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Spectral characterization of two-sided ideals
in Banach algebras

by
JAROSLAV ZEMANEK (Praha and Warszawa)

Abstract. We describe all two-sided ideals in Banach algebras that admit charae-
terization hy means of spectral properties of the elements. The characterization can
be simply expressed even in terms of the spectral radius.

1. Introduction. We consider an arbitrary Banach algebra A4 over
the complex field. For # € 4 denote by o(z) the spectrum and by |2|,
the spectral radius of the element 2. Let I be a closed two-sided ideal in 4.
The spectrum of a class @+ I in the Banach algebra 4 /I will be denoted
by o(z+ I) and the corresponding spectral radius by | +-I},. If the original
algebra A does not have a unit, the spectra are to be understood with
respect to 4, or A,/ where 4, is the unitization of A, even if A4/I might
have its own unit; this convention will simplify our langnage and does
not effect the essence of the results which all the same will be expressible
in terms of the spectral radins. It is thus obvious that ¢(z+1I) = ()
for all w.e 4. Henece if » € I, then

(1) ola+I)< olatr) forallaed.

Now the natural question arises whether, conversely, an element
r e A obeying condition (1) must belong to I. For a general ideal the
answer may be no: the zero ideal in a non-zero radieal algebra can serve
as the simplest example. A less trivial example is the ideal of compact
operators relative to tho algebra of all bounded operators on. the Banach
space L0, 1); cf. [3], p. 135 and Seetion 4 below. Nevertheless, it turns
out there is an important class of ideals that admit this natural spectral
charactorization. Namely, wo shall show that, in general, the set of
all clements 7 e A satisfying condition (1) coincides with ker (lml(I )
the interseetion of all primitive ideals containing I. Moreover, we shall
see that an clement r e 4 satisties (1) if and only if it satisfies merely

(2) la--I|, < lo+rl, forall aed,

the corresponding inequality for the spectral radii.
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Thus the ideal I admils spectral characterization (that means, it co-
incides with the set of all elements r e A satisfying condition (1) or,
which is equivalent, condition (2)) if and only if the algebra 4 has
spectral synthesis at I in the sense that I = (M) P where P runs over
all primitive ideals containing I. In other words, this is the same as to
say that the algebra A4 /I is semi-simple. This happens, for instance, if 4 is a
*-algebra with I arbitrary. So our results give also, in particular, a spec-
tral characterization of compact operators on Hilbert spaces as well ag
indicate the class of Banach spaces where compact operators can be
described by means of their spectral behaviour (the corresponding Calkin
algebra is to be semi-simple). In the case of operators similar character-
izations in terms of the essential spectrum were known as so called converse
Weyl’s theorems [7], [8]; they will be considerably improved in the present
general setting (cf. becmon 5 for a more detailed comparison).

Our methods, however, entirely differ from those developed for
operators. We inecline rather to the previous paper [15] and its sequels
[12], [13], [16], [17]. In the course of the proof we ghall need spectral
characterizations of elements belonging to the Jacobson radical or to the
centre (modulo the radical) of a Banach algebra; these results, being
announced first in [17], represent here (in Section 2) a local version of
our earlier work [15]. They have -interesting applications to operator
algebras on Banach spaces as well. Since the radical is the intersection
of all primitive ideals, the present characterizations can be viewed as
the natural extension of those obtained in [16] for the radical.

2, Perturbations of the spectrum. For each ze 4 put
s(z) = sup{lz+yl,—Iyl,: y e 4}.
This function has been introduced by E. A. Gorin in his study of various
continuity properties of the spectral radius, and also in [12]. The function ¢
is a semi-norm with possibly infinite values, and |z, < s(z) for all € 4.
Moreover, for each invertible element ¢ (in 4 or 4,) we have
s(oxe™) = s(x)
since

Wl, = le(@+oye) e, — fyl,
= |@+c " yel, — ey,

lewe™ + yl,—

and any element of A can be written as ¢ 'ye for some y € 4.

