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s-numbers, eigenvalues and the trace theorem in Banach spaces

by
HERMANN KONIG (Boun)

Abstract. Any continuous linear operator 7' in a complex Banach space X with
sunmable approximation numbers is of trace class. We prove that the trace formula

= >'4(T)
7

holds for any such T € §2(X). Here A;(T) denote the eigenvalues of T which are absol-
utely summable. This answers affirmatively a problem of A. 8. Markus and V. L.
Macaev and generalizes Lidskij’s theorem in Hilbert spaces. We show further that
the eigenvalues of T belong to a Lorentz sequence space lp,q, if the approximation
numbers of T do so. In general, a similar result is not true for other types of sequence
spaces and also false for other s-numbers (in the sense of A. Pletsch) the approxi-
mation numbers. The Lorentz space result contains for ¢ = oo [g = p] a general-
ization of the weak [strong] form of Weyl’s inequality in Hilbert spaces to Banach
spaces, which yields results on the eigenvalue distribution of operators in L,. We
show next that for the special class of s#-operators more can be said: their s-num-
bers have the same asymptotic order as their eigenvalues, provided the s-numbers are
Jarger than the Bernstein numbers. Moreover, some questions related to the isomor-
phismi numbers are considered.

1. Yotroduction. A Pietsch introduced in [13] the concept of s-num-
bers s, (T) which are associated to any continuous linear operator T be-
tween Banach spaces X and ¥, T e (X, ¥). Exa,mples are the approxi-
mation numbers

a, (T} =

: T, e #(X, ¥),vankT, < n}, #neN;

ﬂ

the Gelfand numbers
yo(T) = inf{|T)lz: Z < X, codimZ < n};
the Kolmogorov numbers '
8,(T) = int(sup {inf(|Tz—yl: y €Z = X); Joll = 1}; dimZ < %)
and the isomorphism numbers
i, (T) = sup {|RY~ISI™: dimZ > n, ReZ(Z, X),8e£(Y, %) '
with STR = Id,}.
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In Hilbert spaces, all s-number sequences coineide with the singular
numbers of the operator. In Banach spaces, the approximation numbers
are the largest, the isomorphism numbers the smallest s-numbers. A s-num-
ber sequence is injective, if for cach isometric imbedding I: YL (u)
one has s, (T) ==s,(IT). s, is additive, if for all 8, T e (X, ¥) and m, n
e N :

Sm‘{ - J(S }‘T) m(S) J 817,(1)

The previously defined sequences are u,ddil'.ive with the exception of the
isomorphism numbers. The Gelfand numbers are injective.

Let O <P<oo, 0T oo or p==r==oc0 and s, be a suuwmber
sequence. Define for Banach spaces X and ¥ the classes

/1 3 (‘Y )
Here 1, is the Lorentz sequence space of all (s,)

={Te2(X,X): (s,(T)) €l,,}.

el for which

- :
( 2/ w:':r”rm_lrh’ r< oo,
”(‘Tn>”1),r = neN .
sup fwy ' n e N}y, # = oo,

@, being the monotone non- -inereasing non-negative rearrangement of
(). Let o (1) = |(@,)ll, - IE 5, is additive, (85,08 ) isa compiete quasi-
normed opemtm ideal. The special case p = r, denoted by (83, o3), extends
the elasses §,(H) in Hilbert spaces H.

We denote the nuclear operators Irom X to ¥ by A4 (X, Y). Finite-
dimensional I,-spaces are written ly, L-direct sums of Banach spaces
(X,) denoted by 1,(X,).

Given two sequences of non-negative numbers, (a,) and (B,), we write
a, ~ f,, if there are constants ¢,, ¢, such that

¢y /gn < oy, K 0y ﬁn

We will also use the Landau symbols 0(-) and o()

Since we are mainly interested in the trace formula and relations
between s-numbers and cigenvalues, we shall always assume all Banach
spaces to be complex. The eigenvalues of a compact operator I'ex (X)
are denoted by (1 (T)new and assumed to be ordered in non- increasing
absolute value and counted according to their multiplicity.

