one contains one of these

points. So we will try to show that U° is big at (J [My,, 1] M, ). At this
point,

J 1
v (55
Mkﬂ ’ Mlco

J 2 M,
M (._ —jd, ——) —~"—)
7212;0 -=2—lw a(lel) ( * M’Go : M"o ’ Mko

But inequality (9) says that the terms for & = &, are comparatively small:

3 T J i M,
u, N (Mk (- ~its), 37
]5#2}5: 122_.4 oo Mk'o Mka Mk

0

) < AME.

So the contribution of these terms is less than

0

1
R
2, iy A, = 4t

Therefore
(18)

J
UQ(M» "My, ) y M, 2 gy v I My =4, 1)+0().

But recall that d,cDM,CO = mj is an integer and u(j,1) = 0 whenever j
is & nonzero integer. Thus we gee that the terms in (18) are zero unless
@ = dJ —jdy My, . Tence (18) equals

J - 1
19 UQ( ) o) — e + O (M%)
@9) T, 2, (T —jag ity O

Pick a j such that |J —Jdy Myl is the smallest possible. Then
1 —jly My, | <y M. Thus

(IJ—]dlnoMIao = q(dlcoMko) = Q(m‘}ro) = [p(mko)]} = M?cn'

4 — Studia Mathematica 67.3

j—co
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Snce all the terms in (19) are positive,

]

1 1 1
My = = My - =
Z 0 g ~ g, By,) © 0 ME, My

j=—oco g
Therefore
J
i, I,

of Take any cone I (»). Consider any fixed %,. There must be a point
the form (J/ My, 1/M; ) in I’} (w,). Therefore

o

(20) o )> L -0

sup |U%(z, )| >

f Iro
Iy (o)

lao

But since this is true for every %, and since M.  —> oo then

sup |U9(w, 8)| = oo.

F;lt(xo)
This is 'true for every x,. Furthermore, by a point of density argument
(see Stein [5], p. 201), for every aperture (no matter how small)

sup |U%w, #)] = oo for almost every w,.
F}'(wo) :

So. U9(x, t) = f*Q,(x) is not nontangentially bounded at almost every
point z,. .

This completes the proof of Theorem 1.

The phenomenon expressed in Theorem: 1 is not a result of some
pi-pperty of P. In fact the theorem can be strengthened to give the following:

THEOREM 2. Given any P € & such that [P( m)dw £ 0, there enists a tem-
pered distribution f and a Q € & such that f+P,(x) is nontangentially oon-
vergent almost everywhere but. f+Q,(w) is nontangentially bounded olmost
nowhere.

Proof. The proof can be reduced to the problem of finding a correct
@ €& with which to build the basic peak w(w,?) = g%P,(x). The rost
of the construction in Theorem 1 will then proceed as before.

Olearly we may assume thatP(O = [P(z)dw = 1. Since P is smooth
there exists an ¢ such that if |#| < 3 then 113(390 )W > %. Let q{; be a Schwartz
function supported in [1, 2] such that [ é()dz = 1. If 5 denotes the
characteristic function of [ —%, 4], define

24 (@)

o(@) = L,
P(ex)
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Since 113(.90;)| > % when 2 is in the support of x*(/; then ¢ is a Schwartz
function. Now ¢ (@) P, (%) = z+d(z). So
sin (nw) -

prP.() =~ d(@).

Let B = P,. Then it is evident that
it j=0,

R(j) =
RO =10 it jez,j=o0.

Also [ #*p(x)de = 0 since ¢ is 1dentmally zero near the origin. Therefore
continuing in the construction of Theorem 1 we arrive at the conclusion
that £« R, (x) is nontangentially convergent almost everywhere but fx@;(»)
is nontangentially bounded almost nowhere. Since B = P,, by changing
the aperture of the cones we see that f+P,(z) is nontangentially convergent
almost everywhei"e.

