Interpolation of multipliers of L_{ν}^{n}

by

WALTER R. BLOOM (Murdoch, Australia)

Abstract. Let G be a Hausdorff compact abelian group with character group Γ . For $Y \subset \Gamma$ denote by L^p_Y the translation invariant subspace of $L^p(G)$ of functions whose Fourier transforms vanish off Y. It is shown that if Γ is infinite and q is an even integer greater than 2, then Y can be chosen so that not every multiplier of $\widehat{L^p_Y}$ is a multiplier of $\widehat{L^p_Y}$, where $p \in [1, q)$ is not an even integer.

Throughout G will denote an infinite Hausdorff compact abelian group with character group Γ . Given $p \in [1, \infty]$, $L^p(G)$ will refer to the usual Lebesgue space with respect to normalised Haar measure λ on G. For $Y \subset \Gamma$ denote by L_T^p the translation invariant subspace of $L^p(G)$ consisting of those functions whose Fourier transforms vanish off Y. Write M_T^p for the set of functions in $l^\infty(Y)$ which are multipliers for \widehat{L}_Y^p ; that is, $\varphi \in M_Y^p$ if and only if for every $f \in L_T^p$ there exists $g \in L_T^p$ with $\widehat{g}(\gamma) = \varphi(\gamma)\widehat{f}(\gamma)$ for all $\gamma \in Y$. To each such φ will correspond a bounded operator T_{φ} of L_T^p into itself, given by $T_{\varphi}f = g$. The norm of T_{φ} will be written as $\|\varphi\|_{p,\varphi}$.

The special symbols R, T, Z and Z(r) will be reserved for the real line, the circle group, the group of integers and the finite cyclic group of r elements, respectively.

We are interested in the following question:

For $1 \le q or <math>2 , is <math>M_Y^q \subset M_Y^{p,q}$

This question is posed in [5] and, when $1 \le q , has an affirmative answer for any <math>G$ and every $Y \subset I'$; see [6]. On the other hand, it has been shown (see [5]) that in the particular case where G is a product of cyclic groups of order n $(n \ge 3)$ and q = 2n-2 the answer can be negative. We show here that this latter phenomenon persists for any G whenever G is an even integer greater than 2.

THEOREM. Let G be an infinite Hausdorff compact abelian group, s > 1 an integer and $p \in [1, 2s)$ not an even integer. Then there exists $Y \subset \Gamma$ and $\varphi \in l^{\infty}(Y)$ with $|\varphi| = 1$ such that $\varphi \in M_Y^{2s}$ but $\varphi \notin M_Y^{2s}$.

Our proof of the theorem uses, in part, techniques developed previously in the investigation of the upper majorant property for $L^{\nu}(G)$. In particular, the trigonometric polynomials we choose are precisely those first introduced by Hardy and Littlewood (see [3]) and later generalized by Boas [1] and Fournier [2]. We consider the following four cases: (i) $\Gamma = Z$; (ii) Γ has an element of infinite order; (iii) Γ has elements of arbitrarily large finite order; and (iv) Γ is of bounded order.

(i) $\Gamma = Z$. First consider $Y_1 = \{0, 1, s+1\}$ and $\varphi_1 \in l^\infty(Y_1)$ defined by $\varphi_1(0) = \varphi_1(1) = 1$, $\varphi_1(s+1) = -1$. Then $\|\varphi_1\|_{2s,2s} = 1$. However, the proof of Theorem 1 in [1] can be adapted to show that $\|\varphi_1\|_{p,p} = A > 1$.

For each $f = 1 + ae_1 + be_{s+1}$ and positive integer m write $f^{(m)} = 1 + ae_m + be_{m(s+1)}$; here $e_m : m \to e^{imx}$. It is well known that, for any $q \in [1, \infty)$,

$$\lim_{m \to \infty} \|f \cdot f^{(m)}\|_{q} = \|f\|_{q}^{2}.$$

Fix $\delta > 0$ and let $f \in L_Y^p$, $\varepsilon \in (0, 1)$ be chosen so that

$$\|T_{\varphi_1}f\|_p > (A-\delta) \left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{1/2} \|f\|_p.$$