In the next section, we consider questions of the type: If the s-num-
bers of a compact operator T e o (X) belong to a sequence space like
e.g. l,,, what can be said of its eigenvalues? These are goneralizations
of Weyl’s inequality in Hilbert spaces. Section 3 containg the trace the-
orem for Sj-type operators, showing that the speetral trace coincides

for all n e N,
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with thoe matrix trace. The final section contains questions related to-
inequalities between single eigenvalues and single s-numbers and some:
examples concerning the isomorphism numbers.

2. Gemeralized Weyl imequalities. The singular numbers s,(I) of
a compact operator T in a Hilbert space H are the eigenvalues of (T*T N
H. Weyl [16] proved the following inequality between the eigenvalues.
of T and (T*T)'*:

2 MmPr< )

J=1 j=1

8 (T

for any eompact T, any 0 <p < oo and any # € N. In [7] we derive the
following generalization of Weyl’s inequality to Banach spaces which we-
will need in the following:

PrOPOSITION. Let s, denote either the approwimation- or the Gelfand-
or the Kolmogorov-numbers. For any 0 < p << oo there is ¢, > 0 such that
for any Banach space X, any compact operator T € A (X) and any n & N

( _5] (D)) <o, E 55 (1))

= j=1

We extend this result to Lorentz sequence spaces.

THEoREM 1. Let 0 < p < 0o, 0 < ¢ < oo and s, be as in the proposi-
tion. Then there is a constant ¢, , such that for all Banach spaces X and any
operator T 8} ,(X) we have

”( (1) ) ip.g cp,qu {sn(T

The main part of the proof is contained in

LEMMA 1. Lat 0 <r<p< coand 0 <qg<< oo. Then there is o constant
¢ = c(pr, qlr) depending only on plr and qfr, such that for all monotone
non-increasing sequences (a,) of positive numbers

e (I3,

i=

7).

)) ”»,q = Cpq O,

1r
< ¢ll{ay)lp, e
nlr,qlr

Proof. The “average” operator
n
~ ((J;l, 57) /n)"

has norm one when considered as a map 4: I ~1,. But A also is an oper-
ator from I, into I, ., again with norm one. To sec this, note that 0 < @,
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< 9, implies «} <y} and

n n
ai=| D G| <y i= 3 g, o<yl =y

j=1 i=1

Hence
Al = SUP nafy < sup nyh < D) En = (€.l -
neN neN nelV

By the (generalized) Marcinkiewicz interpolation theorem, 4 also induces
a continuous linear map A: L ge—>lyra %0 [1]. Note here » < p.
Writing this as an inequality for sequences, with. ||4[| = e¢(p/r, q/r),
and applying it to &, = o, we get the right inequality in T.emma 1. The
left one is trivial.

Proof of Theorem 1. Choose » with 0 < # < p. The proposition im-
plies in view of the ordering of the eigenvalues for any T' & 8}, ,(X)

12,01 |2 < (j Mj(T)JT)WQ ar(i‘sj(l’y)ur’
i=1 =1

@) () <o, STsycar)n]”

=1

g0 that by Lemma 1

(TN allp. < o

i n{lD,a

( (gé? K (T)r) /n)n plr,q/r)llr

< o:p,q,r“ (saL(T))ﬁlip,q = p,q,r'gz,q(T) .

For p = ¢, Lemma 1 is just Hardy’s inequality and the statement
of Theorem 1 is just the proposition. A case of special interest is also ¢ = oco:

CoRrOLLARY 1. Let s, be as before, 0 < a,p < co and T e A (X).

(a) If s,(T) = 0(n™%), also |A,(T)| = O(n™°).

(1) If 8,(T) = o(n™*), also |4,(T)] = o(n™°).

(e) If s,(T) = O(n~*2(Inn)*), also |A,(T)] = O (= (Inn)?) .