iI1. DIFFERENTIABILITY AT A POINT

We now turn to the problem of describing the smoothness of a tem-
pered distribution f at a point z,. Again we begin by forming & function
w(z, 1) = f#o(w) in the wpper half space £ and examining it on cones
with vertex ,. As in the Littlewood-Paley theory the smoothness can
be measured by integrals involving various derivatives of w. These inte-
grals will be denoted by G(f)(%,) and they can be combined to form norms

N (f)(@0)-

These norms will be msed to define certain Banach spaces Al”(wo)
The parameter A gives the order of growth of » and its derivatives as we
examine it over cones of larger and larger aperture with vertex x,. Very
often we are not interested in this order of growth and so we will consid er
instead the spaces A% (%) = Uzljf“’(aaO ). Roughly speaking, if fe 4% (xq),

then f is a distribution that ha.s smoothness of order y at the point z,.
The p here denotes the type of mean value being used.

The results given here arve analogous to the usual Sobolev spaces
IZ(R™). The essential difference however iz that rather than measuring
an average global differentiability, the spaces A7} (#,) will measure diffe-

rentiability at a single point ;.
The proofs of the results stated in this part can be found in [3].

§ 1. The spaces AD*(xy). Let 2 = {(#,t): 2eR",0<1< 1} We
will algo write Z, ;Eor the nonnegative integers and Z* for the corresponding
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n-fold Cartesian product. If g = (B4, ..., f,) € 4}, then |B] = an B:y of
G ]

By By
— Pr, _a_ﬂ_ _3_ 9
=& ... %, and (5w) _<ﬁm1) (a% .

Now we define the @ functions by

W ez = | [f (m’.__ﬂ)’”{ﬂm-y!( 2 o psace

where w(#,1) = frg(x) and 1<p< o0, 1> 0, et For p = co tho
expression in (1) should be interpreted as
PR
(“3“5‘0‘) u(w, )

As we have stated earlier, y will give the order of differentiability of f
at z,.

A
G5 (f) (o) = sup (tmf:&_l) glei=v '
0

(,8)eQ

o\#
It GL5(f)(®) < oo, then we control (—a;) %(w,1). To control all

the derivatives of a specific order we consider

GrH @) =[ 3 {@2H) @]

181=F
and

Fi () (mo) =jsup G55 (f) ().«

In the case p = 2, y = 0, the expression ¢ (f)(,) becomes the Little-
wood—Paley function g}, (f)(w,):

) | 1 22 ¥
gg,i'(f)(%) = [ fﬂ f (w) W u(w, t)lzt:.—ndmdz] = Ghim (£) (o)

where

n

Put =

te=1

6 2
()
This case will be important when we study the connecetion betwoen

the @ fung‘mons and tempered nontangential boundedness.

Om? first resu.lt. is that the finiteness of G( S){(m,) is independent of
our choice of mollifier ¢ € &, Jo@)dw s 0. Since we are concerned with
the(al effect ];)f a change of mollifier, we will congider S and %, to be fixed
‘and we will emphasize the dependence of @ on ¢. O i

@. Consequently we will
denote GZ:3(f)(m)) by G2(9).
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THEOREM 1. Suppose that N is an integer > n+ 14, 1> 0, and1 < p < oo.
Let p be a O function such that g (0) 5= 0 and @ is of class OV in a neighborhood
of the origin. Then for every C* function P,

G2HP) < A DG 5 ()

lor< > [ @+ (—j—t-)dé<z)

19l<N
and A is a constant independent of D, f, and x,.

Since the ¢ functions contain only derivatives of high order, certain
harmless lower order terms must be added to form a norm. These lower
order terms are defined ag follows:

Vg 1p
dm]

where

dz

2\f
(‘%) u(z, 1)

R2H(f) (o) = 1+ [ — )72
22(1) (o) U( o™

and

2N
R(1) (00 = p 1+ o)™ | () ute, 1),
zeR" g4
where as usual u(z, ) = e 2) and 1 < p < o0, 1> 0, f € Z7.

These terms are harmless because if f is in &', then u(z, 1) = f+p(2)
is a tempered O function. Therefore R2*(f)(®,) is finite for all 2 suffi-
ciently large.

