STUDIA MATHEMATICA, T. LXVI. (1930)

Interpolation of multipliexs of L7
by

WALTER R. BLOOM (Murdoch, Ausiralia)

Abstract. Lot & bo a Hausdorft compact abelian group with charactor group I
For ¥ < I denote by L% the translation invariant subspace of L? (@) of functions
whose Fourior transforms vanish off ¥. It is shown that if I'is infinite and q is an

N\
even intoger groater than 2, thon ¥ ean be chosen 8o that not overy multiplier of LY, is

L
o multiplier of L§-, where p e[l, ) is not an cven integer.

Throughout ¢ will denote an infinite Flausdorff compach abelian
group with character group I'. Given p e [1, oo, L?(G) will refer to the
usual Lebosgne space with respect to normalised Haar measure 4 on @.
For YV« I' denote by I% the translation invariant subspace of L?(@)
consisting of those funetions whose Fourier fransforms vanish off Y,
Write. M% for the set of functions in I(Y) which are multipliers for
ﬁl’,; that is, ¢ € MY it and only it for every fe L% there cxists g e Ly
with g(p) = @(y) f (y)torall y e ¥. To each such ¢ will correspond a bounded
operator T, of L% into itselt, given by T,f = ¢g. The norm of T, will be
writben a8 g, - ‘

The special gymbols B, T, Z and Z(r) will be reserved for the real
line, the eivele group, the group of integexs and the finite cyelic group
of 7 elements, respectively.

Wo are interested in the following question:

Por lqap< or 2<p < g oo, in MY < MPY

This question is poged i [B] and, when 1< g < p < 2, has an affir-
mative answer for any @ and every ¥'e 1% see [6]. On tho other hand,
it s been shown (see [51) that in the pavticular case where @ is a product
of eyclic groups of order n (n3=8) and ¢ == 2n.—2 the answer can be
negative. Wa show here that this latber phenomenon persists for any @
whenever g is an oven integer greater than 2.

Trmorsm., Let G be an infinite Housdorff compact abelian group,
§ > 1 an integer and p e [1, 28) not an oven integer. Then there emists ¥ < I’
and @ e 1%(X) with || = L such that ¢ & M% but @ ¢ M%.
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Our proof of the theorem uses, in parf, techniques deve.lopa(:l.. pre-
viously in the investigation of the upper majorant property for JJ’.’(G).
In particular, the trigonometric polynomials we choose are precigely
those first introduced by Hardy and Littlewood (see [3]) and later gen-
eralized by Boas [1] and Fournier [2]. Weo consider the iiglloxying four
cages: (i) I' = Z; (ii) I hag an clement of infinite order; (iii) .F,h%. cl-
ements of arbitrarily large finite ovder; and (iv) ["is of bounded ovder.

(i T = Z. Fixst consider ¥, = {0, 1,s-+1} and ¢, €1®(Yy) defined
by ¢(0) = pu(1) =1, @y(s++1) = —1L Then [pylhs, = 1. However, the
proof of Theorem 1 in [1] can be adapted to show tlmt lpsllp,p = 4> 1.

For each f = 1--ae;+be,,, and positive integer m write F o= L
+ Ay, Do 41y 5 DETC 0y w—>¢™, Tt is well known that, for any g € [1, o),

lm [f-f™, = [fI.

m—+oo
Fix 6> 0 and let feL{}l, ¢ €{0,1) be chosen so that
+e
1211, > (4~ (322 i,

Pick m, sufficiently large (and, in any case, greater than s(s--1)) so thatb
If-fm My, < () |fl and [Ty f-Ty f™, > (L—o) Ty, fllp.  Write Y,
= Y, +m,Y, and define ¢, on ¥, by @z(¢+m1¢") = ¢2(Q)e1(¢'), ¢ 9 €Yy
Thig definition of ¢, makes sense gince m, > s-+1 implies that evely num-
ber in ¥, has a unique representa,uon ag g+m,q for some ¢,¢q €Y.
It follows that

VT (D) = T Ty F
> (L—e) [T, I
> (4= 8L +o)IfI2
> (4 - 8)f -0,
A+1

A 2
so that, with ¢ = ————‘, lpallp,p > (T) . PFurthermore, for any

g€ L",f,z, overlaps in the frequencies when the product
¢ =D men)
nE€Yy
is expanded occur in such & way that
ot = [ 3§ e[ ar
ne}'

is the same ag ||T,,2g||§§ (use the property m, > s(s+4-1)). Hence |@gllsqe = 1.
Iterating the above procedure, we obtain an increasing sequence
(Y,) of subsets of Z, where Y,, =Y,+m,Y,, and multipliers g,
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& 1°(Yays) detined by pa(a-+m00) = 7, (@), (0), ¢4 € ¥,. Here m, is
,_

chosen sufficiently large so that ol = ( B ) , and in any ecase
n—1

larger than 9(3—|—1) [T (m;+1) which mmmntem llﬁ that l]«pnnma =1;
g=1

for th]a cquality use the r(lsult Py @ €Y, 2 Py= Q > g, imyplics ]°[ 0. (D)
= H @, (¢;). Now put ¥V = U Y, and mlfmo <7) on Y by q)ly = (pn It

w1

i o:my tonohock thats ¢ is well defined, [p] =1, lplagee = 1 and |l ,
e =
>( 2l ) for all n. Consequently, since A >1, ¢ ¢ M%.