(@) The eigenvalues %,(T) are rapidly decreasing if the s,(T) are.

Proof. (a) is the cage g == oo of Theorem 1. Choose r < 1/a. A direct

& — d-argument together with (2.1) yields (b); (2.1) for » < p also implies
(c) if one uses that for A <<1,u>0

(N

<o

n
DM (g~ Iy
J=1

Statement (d) follows from Weyl's inequality, applied to all p > 0.
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ExAMPLE 1. There are Banach sequence spaces for which results
analogous to those of Theorem 1 and Corollary 1 are false. Let B> 1
and U(R) = {(&,) €l,: sup{&B™ n e N} < oo}. Then there are operators
T e A (l;) such that the approximation numbers o;(T) belong to I(R)
whereas the cigenvalues 4;(7) do not. For simplicity, let B = 2. Denote
by A tho Littlewood-matrices of order 27, :

A A,
Ayp = (1), Ap= [A::: ——.A;:]’ nz0,

and define T': I,—l; a8 a direct sum of multiples of Littlewood maitrices:
=2}
T =@ 27" A L(E L.
n=(0
Since 4% = 2"1d, the eigenvalues of A, are {£2"*}, both with multi-
plicity 2"*. Hence
Mgnpa(T)) = 2722 for 0<i<2"—1,neN.
Therefore k
SUD [y o (1) 2% = sup 2727 = oo, (%;(1)); £1(2)-

n, 4 w4 -
‘We show that nevertheless -(a,-(T))j e 1(2). Let Tynyy: l;—1; be the opers'l.tor
defined by the same first (2" —1+1) rows as T’ and otherwise zero. Since
rank Tyn; < 2" 44, we conclude
() < W — Tyl = (@°—d)j2™ .
Note here that the matrix elements in T —1T, are either zero or +1/2
This implies

of +1

SUp agn 5 (1) 22+ < sup (27 —0) 22"+ 22",
n,1 n,% )
It is easy to see that the last supremum is attained for + = 9" —1, therefore
Sup am, (T)2°" 1 <1/2, (o (D)); €1(2).
n,t

However, a wealeer positive result is available:

Tmvya 2. Let B> 1 and s, as above. é_sswme T e Z(X) 48 compact
with (s, (1)) e U(R). Then for any 1 <8< VR, (1,(T)) € U(8).

Proof. By a’perturbation argument, we may assume all eigem.ral-
ues to have multiplicity one. Let X, be the space spanned by the first
n eigenvectors associated to ATy, enny Zn(T)_. Rinee dim X, = #, there are
operators A,: X~ with [4,[l14;" < Vn, cf. F. John [6]. Let 8,
= A, TA;': P17 Then 2;(8,) = 4(T) for j =1,...,n. BY H’.’ Weyl.
[16], for the Hilbert space operator 8y

22(8,) +- A (S)l < 8108a) -+ 84(Sa)-
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Hence
MM(TH = Mn(Sn)l < MI(SH) o A)L (Sn,)llln

< (Sl(sn) e sn(Sn))Iin
< (14,0 ”A;;l”(,gl(f) SIL(T))”“-

Since (s, (1)) e1(R), for some constant ¢ > 0

mxfn==cvﬁ{[?1rﬂmlamv%ﬁivﬁ*w

Al
This implies for any § < VR
I (TN <d8™",  (2,(T)) e I(8).

We now give some ui‘)pliezmtions of the previous results to operators
in I,-spaces.

ProposirioN 1. Lot Q< BY be o bounded domain and T: L, (2
—L,(2) an operator with image contained in o Sobolew space WE(Q). Here
keR* and 1 <p < oo. Then |2,(T)) = O(n~"™), If the image of the umit
ball of L, ( Q) is relatively compact in W3 (R2), one even has |3, (T)] = o (kY

) Pr.oof. The map T': L,(R)-> VE(2) has 2 closed graph and hence
18 continuous with respect to the Sobolev norm. Ienco :

A1 (T Ly>L) < @, (T L,—>WE)-a,(Id: Wh-L).