Let ¥ denote the set of all quasi-nilpotent elements of the algebra A,
ie. N = {wed: |z|, = 0}, and rad A the Jacobson radical of 4. Rocall
that N = rad4. Also, the following set

Z(A) = {zecd: av—ua eradd for all a e d}

EONEN ) -
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arises naturally [17] in spectral characterizations of commutativity
properties of Banach algebras. Clearly, Z(A4) is a closed subalgebra contain-
ing rad4 and we call it the centre modulo the radical.

Before stating the main theorem of this section let us quote two lemmasg
which we shall need in the proof. The first one is due to C. Le Page [10].

Levma 1. Let b € A be such that ab—ba € N for all a € A. Then ab—ba
eradd for all ac A, i.e. beZ(A).

The second lemma is a slight modification of the first and in this
very form it was proved in paper [13] by Z. Slodkowski, W. Wojtyrnski
and the present author.

Levma 2. Let r € N be such that ar—raeXN for all acA. Then
r eradA.

Now we are able to prove the first principal result (cf. also [17]).
It will be useful to remember the familiar fact that an element in A has
the same spectrum as the corresponding class in A /rad 4, in other words,
that o(a+7) = o(a) for all ac A, » erad A.

TamoREM 1. Let A be an arbitrary Banach algebra. Let x € A be a
fized element. Then

(i) e Z(A) if and only if s(z) < oo;

(i) -z erad 4 if and only if s(x) = 0.

In fact, there are only two possibilities:

either s(z) = |wl,, if veZ(4),
or §(w) = oo, if ¢ Z(4).
Moreover, k
§(2) = sup{lw —yl,— |zl,: ¥ € B (@)U {—a}}
where

B(z) = {"xe % aecAd}.

Proof. Assertion (ii) is an immediate consequence of (i) and of
Lemma 2. Let us therefore prove (i).

If ¢ e Z(A), then le+y|, < lel,+ lyl, for all y € A (consider the cor-
responding classes of ¢ and y in 4 jrad 4 where they commute) so that s(¢)
= |¢|, is finite. .

Conversely, take an element b € A such that s(b) < co and let us
prove that b e Z(4). To this end let @ € A be an arbitrary fixed element
with no restrietion on s(a). Consider the entire function

2

F(2) = e = b+ 26,(b) —}-——l—

ST RO+
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where
0,(b) = ab—ba;
cf. [3], p. 88. Then

_ flA)—b
A

is again an entire function in A. Since

§(f() = s(b) < oo,

)
h(4) = 8,(B) + 5 O8(D)+ ..

we get
2s(b)
141

(A, < s {R(A) < -0 if | = oo.

According to a theorem of E. Vesentini [14] the function |h(1), is sub-
harmonic on the whole complex plane. Hence it follows that |h(A)|, = 0
for all A. In particular, for A = 0 this gives |ab—ba|, = 0. This conclusion
being true for all a € A we infer, by Lemma 1, that b € Z(4) as was to
be proved. The rest of Theorem 1 is now obvious.

Theorem 1 when applied to all # € A gives the global spectral charac-
terizations of commutative Banach algebras (subadditivity, submultipli-
cativity or uniform continuity of the speetral radius) recently obtained
in [1], [15], [12]. Another formal consequence of Theorem 1 is the charac-
terization of algebras in which N =radd, although the original proof
in [13] as well as the present proof of Theorem 1 are based on essentially
the same ideas (the set N is to be invariant under sums or, which is equiv-
alent, under products). Assertion (ii) seems to be of interest even in
its weaker form as follows.

CoROLLARY 1. Let A be a Bamach algebra. Then an element r € A
belongs to the radical if and only if o(a+7) = o(a) for all a € A.

This result we have first observed in [16]. In Sections 4 and 5 anal-
ogous spectral characterizations will be found for plenty of other two-sided
ideals.