Pick m_1 sufficiently large (and, in any case, greater than s(s+1)) so that $\|f \cdot f^{(m_1)}\|_p < (1+\varepsilon)\|f\|_p^2$ and $\|T_{\varphi_1}f \cdot T_{\varphi_1}f^{(m_1)}\|_p > (1-\varepsilon)\|T_{\varphi_1}f\|_p^2$. Write $Y_2 = Y_1 + m_1Y_1$ and define φ_2 on Y_2 by $\varphi_2(q+m_1q') = \varphi_1(q)\varphi_1(q')$, $q, q' \in Y_1$. This definition of φ_2 makes sense since $m_1 > s+1$ implies that every number in Y_2 has a unique representation as $q+m_1q'$ for some $q, q' \in Y_1$. It follows that

$$\begin{split} \|T_{\varphi_2}(f\cdot f^{(m_1)})\|_p &= \|T_{\varphi_1}f\cdot T_{\varphi_1}f^{(m_1)}\|_p \\ &> (1-\varepsilon)\, \|T_{\varphi_1}f\|_p^2 \\ &> (A-\delta)^2(1+\varepsilon)\, \|f\|_p^2 \\ &> (A-\delta)^2\, \|f\cdot f^{(m_1)}\|_p \end{split}$$

so that, with $\delta = \frac{A-1}{2}$, $\|\varphi_2\|_{p,p} > \left(\frac{A+1}{2}\right)^2$. Furthermore, for any $g \in L^{2s}_{Y_0}$, overlaps in the frequencies when the product

$$g^{s} = \left(\sum_{n \in Y_{2}} \hat{g}(n) e_{n}\right)^{s}$$

is expanded occur in such a way that

$$\|g\|_{2s}^{2s} = \int\limits_{T} \left| \left(\sum_{n \in Y_{0}} \hat{g}(n) e_{n} \right)^{s} \right|^{2} d\lambda$$

is the same as $||T_{q_2}g||_{2s}^{2s}$ (use the property $m_1 > s(s+1)$). Hence $||\varphi_2||_{2s,2s} = 1$. Iterating the above procedure, we obtain an increasing sequence (Y_n) of subsets of Z, where $Y_{n+1} = Y_n + m_n Y_n$, and multipliers φ_{n+1}

- (ii) Γ has an element of infinite order. Here Γ contains a copy of Z, so there is a continuous surjection $a\colon G\to T$. For any trigonometric polynomial f on T, $f\circ a$ is a trigonometric polynomial on G with the same set of Fourier coefficients and the same g-norm for all $g\in [1,\infty)$ (for the latter see [4], (28.54)). The results of the first case now apply.
- (iii) Γ has elements of arbitrarily large finite order. Using the results of the proof of case (i), choose $Y_n, \varphi_n \in M^{2s}_{Y_n}, \ f_n \in L^p_{Y_n}$ and A>1 such that

$$||T_{\varphi_n}f_n||_p > \left(\frac{A+1}{2}\right)^{2^{n-1}}||f_n||_p.$$

Let $\gamma_n \in \Gamma$ have order r_n , where r_n is to be chosen. Then $\gamma_n(G)$ is the set $\{\omega_j\}_{j=1}^{r_n}$ of r_n -th roots of unity; for each j the set of x in G for which $\gamma_n(x) = \omega_j$ has measure r_n^{-1} . Now

$$F_n = f_n \circ \gamma_n = \sum_{j \in Y_n} \hat{f_n}(j) \, \gamma_n^j$$

and

$$G_n = T_{\varphi_n} f_n \circ \gamma_n = \sum_{j \in Y_n} \varphi_n(j) \hat{f}_n(j) \gamma_n^j$$

are trigonometric polynomials on G. Also

$$\int\limits_{G}|F_{n}|^{p}d\lambda=\frac{1}{r_{n}}\sum_{j=1}^{r_{n}}|f_{n}(\omega_{j})|^{p},$$

and the right-hand side of this equation is a Riemann sum for

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f_n(e^{i\theta})|^p d\theta = ||f_n||_p^p.$$