But the approximation numbers a,(Id) of the Sobolev imbedding tend to
zero of order O(n™"Y"), see e.g. R. 8. Ismagilov (3], which gives a,(T)
= 0(n™") and |2,(T)| = O(n="™) by Corollary 1. If T(ball Z},})_is rela-
tively compact in W, o, (T':. L,~WE) tends to zero for n—s oo, hence a, (T')
= o(n ™). Apply again Corollary 1. k

ProrositionN 2. Let K: [0, 112=C be a measurable kernel, which
%8 (n—1) times continuously differentiable with respect to the second variable
y and absolutely continuous (n—1)-st derivative. Assume

! i
w5 = [ (2] w6, nrway
0 * .

defines continuous linear operators Kz L=, for j =0, ..., 0. Let further
0<g< coand K, e 85(Ly), for q = oo mo ewtra condition. Then the elgen-
values of K = K, in L, obey

( 31213, (5)) " < oo,

keN

which for q< oo means especially |4, (K)| = o(k~ 19y gng for g = oo
should read |4 (K)| = O (k). ‘
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This generalizes a result in I. Z. Gohberg-M.G. Krein [3},‘_‘1). 120
for p=q= 2. N .
Proof. We indicate only the case n = 1. Partial integration yields

1

! ‘
[&@,nrway = (K@, [1oa]  —

Jy=0
0

_(f(a—é;-lf(w,a))(aff(&)d#) dy.

Hence K, = L—IK,J,, where J,: L,~L, is the integration operator
x ¢ .

J1f(w)= [f(t)dt and L: L,~ZL, is the rank one operator If = ([f(t)dt) x
[t 0

Y
x K (;,1). Since L does not influence the asymptotic order of the ap-

proximation numbers, we have
;o () ~ ey () < o (8) a;(J4) < ooy (Hy) [, »
where a;(J,) << ¢fj by the previous proposition. Since by assumption
K, e8(L,), we get
: SRy
S ey (E) | < e,
JjeN
ie. (a]-(ff(,)) el,, with 1fr =141/g. The result now follows directly
from Theorem 1.

3. The trace formula for §8,-type operaters. V. B. Lidskij [10] proved
for operators of trace class in Hilbert spaces T = 4 (H) = §,(H) the
trace formula

N T

(3.1) tr(T) = %MT)-

A. Grothendieck [4] showed that the notion of “trace” can be defined
for nuclear operators in Banach spaces with the approximation property.
However, formula (3.1) no longer makes sense for these operators, since
the cigenvalues of nuclear operators in Banach spaces are only square
summable in general. On the other side, A.S. Markus and V. I. Macacv
[12] proved (3.1) for any operator T of type S}, (X) with p < 1 in general
Banach spaces, without requiring the approximation property. We show
in the following that (3.1) remains valid for any 7T in the larger class
S¢(X) and thus answer a problem of A. 8. Markus and V. I. Macaev affirm-
atively. , ) )
Let X be a Banach space and T € # (X) a finite rank operator

(3.2) T =Dy, @eX,yeX.

ieN
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Then' &;(y,) is independent of the special representation of 7' and ealled
the trace of T, denoted tr(T'). One has tr(T) = 3'A;(T). Any such T e & (Xy
has a representation (3.2) with =N

D il lyall < 8(T),
eN
cf. A. Pietsch [14]. Hence the linear functional trace can be uniquely
and continuously extended to (W (X), 0‘1") = §}(X), again denoted by tr.
Lmyga 3. Let (4;) and (y;) be two sequonces of positive, monotons non-
K K

v 3
inoreasing numbers with []1; < [ 7: for all neN. Then for all v e B
and any n e N i=1 i=1

n

[]a+ri)< ﬁ(1+7”yj).
j=1

j=1

This was shown by H. Weyl [16], cf. also [31.
TarorEM 2 (Trace formula). Let X be a Banach space and T e SH(X).
Then the previously defined trace coimeides with the sum of the eigenvalues,