It may be instruetive to insert at this point an alternative proof
of Qorollary 1. Let » ¢ A be given such that o(a+#) = o(a) for all a e 4.
Taking an arbitrary element ¢ € A we show that the element cr satisfies
the same condition. Indeed, with 1 sufficiently large (|4 > |e|,) we have
the decomposition (cf. [7], p. 89)

a-+-or = (A+06)[(A+e)" (a— Ar) 7]

from v_vhieh it follows, twice using the assumption, that the element
a+er is invertible if and only if o is. In other words, o(b+cr) = o(b)
for all b € A. Putting here b = 0, we obtain |er|, = 0. This conclusion
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being true for any ¢ € 4, we infer that r erad A by the classical charac-
terization of the radical. In fact, we have used only a weaker part of the
agsumption: a+# is invertible whenever a is.

An analogous argument was used by K. Gustafson [7] in his charac-
terization of compact operators on Banach spaces in terms of the essential
speetrum (cf. Section 5). Both these proofs are quite elementary but
depend strongly on the set condition imposed on the spectra. When we
wish to obtain a characterization in terms of the spectral radius only,
which is just the main purpose of the present paper, we are obliged
to use more ingenious methods. (Added in proof: see [19] or [20] for
another proof of Theorem 1.)

We have thus seen that the radical of a Banach algebra is character-
ized as the set of exactly those elements perturbations by which leave the
spectrum completely invariant while the centre, a larger set, consists
of just those elements perturbations by which can give rise to merely
bounded changes of the spectrum. Every element outside the centre
can cause arbitrarily large changes of the spectrum; in particular, this
refers to any element from N\radA4.

The concepts of the radical and of the centre arise in the general
theory of abstract rings without topology where the notion of spectrum
does not make a good sense. It is therefore all the more surprising that
in the environment of Banach algebras these two general concepts, the
centre and the radical, admit characterizations even in terms of the spectral
radius, a phenomenon that seems to disclose the central role which the
notion of spectrum or even the spectral radius itself play in the theory
of Banach algebras.

3. A formula for the spectrum. The following observation in the
case of algebras with unit we owe to B. Aupetit [2]. It is the appropriate
non-commutative analogy of the classical deseription of the spectrum
known from Gelfand’s commutative theory. I am indebted to Professor
W. Zelazko who called my attention to the manuscript [2] when it was
not yet published.

To make this formula available also for algebras without unit it will
be convenient to allow the zero irreducible representation of such algebras
(cf. the case of commutative algebras without unit). Thus, if 4 does not
haive a unit, then P = A is regarded as a primitive ideal. If .4 possesses
a unit, we require, as usual, that an irreducible representation of A take
the unit onto a non-zero operator.

ProrosrtioN 1, Let A be a Banach algebra. For each x € A we have

o(@) = Jo(a+P)

P
where P runs over all primitive ideals of the algebra A. In particular,
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lel; = max |z+4P],.
P

Proof. The inelusion “=7 is obvious as already remarked in the
introduction. Conversely, take a ieo(x) and show that Aeo(z+P)
for a suitable primitive ideal P. Assume first that 4 has a unit. Since
4 € o(x), the element 41— does not have, say, a left inverse in 4. So the
set 4 (1 — =) is a proper left ideal in A and henee it is contained in a maximal
left ideal L. Put

P=IL:4A={acd: ad = L}.
If A¢o(x-4-P), then there exists a y € 4 such that
y(A—az)—-leP < L

and gince also y(l—u) e L, we get 1e L, a contradiction. Thug it is A
e o(x+P).

If 4 does not have a unit, we proceed similarly. If 1 = 0, put P = A.
If 2 # 0 and 21— does not have, say, a left inverse in 4,, let L, be a maxi-
mal left ideal in A, that containy A—z. As A % 0 we have L, ¢ 4. Then
L = An L, is a maximal modular left ideal in A (any element % e 4
such that w—1 e L, can serve as a right unit modulo I in A4). If we put
j7.3‘ = ANP; where P, = L,: 4,, then P (= L: A4) is a primitive ideal
in A and Aeo(x+P,) < o(x-+P).

. To prove the formula for the spectral radius, take a point A e o(x)
with |4] = |#|,. Then there is a P such that 1 e o(z-+P). Thus |@-++.P|,
= |4 = |z|,. The converse inequality |&+P|,< |#|, being obvious, we
have |z|, = v+ P|, as desired.