The norms are then defined by

NoA(f) (o) = 92 @)+ D) BEHS) (@)
1B1<k

Agin Theorem 1 we can show that N2} (f) («,) is essentially independent
of the mollifier ¢ and that changing the mollifier gives an equivalent norm:

THEOREM 2. Let N, A, p and ¢ be as in Theorem 1. Then for every C*
Sfunction O, :

where

NE4(®) < A @ N3 (p),
o\«
o1 = > [t aeesmon () o)
o<
and A is a constant independent of D, f, %y, and y, is any real < y.

In the norm N2} (f)(w,) the most critieal information comes from the
derivatives of u(z, t) of order % (from the & function). It turns out though
that for any & > y - n/p we get an equivalent norm.

THEOREM 3. For any k> y+n/p

AN () (@0) S N3E(F) (@0) < Ao VD742 (F) (#0)
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Purthermore, for any T > y, N2k, (£)(20) < AgNDA(f) () and N2 ?(f)(mo)

< A NBE L (F) (). The A’s here are constamts independent of f, wq, and ¢.
Now that we know that the norms are independent of ¢ e,

Jo@)de 0, and k> y+nfp we are in a position to define the spaces

A () :

A8 @g) ={f e &": NLA(F) (@) < o0
for some k> y+n/p and ¢ €7, j(])((ﬂ)d/ﬁ 5k 0},

TFrom now on we will assume that % is the smallest integer greater than
y+n/p and will write. simply N2»%

TororeM 4. Let >0, 1 <p < o0, yeR.

(a) AD*(wo) is o Banach space with norm NP (f) (2,).

(b) Using a different ¢ €, [p@)de 0, and &> y-+nlp gives
an equivalent novm for AD*(m).

For 1< p < oo, the O® functions with ecompact support ave dense in
AP (2,).

The 4 gives the order of growth as we examine w (s, t) == fxg,(®)
over cones of. larger and larger aperture. Often, particularly in Chapter IV,
this parameter will be unimportant. In these cases wo consider the spaces

A(@e) = U 42*(m,). It is important to note that because of the second
A>0 :

part of Theorem 3, for the spaces A2(x,), we can use any & > y (and not
just & > 9 +n/p). Thus

" A2 (@g) = {f € s NEHF) () < oo for some A, k> p}
= {fe: ¥2L(f)(m,) < co for some 4, k> y}.

For each 1< p < oo, every tempeéred distribution is in some AL (@)
TaeorEM 5. (J 42(wy) = &,
yeR

§ 2. The Poisson kernel. Just asin the case of tempered nontangentinl
boundedness the problem of changing to and from the Poisson kernel
must be dealt with separately.

In this case the & functions are obtained by integrating over £*
= {(#,1): # e R", t > 0} rather than over Q. The resulting integrals are
then denoted by G2:4"(f)(w,).

THEOREM 6. Let ¢ € 5 and & be the Poisson kernel. Also let 1 K P oo,

@) If [o(@)dn 0, then G2F ()< AGDE (p) for 16> y-+nlp—L,

In addition, for any k> y if F%p) is finite for some 2, then GUE" (P)
< oo for u e R large enough.

(il) For all ¢ e, G2i(p) < AGDH2).

icm
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The constants A hore depend on @ and 7 bt not on f or m,.

Tn thoe applieations of the next chapter we will change the mollifier
to the Poisson kernel in order to take advantage of certain results about
narmonie funetions. To do this however we must boe able to control fxe,(2)
over all of @* rather than just Q. The following lemma will he used to
aceomplish this.

TaommA 1. Let B be a bounded set and let 'W be a bounded open set con-
taining W, If [ a A5 {x,) fnr overy iy in 1, then thw& omists o (,M.sbf‘mbut'wr% g
with oompact dupport such that f - g in W and g ¢ A3 (w,), where the asterisk
moeans thet integration is over S vather than €.

Weo will write f = g-+(f—¢). f—g is barmless because it is identically
zero in a neighborhood of every o, in W, Thus f—g e A%(x,) for all y € B,
@, € W. We state this separately.

Lo 2. If g 48 sdentically zero in o neighborhood of B, then g e A% (w,)
for every y & R, my & 1.