(L) = D 4 (T).

neN

Proof. The sum exists by Theorem 1. We will wse the fundamental
idea of A. 8. Markus and V. I. Macaev [12]. However, the central estimate
of the characteristic polynomials defined below proceeds differently.
Firgt, there are operators T, e (X) of finite rank with oy (T —1T,)—0,
since # (X) is of-dense. For these 7T,, the characteristic polynomials

D3 = [ [ (1=24(T,)) = det(I1—1T,)

7

are well-defined, since only finitely many eigenvalues A;(T,) are non-zero.
Let r <1 and n, such that of(T—17,) <1 for » > Ny, By (2.1) there is
6, such that for all § e x (X)
i

(3.3) H8) < e D) a1 i) = gy(8).

=1
Lemma 1 implies for » < p = ¢ = 1 that the (B;(8)) are summable for
any 8§ e 83(X) with '

(3-4) Zﬂ,(ﬁ) <a ) o(8),

JjeN jeN
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d independent of S. Let |A| = . Weyl’s Lemma 3 yields
DL = [[ 44T < [T (1 +08;(T,),
E )

In|D, (M) < 2111(14—7‘/3,-(1’”))

< )BT < dr 3 ay(T,) < dr(of (1) +1).

i 7

By Montel’s theorem, this implies as in [12] that the sequence of poly-
nomials D,, converges compactly to an entire function D. We will show
now that D is a function of order one, i.e.

maxIn|D(3)] =o(r) for 7r—oo.

13=r
Let ¢ > 0. By (3.4) there are 7, € R* and n, € NV such that for all » >,
and n = n,

38) Mp(T-T)<e, D BT <e, Wfl+e(ITI+1)r/Vr <.
JeN 3>[Vr

Using that the approximation numbers are monotone non-increasing

and additive, we get :

Buy(T) < o, Z a (1) [24)" < o, X ()"
k=1 i=1
<o ([ 3@ +a@-2,0)5)" < 45,0+ 5, ~,).

Hence, taking sums

M B(TN<2 D) Bul(T) <24, D (BulD)+ BT —T,) < 4d, 5.

k>[V7] E>[V7/2] k>[Vr/2]
This enables a better estimate for |D,(4)|, |A| = r. Using (3.5) we get
@yIn|D,(A)] < (1/*')1Ilﬁ (L+78;(Tn) +(1/r)In jﬂﬁ] (L +7B:(T0))
< (L) fL+ro, (1T +1)) Y+ (1/r) ZV In (L+78(T,)
i/
< (Y7 )m (1476, (1T +1))+ ZV BT < (1+44,) &
J>[vr)

Since this holds for all % > n, and » > r,, we conclude for r = 7,
In|D(A)| < (L+4d,)er,
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J
i.e. D(A) is an entire function of order one. The last part in the proof
is now the same as in [12]: By a theorem of Hurwitz the zeros Qf D Q)
coincide with the limits of the zeros of the polynomia.lg D,(4), i.e. with
(Mm A, (T,))~", which is equal to 2,(T)~" for an appropriate order of the
;;.(,%n) Sinee > 14,(T)] < oo by Weyl’s generalized inequality, one gots

JjeN

for the order one function D(Z)

Dy =] ] (1—2(T
JjeN
and ‘
~—22j(T) = D(0) = lim D, (0)/D,(0) —-hm(—h(T D) = —te(T).
].EN n—00

"This proves Theorem 2. }
COROLLARY 2. Let S, T € 82(X). Then we have the eigenvalue equality

D4 S+1) =

Je\'

Z;zj(m D (D)