Remark 1. In [15] we have raised the problem of characterizing
the Banach algebras with continuous spectral radius. Proposition 1 yields
the f‘ollowing observation: if the spectral radius is continuous on a:ll the
quotients A /P, then so is on the whole of 4. Indeed, let @, o in A.
Take a P such that |2+ P|, = |x|,. With this P we have @, +P->a-P
and so, by assumption, |w,+P|,~|z4P|, = |z|,. Since [, P, << 1@,] 4
we have lim inflw,[, > [#],. But lim sup|w,l, < |#], by upper semi-conti-
nuity of the spectrum. It follows lim |2, |, = ||, a8 claimed. Similar remark
concerns the problem of continuity of the spectrum.

We do not know whether, conversely, continuity of the spectrum
or of the spectral radius on 4 forees that on the quoticnts AP, Tf yos
it would reduce the problem to the case of primitive algebras. o

We shall apply Proposition 1 rather in the following form.

Prorosirion 2. Let I be a closed two-sided ideal of @ Banach algebra A.
Then for each e A we have 4

o@+I) = Uo(z+P)

Por

icm®
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where P runs over all primitive ideals of A that contain I. Hence again

|z 41|, = max|z+P|,.
Pxl

4. Speciral characterization of two-sided ideals. We first consider
the case of a primitive ideal. The result is as follows.

TuEOREM 2. Let P be a primitive ideal of o Banach algebra A. Then
an element r € A belongs to P if and only if the inequalily

lot+Dl, < la+70s

holds for all a e A.

Proof. If » e P, then the inequality holds as we have already men-
tioned several times. Conversely, let 7 € 4 be an element that satisfies the
above inequality for all @ & A. For a = —r the condition gives |r +P|, = 0.

« We show that the class r--P belongs to Z(A/P), the centre of the
semi-simple algebra A /P. In view of Theorem 1 it is enough to verify
that the number s(r+P) is finite. But this is obvious from the second
expression of the function s (cf. Theorem 1). Indeed, let g+P e B(r+P).
The canonical homomorphism 4+—+A [P being continuous, we may assume
that ¢ = e%re® for some a € A. Now, by assumption,

r—gq~+Pl, = |~r+ ¢+ Pl < gl = Il
go that
s(r+P)< Irl,
is finite.

From jr+Pl, = 0 and r+P e Z(4/P) we conclude, using Lemma 2,
that 74P erad(4/P) = 0, i.e. r € P as claimed. Alternatively one could
apply Schur’s lemma to the irreducible representation with kernel P.

Now we are able to pass to the general case.

TrHEOREM 3. Let I be a closed two-sided ideal in a Banach algebra A.
Then the set of all elements v e A satisfying the condition
la+I, < la+7), for all a4
coincides with ke.r(hul (I)), the intersection of all primitive ideals containing I.
Prootf. If r e (NP, then we have
la+P|, < latrl, acd,
for every such P. Hence by Proposition 2 also
e+ 1, < la+7l, acd.

Conversely, let r e A be an element satisfying the above condition.
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Since obviously ¢(a-+P) < o(a+I) for any P > I, we get
lo+Pl, < la-+1], < a7,

and so by Theorem 2 we conclude thab r e P. This being true for every
primitive ideal P containing I, we obtain r e (P ag desired. Thus the
theorem ig proved. .

COROLLARY 2. Let I be a closed two-sided ideal in o Banach algebra A.
Let r e A be a fived element. Then the conditions ‘

(1) ola+I)< o(a+r) for all ac A
and
(2) la+I,<|a+r|, forall acAd

are equivalent. They are fulfilled if and only if r e ker (hul (I)).

5. Operators on Banach spaces and the essential spectrum. In this
section we apply the general results of Sections 2 and 4 to the algebra
B(X) of bounded operators on a complex Banach space X.

CorOLLARY 3. Let O € B(X) be such that

sup{|C+T|,—|T|,: T e B(X)} < o0
or merely

sup{|C—T|,: T e B(0)} < co.

Then C is a scalar multiple of the identity operator on X.

Pr'oof. The algebra B(X), acting irreducibly on X, is semi-simple.
According to Theorem 1 the operator C belongs to the centre of B(X).