(if) I" has an clement of infinite order. Here I' containg a copy of Z,
8o there iy a continuous surjeetion a: G-—7. For any trigonometric poly-
nomial f on T, foa iy a trigonometric polynomial on G with the same set
of Fourier cocfficients and the same g-norm for all g e[1, co) (for the
latter see [4], (28.54)). The results of the first case now apply.

(i) I" has elements of arbitrarily large finite order. Using the results
of the proof of case (i), choose Y, o, CMI;' I ELY% and 4 >1 such
that

A1t
uT%,fnup(——}) Full-

Let n € I" baive oxder 7, where #, 18 %0 be chosen. Then y, (@) is the set

{w,h2, of #,-th roots of unity; for each Jj the set of % in G for which y, ()
= w; has measure 7' Now

‘Fn =.fnoyn = an(j)?ﬁ
je%,
f]/nd.
Gy = Twnfnoyn = _2 Pul D) Fald) 74
JeXy
are trigonometric polynominls on G, Also

T

[ipar=2 N
&

771‘11

and the right-hand side of this equation i a Riemann sum for

b

1 ;

o= [ 15 ma0 = f, .
0

Similarly, 6,15 is equal to a Riemann sum for Ty, frllp- Hence for 7,
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sufficiently large (and, in any case, larger than smax{m: m &Y,})

A+1 on—-1
”Gn”p > (""‘2“_) "Fn”ﬂ'

Define @, on @, = {yi:jel} by D, (yi) = @,(§) (the condition on
7, is more than sufficient to ensure that @, is well defined). By the pro-
L +1

2

at—1.
vious inequality, |P,}l,,» >( ) . We shall show that [|D,]lu e = L.

Consider g e Ig ; g = Zc,y” Then
je¥,
P = 3 G, ¢, ...ajay,’Ll“'J s,

An argument similar to that used in the proof of case (i) will show that
1T, glles = llglls, since the incqualities

v, > smax{m: m e Y,} = max{j,-Fjat... -+t e YV,}
imply that, for j, j; €Y, .

I L

it and only if fy--ja-t.. s = J1+dat. .. e
To complete the proof we need to impoge more restrictions on the
choice of y, and r,. Assume that yq, ys, ..., ¥u—1 have been chosen and
select y, with order r,>rry...7,; 8 Hl‘l;X{’m m e Y,}; this condition
guarantees that Q,nQ,, = {1} for n % »' and, since @,(1) =1 for all &

.A.+ PY
we can define @ on Q = U 2, by (Dlg = &,. Clearly, P, , > (»»--~)

n=1 2

for all n=1,2, ..., so that @ ¢ M%. Wo shall show that the choiee of 7,
o
ensures that ® e Mg. Let gely; g = Y 3 ¢ .9, Then

W] jeYn

, J1 o Is
2 Cpymy Yoy * o+ Chgmg Vg Vg + o+ Vg

j1e¥, g
J1 ds 13 X, .
NOW L9 - Vo = Vo vy - Ve, (With i€ ¥,y Ty € ¥,y 1< 6) only

holds if, for cach positive integer n,

2 0= Xy

ﬂlE/l,n ngA;L
where A, = {n;: ny = 0} and Ay, = {my: my == n}. This is easily doduend
from the propaty 7, > rgy... 7, s max{m:m e ¥} It follows, uking
the result that 3 j,= ) k, implies [ @, (7 = - JT D, tor cach
nyEdy, mted ng&d,,
w

positive integer n, that [Pl == 1.

my EA“

Inderpolation of multipliers of I 287

(iv) 1" is of bounded order. Now ([4], (A.2B))

o0
I F *
l’zl’ox” 7(r),
Jeal
where the agterisk indicaties a weak diveet product. We first note that

3

itsutfices to tindn 2 1, ¥ < [ Z(r) and ¢ e I°(X’) such that ||pl,,, =1
gl

andd el >‘ For then we have ([5], Lemma 2.4) that @ defined on

““““ L [ by

Jore
@ ((17 AR ATREREY 2] X;: X;v"'ix;ﬂ ))" ‘)7((%1’ XB;---;Xn))(P«Z;:X;’--- ’ Z;.))

(note that all but o findtic number of the entries ave unity) i in M¥ bub
not in M%.