§ 3. Operatoxs on AZ*(ay). A (* function a(&) on R"—{0} will be
called a multiplier of order m if for all f e Z7

o

Lot f be a tempered distribution with compact support such that

<2 A (L&A,

[F@ @+ 18)"dE < co.
The singular integral operator associated with a is defined by
(Tf) (@) = [ o a(E)f (&)d¢.

Tuxormm 7. If f 48 & C° function with compact support and T is a
singular integral operator of order m, then there ewisls . consiant A such
that

AT |« A NDA(S
Ng'—?m(mj) (1) <5 AN () (o)«
Tl ‘ 11 tor T 2,4
Therefore T can be owtended o a bounded linear operator from AD*(®y) to
AP (o), for LS p < oo,

Cortain gpecial eases of this theorem deservo to bo stated separately.
Lot f be a (% function with compact support.

ey
< AJE™ for all peZy and Tf(8)

o\
CoRrOLLARY 1. If l(d}) m (&)

= m(£)f (&), then 1 owlends to a bounded limear. operator from A8 (a3)
to itself.
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9\#
COROLLARY 2. Tf = (———) [ is bounded from AD*(wg) to ATy ().

o
Also, Tf = (I—A4)2f is a Banach space isomorphism from A2Hg,) to
AR (@), for 1< p < co.

0
THEOREM 8. feAD"(x,) if and only if (—%-;) fedZh(m)) for ol

t=1,2,...,n.

IV. DIFFERENTIABILITY ON A SET OF POSITIVE MEASURE

The chief purpose of this final chapter is to prove analogs of the
various theorems concerning nontangential boundedness of harmonic
functions. Our results will be applicable to functions of the form. w(a, by
= fxp,(w) where f € ¥’ and @ € &. Since we want the freedom to change
the mollifier ¢ we will be concerned with tempered nontangential bound-
edness rather than nontangential boundedness.

We will prove analogs of the following theorems.

TemorEM 1. Let u(w,t) be harmonic in Q*. If u is nontangentially
bounded at almost every point of a set B < R, then u is nontangentially
convergent at almost every point of H.

For w harmonie in 0* the area integral of Lusin is defined by

Su(w(e) = ( [ @

r }1(“50)

2 n
+
i=1

THEOREM 2. Let u be harmonic in Q*. Then u has a nontangential
limit at almost every point of B iff 8,(w) (o) 4s finite for almost every point of B.

Let ¢ = x,. The harmonic functions u,, Uy .-y Uy, 0 Q% are conjugato
harmonic if

doo dt )"‘

tn+1

‘where

ou ?
ow,

ou
Vw2 =
Vu| at

P _ B o ol 0 <,
2, —éw—z or a <, jKn.

) THEOREM 3. Suppose that u,, ..., Un Ore conjugate harmonie functions
in 2%, If one of these functions has a nontemgential limit ot almost every

point of B < R", then all of them have nontangential limits at almost every
point of H.

icm®

Tempered nontangentiol boundedness 271

Tn addition fo proving analogs of these results we will also look at
tho spaces Ay (). Define those spaces by o

ALH) = {f e f & A(my) Tor almost every m, in B}
= {fe s for a0 a, in H AL 0 and k> y suchthat F55()) (@e) < oo}
Tt will tuen out that for any nonnegative intoger &, 7 will be in A5 (1)
it and only if all its derivatives of order & are tempered nontangentially
conyergent at almort evary point of 1. Thus thege two notions of differ-
entiability wre equivalent, o .

This is elosely related o the ides of ditforentiation in the ha.rmom'c»
genso, Tor f in L' (R™), Lorm fhe harmonie function u(a, 1) = f?(@). _f is
i 1o have a harmondo derivative at oy if w and all its fixst order der}va‘;-
tives &u/dmy, 4 == 1, ..., n arve nontangentially convergent ab @,. A gimi-
lar definition. is used for higher order doerivatives. See Stein [4], [5].