But by Schur’s lemma this centre consists just of scalar multiples of the
identity.

COROLLARY 4. Let C € B(X) be given. Suppose there is a. constant y

such that
ICTL@WCL:]TL: fOT au TGB(X)‘
Then C is a scalar multiple of the identity.

Proof. We shall verify the first condition of Corollary 3. Without
loss of generality let |C], < 1. Take a complex number A with [A] > L,y
Then dist (4, (7)) > y and

A—(C+T)=(A-T)—0 = (1—0(1—1’)*‘) (A—=1
where

C(A~TY Y, < 90|, [(A—-T)"? -0
1C( e <v10LIGA=T), dist(l,o(T))<10|”<1

icm®
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so that A¢o(0C+T). This means, however, that |O+T|,<|T|,+y or
|0 +T),— T, < y for all T e B(X).

Remark 2. In this proof we have used the assumption only for T
invertible, Thus we can reformulate the result as follows: if

Sup {lOTlu”TJa: ‘Tlu' "TL 0} < 007

then ¢ is a scalar multiple of the identity.

COROLLARY 5. Let R e B(X) be such that |R+ @], = 0 for all @ quasi-
wilpotent. Then B = 0.

Proof. Putting @ =0 we obtain |R|, = 0. Now the conclusion
follows by Theorem 1 since B(X) has zero radical.

Let us now turn to the ideal o of compact operators on X. For an
operator T € B(X) the essential spectrum (sometimes called the Weyl
spectrum) is usnally defined [7] as the set

o(T) = o(T+R).
ReA"

Clearly,
c(T+A) < w(T) < o(T).

Moreover, it follows from a theorem of R. Harte [9] (see also P. A. Fillmore,
J. G. Stampfli and J. P. Williams [6]) that o (T) is contained in the poly-
nomially convex hull of o(T-2). Thus, in particular, (T'+4"|, = [T,
for any T eB(X) while |T|, may be strictly less than |T',.

If now R e ., then obviously

(3) o(T+R) = o(T) for all T eB(X).

Conversely, but only in the case when X is a Hilbert space, K. Gustaf-
son and J. Weidmann. [8] proved a result originally suggested by P. Rejto
that condition (3) forces R to be compact. A modification of this result
for Banach spaces was later established by K. Gustafson in [7].

Let us compare these converse Weyl theorems with our Corollary
1: it
(4) o(T+R) =o(T) for all TeB(X),

then R = 0. Thus wo see that condition (4) is, in fact, much stronger
than (8) although this actual rvelation is by no means obvious from the
conditions alone.

In order to verify condition (3) one should know the spectra o (T +24")
and (7 -+ R-+'), then he should know which holes are to be filled (ef. [6])
to obtain o(7) and (T4 R) and, finally, he should compare the two
resulting sets. Alternatively, to obtain w(Z') one could also exclude some
eigenvalues from (77, cf. [6]; but it is not again clear which points
ghould be just excluded. :
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Our general approach, however, provides a considerably simpler
procedure. Knowing the spectral radii [T'+2¢|, and [T+ R|, only and
verifying the inequality [T+, < [T+ R|, between them, for each
T e B(X), we can make the same coneclusion about ecompactness of R.
We need know neither the exact structure of the spectra nor which holes
are to be filled or which eigenvalues are to be excluded. The precise state-
ment is the following.

COROLLARY 6. Let R e B(X) be such that (3) ts fulfilled. Then R
s inessential, that means its image in the algebra B(X)[A" lies in the radical.

It would be interesting to characterize those Banach spaces X for
which the algebra B(X)/# is semi-gsimple. A partial information concerning
this problem can be found in the book of D. Przeworska-Rolewicz and
8. Rolewicz [11].

If we define similarly

o(a) = () o(a+])

. jel
for any closed two-sided ideal I of a Banach algebra 4, then we can state
the following analogy of Corollary 1.

COROLLARY 7. An element r € A is inessential (i.e. v+ I erad(4/I))
if and only if w(a+r) = w(a) for all ac A.