]eN

PrOPOSITION ([12]). Assume the Banach space X has an wunconditional
basis {e;} with bior thogonal coefficient functionals {f;}. Let T e #'(X) be
a nuclear operator. Then Z [5(Te;) conwverges absolutely and the sum is equal
to the trace of T. I

In view of 8%(X) < 4, (X), this result and Theorem 2 imply

COROLLARY 3. -Let X be a Banach space with an uneconditional basis
{¢;} with biorthogonal coefficient functionals {f;i}. Assume T is in Sj(X).
Then the “matriz trace” is equal to the “spectral trace”,

(o) = AT
jeN jeN
4, s-numbers .and eigenvalues. In Section 2 we considered estimates
for sequence space norms of all eigenvalues of a compact operator against
all ssnumbers. Sometimes it may be more interesting to have an estimate
for single eigenvalues against single s-numbers. In [9] it was shown that
for any compact operator T e # (X) in a Banach space X and je N

4(T)] = lims, (T™)*™,
N—>00
~where s, is an arbitrary s-number sequence. Bub as the Littlewood matrices
show easily, an estimate of the type

(T < o0y(T),

icm®
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¢ independent of j € N, is false in general. This is true, however, for a cer-
tain class of operators in Banach spaces which were studied by A. 8. Max-
kus [11]:

A compact operator in a Banach space T e # (X ) is called s#-operator,
if the spectrum of 7' is real and if the resolvent of 7' fulfily

AL -7y Y < e/Iml|, 2eC ~R.

Any selfadjoint operator in a ILilbert space is an #-operator with
¢ =1. For selfadjoint operators, |2,(T)| = s,(T'). The following result
generalizes this. For the definition of the Bernstein- and Mitjagin-numbers
we refer to [13].

ProvosrrroN 3. Let s, be a s-number sequence which is larger tham
or equal to the Bernstein- or Mitjagin-numbers. Then for any compact ¥ -oper-
ator T with constant ¢ in o Banach space X

(4.1) (20) 7 85 (T) < 2 (1)] < 2(¢-+1) 8, (T).

Bspecially, o,(T) < 4de(e+1)s,(T):
asymplotic order as the eigenvalues.

Proof. A. 8. Markus [11]showed this for the Kolmogorov and approxi-
mation numbers. Hence the left inequality is clear in view of s,,(T) < o, (T);
instead of (21/-2—0)"1 as in [117, (2¢)~" is sufficient. If ' e o (X) is a s#-oper-
ator with constant ¢, the same is true for 7' € #°(X’). By A. Pietach [13]
the Mitjagin and Bernstein-numbers are dual, v,(7T) = u,(1"). Thercfore
it is cnough to prove the right inequality for the Bernstein-numbers
U, We will use similar ideas ag in [11].

Assume without loss of generality 4,(T) # 0 and let &k & N be mini-
mal with |2,.,(7)] < |4, (T)l. Let P, be the spectral projection of 7' rela-
tive to A = {4,(T), Anii—1(T)}. Then dimP,(X) > # and the restric-
tion T,: P, (X)—P, (X) of T' to P,(X) is an isomorphism. Choose » > 0
with

all s-numbers considered have the same

‘ (D)7 <7 < A1)

The spectrum of T''e.2(P,(X)} is equal to {4, (1), ..., Apsra (T}

and contained in the interior of the circle I" = {1 e C: |A| = #}. Hence

the identity on P,(X) has a vepresentation by the Dunford integral
I, = (2mi)™* [ (AL

I

2 (P, (X)), cf. [2], chap. 7. Since

—I7h~da,
with (AT, —T;Y)~*
I, = (2ni)~ f I, /AdA,

§ ~ Studia Mathematica 67.2
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we get by sublraction,

0 = =25 @rd) [T, 1) dA
P

We multiply this by 727, and take the sum with

Tl (2 J AL, D A,

which yields
A gt L
(4.2) Pt s (2mi) f . (AL, --1,") .