§ 1. Marmonic functions. Tn. the next section we will need certain
variants of standard results about harmonice funetions. In particular we
will want to keep track of the dependence of various co.nstant.s on the
aperture of thoe cone being considered. The proofs of this section have
been adapted from Stein [5], i

Tamsta L. Let w(w, 1) be harmondo in Q. If u is nontangentiolly bounde
at oy and for some A == 0

If (‘1;’:1;‘"154:.,.;%]‘ )“ {Vuw, 91"

kel
then u is tompered nontamgentially bounded ab w,. .
Proof. Congider two cones Il (w,) and I't(w,) with e>1. There
existy & constant o such that for every (w, 1) e I't ()
B = {(2,8): |(@, 1) —(2, )| < ot} < Iya(@o)s
whera ¢ doos not dopand on a (¢ = § works). Using the mean value theorem.
for harmonie functions it follows that

dodt
tn-}- 1

(16) <%

A r 2, 8) | deds *

(Vay(o, 01 (e [ 1070 G2y )12
5] 7

since [B| == A (at)y** and s and ¢ are comparable, then

duds )"

sn 41

o< [Evae, 9
B

. dzds
<A(jf {slV@&(z,S)l}”’sn-;.l
1

an

).
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. 8 :
Since ( ——) (14-2a) = 1 for (2, 3) € I}, (,) We can usge (16) to show
s+ o — |
that
(17

s B deds \t

sup  t|(Pu)(z, 1)) <A(2a)’1( ( ! --w) sVule, s &J)

(x’t)erg(mo) H = ;‘[f (9‘!_ Iz_mol { ! ( H )l} 31H~1
20

< Adt.

Codsider (x, 1) e I (m,). Since

(18) w(@, 1) = u(@o, 1)+ [(V,u)(e, t)de
i :
where L is the line from #, to @, we can use (17) to show that

A
[wlos D1 < u(os, )|+ o=y L

But since w is nontangentially bounded then ju(wy, 1) < A ‘whero, A
is a constant independent of £. Algo M < a. Hence
‘ lu(z, )| < A+Ad  for all (w,1) e It(z,) and o> 1.
Therefore u(x, t) is TNTB at a,.
LevMA 2. Let w(w, t) be harmonic in Q. If w(w, t) is %omd'ngemmlly
convergent ai w, and for some A > 0

' 1 2 dmdt
(19) [}f(m) [ \Vua, 1)) tff” < oo,

then w(x, t) is tempered nontangentially convergent at u,.

Proof. Let I(h) denote the integral in (19) exeept intograted over
&y ={(®,%): v eR" 0<t<h} rather than Q% Noto that I(h)-»0
as  h->0. Also let B, = Sup - |u(@y, ty) —w(,, t,)]. Then B,—0

0<ty o<t
as h->0. As in (18) we have

sy 1) =10 (@0y ta) = (@0, 1) —u (@0, o)+ [ (V) (2, 1) o= [(Vp0) (3, 1)
A Ly

where L; and L, are the lines from z, to z and from i
2 @y to @,. y
proof of Lemma 1 ’ ' 010 @ s In the

tHVou(z, )] < A(1+20)2 1(h).
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Therefore if (@, b,), (®a, ) ¢ L™(w,), then

; o -
(1, 1) 0 gy )| B2 20

AL ) (B 1 T (B)).

Sinee By, --L(h) -> 0 tha proof iv comploto, ‘
Lot 5 () () be the Littlowood<Paley function dofined by

. e 3 e dlap it \}
L . y
3 () () v H : LIV (my 0|} e
@00 ([ (1) V0t 00 50
where w(a, ¢) is hapmonie in £,
Tunorsm 4. If for almost every g in B there exists 2> 0 such that
o5 () () = oo, then w(w, t) is TNTC for almost every m, in H.
Proof. By assumption the area integral of Tusin

o , edi\¥
8 () () - ( [ [ divute, o S
l‘{(mn)

I8 finito for almosti overy ay, in K. But by Theorem 2 this means that « is
nontangentindly convergent ati admost every point of . Therefore this
theorem follows from Jiemnma 2,

Now wo will prove tho converse to Theorem 4.