6. An open problem. We are thus returned again to a general Banach
algebra 4. For simplicity suppose 4 hag a unit. In this last section we
wish to compare the condition

(5) o{a+r) =o(a)y forall aeAd

with still another weakening of it, namely
(6) ola+r)nco(a) #6@ for all ae A.

Condition (6) is satisfied whenever the element # belongs to some
proper (= A) two-sided ideal since then the non-empty set o(a--I)
= o(a+r-I) is contained in bhoth ¢(a) and ¢(a+7), for any a € 4.

These observations lead to the natural question whether, conver-
sely, an element 7 € A satisfying condition (6) must belong to some proper
two-sided ideal. An affirmative answer is easily seen when the algebra
Afrad 4 is ecommutative (from the Gelfand representation). There was
only one non-trivial case tried, namely, the case when A = B(H), the
algebra of bounded operators on Hilbert space. This is the work of J. A,
Dyer, P. Porcelli and M. Rosenfeld [5]. In separable case their result was
later strengthened by A. Brown, C. Pearey and N. Salinas [4] but applying
Proposition 7 of C. Le Page [10] to the algebra constructed by A. 8. Nemi-
rovskil or J. Duncan and A. W. Tullo (cf. [3], p. 254) it becomes obvious

Spectral characterizalion of lwo-sided idecls in Banach algebras 11

that the stronger version [4] does not allow transfering to general Banach
algebras. However, especially in view of the already established charac-
terization of the radical by condition (5) it seems reasonable to conjecture
that condition (6) as a natural weakening of (5) might be a possible spectral
characterization of the clements r € 4 belonging to (some, but unknown
to which) two-sided ideals. (Added in proof: A ncgative answer is given
in {217. But the conjeeture ean be corrceted taking into consideration
the speetrum modulo the strong radical. We intend to explain the
details elsewhere.)
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Compacts de fonctions mesurables et filtres
non mesurables

par

MICHEL TALAGRAND (Paris)

Resumé. Désignons par M (X) Uensomble des fonctions réelles mesurables sur
Tespace mesuré (X, X, u) eb par 7, (resp: ) la topologie de la convergence ponctuelle
(vesp: en mesure) sur M (X).

On construit un espace pathologique (X, X, p) et une suite de M(X) qui est
relativement compacte mais ne contient aucune sous guite convergente u-p.p. Ce ré-
sultat répond & une question de D. H: Fremlin qui a montré que cette situation est
impossible si (X, Z, u) est ,,parfait’”.

Nous montrons également qu'elle est impossible si X est la tribu complétée
d'une bribu dénombrablement engendvée. Si 4 < M (Z) est compact pour 7, eb séparé
POUE Ty, 8loxs Ty o 74y coincident sur 4, qui est done métrisable. Ce résultat résoud
un probléme de A, Ionescu-Tulees. .

T.a construction de Pexemple est basée sur le fait frappant qu’une intersection
dénombrable do filives non-mesurables est non-mesurable. La méthode qui conduit
A ce résultat ost utilisée pour une étude systématique des filtres non-mesurables.
On étudic égaloment par analogie los filtres non-maigres dont on obtient une caracté-
risation tros simple, qui généralive des résulbats connus sur les filtres analytiques.

On ébudie onfin indépendance pour les filtres de la propriété d’8tre maigre oun
maesurable.

0. Tntroduction. Oet article développe les résultats annoncées dans
deux motes aux Comptes Rendus ([10], [11]).

Titant donnd un espace mesuré (X, X, u), nous désignerons par M (X)
Pogpaco des fonetions réelles mesurables. Nous désignerons par 7, la
topologie produit do RX, ainsi que la topologie induite sur M (Z), que nous
appellerons topologie de la convergence ponctuelle. Lidentification d’une
partic ¥ do X ot do sa fonction indieatrice yy, définit une topologie sur X
qui sera encore Notée T,.

Sur M(X) nous désignerons par 7, la topologie de la convergence
en mesure, c'est-d-dire la topologie définie par les semi-normes

lp(w) = [10f(L, lo(®)])du() Ve M(Z)
n

ou HelX ot p(ll) < + oo.
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