K
The equality
(’”n " T;])MI s /’LWI I‘w, A (/‘I‘Wl]-n o Tn) o

implies that 77" is & #7-operator with constant (¢--1). Menee (4.2) enables
the estimate

1
17,4 < (e4-1)r max (Iml)

Al

’ = 2(e-}1)r.

By [13], the isemoiphizm pun.bers are (he sreallest and thoe B apnstoin
numbers the smallest injcetive s-numbers. Factoring the identity oun
P,(X)as I, = T;*T,1,, we conclude by the definition of the isomorphism
numbers

(2(6-+1)7) 7 S I K 6Tyt Py(X)Dy (X)) 2 0, (T2 (X)L, (X))
< u, (I X—X),
using the injectivity of the u,’s. Since 7> |4,(1)|™" way arbitvary, this
shows |4, (T) < 2(c+1)yu, (D).
Weyl’s inequality in Banach spaces
DHIF< e, Y s(TP,0<p < oo
jeN jen

was formulated in Section 2 for the Gelfand, Kolmogorov or approxi-
mation numbers. We want to show now that in general thiy inequality
does not hold for other s-number sequences. To do so, wo need o fach
on { the isomorphism numbers which were considered in the previous proof,

Levma 4. For 1<n<m, (L/4)(mn) <6, (Ld: -1 < m/n,

Proof. (a) Let dimX, > n and take a factorization of the identity
on X,,
x5rSms x

Then [[P|7 Q™" < IPQ: I'~I%|~ . The norm of PQ is the maximmn of

the absolute values of the elements in the matrix representation, henece
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larger than or equal to 1/m times the trace,
IPITHIQI™ < |m[tx(TAP Q).

IAPQ: I+ is a projection of rank > ». Therefore

‘Ifz ‘
tr(IAPQ) = >'2,(1dPQ) = n.

el
Taking the supremum over all factorizations, we get
T (Id: TR << mn.
(b) Let m =2, n =2V, M, NeN. Lot 4 be tho (nxm)-matrix
of the first # rows of the Llitlewood matrices 4 », of oxder m = 2% and

Q: "1 the operator defined by 1/VmA. Let P I~ be defined by
1/1/ m.A*. Then we have a factorization of the identity on I% as

mlomBe Lo
implying
O (T 1-+1) = IPI7QIT = m/n.

The left inequality of Lemma 4 is now an easy consequenco.

BExamrry 2. We prove 1]1a.t there is no constant ¢, such that for all
T e 8 (1,) one has

(4.3) DD < e, N1, p<e2.
JcN JeN
Let n == 2% and T,: I?-I} the operator defined by the Littlewood

matrices 4 5 {(or by imbedding, T,: I,->},). Both eigenvalues --Va are
of order »/2. Hence

n
(4.4) D (L) = o,
Fel
On the other hand,

N
2 G (L Bl < Ty G-l |7 i (Tds 18 -1)P.

el
But |T0,: B ->I%] == 1. Hence by Lemma 4

n " Ty < 1 ,

v, ‘ .
Z 4 (1) < n”Eg P ~inlnn, poe=1,
= = ", p>1

For large #, this and (4.4) contradict (4.3). Weo remark that it is not known
whether the classes 85 ave operator ideals.
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Bxamrrr 3. By A. Pictsch [13] one has for any invertible operator
Tin £(X,Y) with dimX = dimY =m

(4'5) zn(T) PO — 1 (T_l) <1

In general, however, there may be & strict inequality “<?”, as will
follow from Lemma 4. This answers a question in [13] negatively and
seems a bit surprising, since for other corresponding pairs of s- -numbers
like Berngtein and Gelfand numbers there is an equality of type (4.5).
Let m =2, n = m /2. As is well known,

g (T TP—T2) < (Vi 1)

¢f. B. 8. Kasin [8]. This and Lemma 4 imply for I’ = Id: IZ-I* and
7 = m(2 > 1 that

il T) - Oy (T™Y) < 2/(V +1) < 1.