LMy 3 (Stein |5, p. 200). Let B, be o compact subset of R™ and
lot Ay =\ Th(my). There ewisls a sequence of subregions H, , with smooth

wgHg )
bowndary such that
(1) Ry = R b Ay & Ry if 04 < by,
(il) 'l%ll,‘.!. ""‘”417
(i) [ ey, AL L a)

UH
where dr,, is an olement of surface arow on the boundary 02, .

Logmwa 4o If w(w, t) i8 harmonde, thon
sup L Va(m, 1)) =5 A sup [u(e, 1]
LT IYrg)
Proof. Theve oxists s constant ¢ independent of a sueh that it (, )
& [ (my), then the ball B of radius at about (2,1) is in I, (). By the
mean. valuo theoren. for harmonice funetions

EV Gy 1)) < Asup (e, ] < A sup w8
B 1)
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TrrOREM 5. If u (2, t) 48 TNTB for almost every z, in B then for almost
every my in B there exists A > 0 such that g} (u) (a,).

Proof. By considering a compact subset #, = F we can simplify
the problem. Thus it suffices to prove the theorem under the following
agsumption. There exist 4 and A sueh that for every #, in &,

(20) sup |u(z,t)] <A(l4+a)? for all a> 0.

Iieg)

We will now estimate 8,(u)(z,) by considering the integral

@1) I=E{{Sa(u)(mo)}2dwo~f ff{um(mt W 5.

Ty p 1(’50)

U I'i(®,), and y (2, «, t) will be the charac-

welly

As before we will write Z, =
teristic function of the set
{0, @, 1): @y € By, (1) e I'j ()}

Using this notation we can change the order of integration in (21). So

I —ff{fx(wo,w f)dao} {t17u(a, 81} dfff-

Since
.{x(moy @, 1) dz, < f dzy = Aat™,
Ky lzg—2|<at .
then
(22) I<A [[t\Pu(e, tpdsd.
‘Qa

‘We now examine the integrals
fft]Vu(w )2 dwdt
where #,, are the subregions given in Lemma 3, and &> 0, However
since 4t = 0 and 4(}u?) = {Pu|2 this integral equa,ls
[[14Gur) — (40 (3uv) dwas.
“za,s

Therefore by Green’s Theorem

’ 17} 1 1 oF
23 t\Vu(x, ) 2dodt = 13 ) —
(23) gffl (@, 1) [ (an)(Qu) 2u2(aﬂa,8)dru,,

Ry 3
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where 7, , i8 tho outward normal to #, , and dr, , is an clement of surface
ared. .
By Temma 4 wo have [Vu(r, 1) = ;r (L 4 24)". Consequently,

A A
< ) | Vae) =% A (L ~}«a)‘ut~-(L~]~2a) = (L a),

4) | (%2_, ,,,,a)

My,
‘ . | '
Algo wz)i:l; w1, Thoerefore ] ; auh ();/i - = A (L) Therefore this
and (24) can be used Lo simplily (23)s
(25) [f W, opdodt < A(L+a)* [ .
(] 'm’a,
By property (iii) of Lomma 8 wo know that [ dr,.< 4(1-+a)" There-
‘ ma,d

fore wo can. pub this into (25) and let ¢ — 0.
This gives

[ [ t17u(@, )2 dwds < A (14 ay*".

m(‘
Therefore it follows from. (22) that
(26) [ 8w @o)}da, < A(L+a)*n.
Jéy

Lot Ay > A-4-n-+4 Then mulliplying (26) by (1+ a)™* and integrating o
from 0 to co produces

" [ {8 (w) (o) (2. a) “ldadwo-;;.Af 1 b a)Hnthgy = A,
Iy 0

Ho wo havo ghown. that for almost overy o, in B,

[
[ S (@a)a(1 4 a) 1 da < oo.
[}
But since 8, (u)(w,) s ineroasing,
o0 o0 .
Ba(w) (@)t [ (kA *1ap < [ Sy(w) (@) (145 mdp < 4
* “

and

B (w) (@) < AL+ ayht,
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Therefore

* o i o . dwdit
@) = [ [ (o) wvete o

N . dodi 1
< 8y () ()2 + 2 f_] {tiVu(w, #)|3? %rr (L F 2y

j=1 5l 1
I I =Tyt

< B (@a) 4 ) Sy (wlan) 2P At A YA e g o) g,
=1 =1 F=0

This completes the proof of Theorem 5.
\ TaEOREM 6. Let w (2, 1) be harmonic in Q. If u is TNTB at every pownt o,
in B, then u is TNTCO at almost every point of I.
Proof. This follows from Theorem 5, Theorem. 1, and Lemma 2.