Tlx n and, for each positive integer k < n, let y,, denote that clement
of ] [ Z(7) which has 1 in the k-th enfry and zero elsewhere. Consider

f1
the trigonometric polynomial

J o Aoty b yu -t ) 0l pa oo Yy
where e BT and || == 1. Tor ¢ suitably small,

FoR e Z (p /2) (e byt yn) + 0t yapy oo pu]™
210

dy  dy . .
Put g o p{lppt ..y where dye {0,1, ..., 7—1}, and let I denote the
5£1Jr(1i1mh1y of the set of non-zero d,’s.
In the binominl expansion of fPF ferms involving y con arise as

follows. For those not containing o the coctficient of x is given by (p 12 ) K-
-0 (%), where d 2 1 and K ix o positive integer dépending on x. For thoso

containing e the coofficient is o [( {Z’/IZI)K’&" e ]-o(t’”"")], where d'z(n —
—0)(r-~1) and K’ is a positive integer depending on g It follows that
the partion of the cocfficient of y imvolving o condribhutios

() (f’/”) K (20 K (@ Lyt o

d @

to the cvaluation of f|17 oo [[f#PdA. Wvery chavactor x in the sub-
group of I7 gencrabed. By g4, Ygy .y ¥ Gives vise to & texm of tho above
form. Furthermore, n-+d--d@ 2 n-1+m—10)(r~1) = nr+1(2—7). We
examine such terms which are minimal with respeet to the power of #;
there are two cases 1o consider.
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If 7> 2, then n-t+d-+d = mr+-n(2—r) = 20 (veeall that §<n). It
follows that the term giving the minimum power of ¢ (nnmely, ) oceurs
when d =1 = n and @’ = 0, in which case x = ¥,y ... ¥, Here K = nl,
K' =1, and () becomes

(-7"7/z )t (P{z) (0 +@) B 0 (127,

. 2
For p not an even infeger, (T / 2)9)'(3’/ ) # 0.

If ¢ =2, then n-bd4-d' = 20 and, sinee d =1 and @' = n-—1, {he
terms giving the minimum power of ¢ (again, #%) occwr when d - -I wiil
4" =mn—1; here T can fake any V«l:lll(‘ from {0,1,...,n}. Olearly, for
each y and corregponding I, K == U, K’ = (n—1- 1) ! amd (%) Decones

(pl/z)“(nf/lil)(”"l 1) e @)1 - o (™).

Swmming over all possible g, we obtain

S 2 o2 o

1=0

= n! %’(1’{2)' (nfgil) (n—1+1) (- B+ 0 (121

n--1)1
= —(———-_2 ) (nﬁl) (@) "o ().

n

(The last equality can be proved by noting that (p 52) (n _-";’ 521 1)(n —141)
l=0

is the coefficient of 2**' in the Maclaurin cxpansion of (14-2)¥*

d . (n+1)!
G (L+2)*2) For p not an integer, 5 (nl-){l) # 0.

Write g = 14t(y; +yo-+en.H9,) + 9192 - Y. Then, for o = 1 and

t suitably small, the working above shows that # can bo chosen so

that [Ifl, # lgl,- This means that the multiplier qnel“‘(( y Vay Vayoro

oy Puy V13 -~ - V) Qefined by the sequence (1,1, ...y 1, ) has fel,,, > 1.

We now show1hmb for o a primitive r-th root of umiy ‘md n = 28, (p e M¥%,

where ¥ = {1, y1, ¥ay - oy ¥y ¥a¥a - .. ). Oonsider any b e L¥; b o= ag-|
RCZY 2 s oM e o B5 IR VAN Th(‘n

Toh = tg+tyys+... + 0¥+ a0y 95 ... 9.

In Lhe expansion of (T,k)° the coctficient of the character
Xz = yl yq v (0 dj< r) is a sum of terms a0a al ... e (aw)™+ for

which 2 iy = s and plyd . y.,, " (#1¥2 +er Pn) ™! = 5. Thus it follows from
the lemma below that T, is an isometry.
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This completes the proof of case (iv), and hence of our theorem.

It remaing to give o statement of the lemma promised above; the
proof is straightforward, and will be omitted.

LimumA. Suppose that n and dy, dy, ..., d, are inlegers such that » = 2s
and 0= dy<2ry 1L § sin. There emists an integer ¢ with 0 <e¢ < v such
that -the following holds. If 4,45, ..., 4., are non-negative integers for

bl
Sn) and Dl i; < 8y then iy, w= ¢(modr).
Jial

Trom thik resull wo ean deduee Theovem 4.1 of [8] which states

that, for 1" infinite and s > 1 an integer, ¥ < I' can be chosen so that

N
nob every mulliplicy of [4 extonds to a mulliplice of L*(6). ITndeed wo
jusb choose p & (2, 28) not an even. infeger, and ¥ < I, p & MENME ay
in our theorem. It follows, using the Ricsz—Thorin convexity theorem,

that @ i8 not the restriction of o multiphior of LE;(G).

which &y |-Gy, o dy(od r) (13

Part of the worl for this paper wag done at the University of Washing-
ton, Beattle, while the author held an Australian—American Bducational
Foundation feavel grant,

The author thanks the referce for fhe statement of the lemma, and
several helpful conunents,
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