This shows also that the estimate u, (T) < #'*4,(T) in. [13] is of optimal
order, since

U (1) = Pss (T = (T Vi = Vi f2 4, (T).

Any T e 82(X, Y) is nuclear. On the other hand, one can. ask whether
the nuclear operators belong to some p-summability elasses of s-numbers
and whether o%(T) < ¢-»,(T) holds. This is false in general for p =1,
a8 the identity T = Id: IZ->17" shows:

mlnm ~ ol(T) < oi(T) K ¢-»(T) =c-m.

A weaker positive result is true for p > 2:

PropOSITION 4. For all Banach spaces X and Y, #y(X,Y)
c 8 (X, X); i.e. the isomorphism numbers 4, of nuclear operators are
of order n~2.

Proof. The factorization diagram for nuclear operators [14] and the
properties of the s-numbers imply that it is enough to consider diagonal
operators D,: lu—>ly, (#,)—(0,2,), 0 €l; and show

sup nih "I:n(Da) ‘<\ llolly == v, (—Do‘) .
nelN

‘We will assume without loss of generality that the o; are positive, non-
increasing: Let w; = Vo;. Then u el, and

in(Da) < T'n(D,u Zoc_)'l2)“D[A l _)ll.” = l!unllz'in(D}m: ?’oo“>'12)'
Let D} be the “restriction” of D, to I3;. Then
i,(D,) = sup{i, (D}): m e N}

s-numbers, eigenvalues and the trace theorem in Banach spaces 17k
sinco

1t (D) — i (DEN < D, —-I)’" lo—>lal >0  for m—>oo.
Using the relation between the isomorphisin and approximation numbers
considered in Example 3 and the results of M. Z. Solomjak and V. M.

Tichomirow [15], one gets

@',"(Dz‘) = am—-n—kl((Dw)“[ lm“'*l:g)”

£ min V( Z /uﬂl) /(70—*7"’ —"l“ %) g (”0”1/?7‘)”2‘

Mo N L leem Fmm—L-1

This yields

124,(D,) < liol V.

in('Dn; Zoa'ﬁll) []O'I
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Differentiability of distributions at a single point
by
Be MARSITALL (Prinecton, N. J.)

Abstract. Wo dovelop tools neoded Lo study thoe differentiability of distributions
at o point of KW,

The purpose of this paper iy to develop tools to study distributions
at w point @,. The integral expressions that we will he examining are
Josely related to thoe ares integral of Lusin and the Littlewood-Paley
g% functions. Rather than use the theory of harmonic functions we will
consider analogous expressiony that are independent of the mollifier
that is used. Tho resulty of this paper are nsed to study tempered nontan-
gentinl houndedness and convergence in [3].

Lot ¢ bo o Sehwartz fonetion with [ g (o) da == 1. Using this as & mol-
lifier, form

w(a, t) = frg (@) wheve g (@) == 1"p (:)
Tf f is o continuous function then w(w, 1) approaches f(z) as t—>0. It soems
reasonable then that by examining w(x, 1) in the set 2 == {(z,1): » e R,
0« t < 1} we should bo able to understand the behavior of f at a point,
say ay. Wo form o cortain integral ‘ﬁf,’;,’}( Fey) of w(w,t) over the set Q.
Of the wvarious parameters invoived the most important is ¢ e R.
We will soo that i @24(f) () <0 0o then y gives the order of differen-
tinbility of [ at a,. .

18 we add ewtain harmless terms o these @ funetions wo can forin

norms Nk Thus

NS (o)
Tn the second and third soetions wo show that both the @ funetions and
the norm N ave essentially independent of the mollifier ¢, In addition,
nsing o different % gives an equivalent norm.

With these norns we ean define Banach spaces

ADH (@) == {fe s _Ng;:/ff(f)(mﬂ) < oo for some k> y--n/p}.
Contragt these with the Sobolev spaces LI (R™) of functions that have

o GUR(F) (@) -1 “other Lerms?”,
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