§ 2. Applications to tempered nontangential boundedness. By combin-
ing the change of approximate identity theorems with the results of the
last section about harmonic functions, we are able to give analogs of the
theorems mentioned in the introduction to this chapter.

TeEorEM 1. If f is TNTB af almost every point in B, then f is TNTO
at almost every point in H.

Proof. As in the regtriction Theorem L.9, f can be written ag f = fitg,
where f; is TNTB over untruncated cones and ¢ = 0 in a neighborhood
of B (It suffices to consider the case where B is bounded.). Clearly g is
TNTO in B (Lemma 1.3). ‘

Now consider f;. By Theorem I.3 we can change mollifiers from @
to the Poisson kernel. Since U(z, t) = f, +#,(#) is harmonic we can apply
Theorem 7 to conclude that f;*# () is TNTO almost everywhere in H.
So by the change of approximate identity Theorem I.4 we conclude that
Ji#@y(®) I8 TNTO almost everywhere in E.

TeporEM 2. f 45 TNTC at almost every point of B if and only if
f e 43(B).

Proof. Suppose that f is TNTC at almost every point of K. Using
Theorem I.9 we write f = f;+g¢, where f, is bounded over untruneatod
cones and ¢ = 0 in & neighborhood of B. By Lemma TIL2 g & Al(my).
Since f; is bounded over untruneated cones we can gwitch to the Poisson
kernel (Theorem I.3). Now by the theory for harmonic functions some g}
for f, &, () is finite (Theorem 5). Thus by changing back to our original
mollifier we see that f, € A2(H) (Theorem IIL.6).

Now suppose that fe 3(H). This time we use the decomposition
f =fi+g¢ in Lemma IIT.1. Since g =0 in a neighborhood of B then I’}

icm
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ig TN'LC in B, For f,, we change mollitiers tio take advantage of the the-
orem. for harmonic functions (Theorem IT1.6, Theorem 4, Theorem I.2),

If f e I#(R" then finding o harmonie conjugate of f+#(w) is equiv-
alent to applying a Riesz transforin to f. Therefore our analog of Theorem 3
will be a gtatoment aboul the effect of singular integral operators on tom-
pered nontangential boundednoesy.

TuxorwM 3. Lot m(8) be 0™ in RN{0} suoch that there exists a consiant B
with

) [m(z)] = B,

AN
i1 s s % Wi vl

) |(52) meo A
For every (% function fwith compact support define T, by T, £(2) = m(2)f(2).
Then T, ewtends to a bownded operator on Ay*(m,) for all xe e R*, 1> 0,
If f is tempored nontangentially convergent ai almost every point of B, then
T,.f s temperod nontangontially convergent at almost every point of 1.

Proof. By Theovem 2 wo need only show that if fe 42(H), then
T,.feA(H). This statement however is exactly the assertion of the
multiplior theorem. (Ghapter TLL, Corollary 2).

As in differentintion in the harmonic sense we can say that f is differ-
entiablo if ity fivst ovder dorivatives are tempered nontangentially conver-
gent, Thig idea of difforentintion is elosely related to the spaces A3 (H).

Tumorid 7. For any nownegative integer k, fe AL(H) if and only if
all its derivatives of order I are TNTC a.e. B; that is, if and only if for every

5 Bl for ol o ez,

7

o\ L ,
18| = Fk, (—%) fis TNTO a.e. B.

Proof. This is an immediate consequence of Theorem 2 and Theorem

" ITL.8.
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