Similarly, $\|G_n\|_p^p$ is equal to a Riemann sum for $\|T_{x_n}f_n\|_p^p$. Hence for r_n

sufficiently large (and, in any case, larger than $s \max\{m: m \in Y_n\}$)

$$||G_n||_p > \left(\frac{A+1}{2}\right)^{2^{n-1}} ||F_n||_p.$$

Define Φ_n on $\Omega_n = \{ \gamma_n^j \colon j \in Y_n \}$ by $\Phi_n(\gamma_n^j) = \varphi_n(j)$ (the condition on r_n is more than sufficient to ensure that Φ_n is well defined). By the previous inequality, $\|\Phi_n\|_{p,p} > \left(\frac{A+1}{2}\right)^{2^{n-1}}$. We shall show that $\|\Phi_n\|_{2s,2s} = 1$. Consider $g \in L_{\Omega_n}^{2s}$; $g = \sum_{j \in Y_n} c_j \gamma_n^j$. Then

$$g^s = \sum_{j_1 \in Y_n} c_{j_1} c_{j_2} \dots c_{j_s} \gamma_n^{j_1 + j_2 + \dots + j_s}.$$

An argument similar to that used in the proof of case (i) will show that $\|T_{\phi_n}g\|_{2s} = \|g\|_{2s}$, since the inequalities

$$r_n > s \max\{m: m \in Y_n\} \geqslant \max\{j_1 + j_2 + \dots + j_s: j_t \in Y_n\}$$

imply that, for $j_t, j'_t \in Y_n$,

$$\gamma_n^{j_1+j_2+\ldots+j_s} = \gamma_n^{j_1'+j_2'+\ldots+j_s'}$$

if and only if $j_1 + j_2 + ... + j_s = j'_1 + j'_2 + ... + j'_s$.

To complete the proof we need to impose more restrictions on the choice of γ_n and r_n . Assume that $\gamma_1, \gamma_2, \ldots, \gamma_{n-1}$ have been chosen and select γ_n with order $r_n > r_1 r_2 \ldots r_{n-1} s$ max $\{m \colon m \in Y_n\}$; this condition guarantees that $\Omega_n \cap \Omega_{n'} = \{1\}$ for $n \neq n'$ and, since $\Phi_n(1) = 1$ for all n, we can define Φ on $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$ by $\Phi|_{\Omega_n} = \Phi_n$. Clearly, $\|\Phi\|_{p,p} > \left(\frac{A+1}{2}\right)^{2^{n-1}}$ for all $n = 1, 2, \ldots$, so that $\Phi \notin M_{\Omega}^p$. We shall show that the choice of r_n ensures that $\Phi \in M_{\Omega}^{2s}$. Let $g \in L_{\Omega}^{2s}$; $g = \sum_{n=1}^{\infty} \sum_{A \in \mathcal{X}} c_{j,n} \gamma_n^j$. Then

$$g^s = \sum_{j_t \in Y_{n_I}} c_{j_1,n_1} c_{j_2,n_2} \dots c_{j_8,n_8} \gamma_{n_1}^{j_1} \gamma_{n_2}^{j_2} \dots \gamma_{n_8}^{j_8}.$$

Now $\gamma_{n_1}^{j_1}\gamma_{n_2}^{j_2}\ldots\gamma_{n_8}^{j_8}=\gamma_{m_1}^{k_1}\gamma_{m_2}^{k_2}\ldots\gamma_{m_8}^{k_8}$ (with $j_t\in Y_{n_t},\ k_t\in Y_{m_t},\ 1\leqslant t\leqslant s$) only holds if, for each positive integer n,

$$\sum_{n_t \in A_n} j_t = \sum_{m_t \in A'_n} k_t,$$

where $A_n = \{n_t : n_t = n\}$ and $A'_n = \{m_t : m_t = n\}$. This is easily deduced from the property $r_n > r_1 r_2 \dots r_{n-1} s \max\{m : m \in Y_n\}$. It follows, using the result that $\sum_{n_t \in A_n} j_t = \sum_{m_t \in A_n} k_t$ implies $\prod_{n_t \in A_n} \Phi_n(\gamma_n^{i_t}) = \prod_{m_t \in A_n'} \Phi_n(\gamma_n^{k_t})$ for each positive integer n, that $\|\Phi\|_{2s,2s} = 1$.

(iv) I' is of bounded order. Now ([4], (A.25))

$$\Gamma \simeq \Gamma_0 \times \prod_{i=1}^{\infty} {}^*Z(r),$$

where the asterisk indicates a weak direct product. We first note that it suffices to find $n \ge 1$, $Y' \subset \prod_{j=1}^n Z(r)$ and $\varphi \in l^\infty(Y')$ such that $\|\varphi\|_{2s,2s} = 1$ and $\|\varphi\|_{p,p} > 1$. For then we have ([5], Lemma 2.4) that \mathcal{P} defined on $Y = \{1\} \times \prod_{j=1}^{\infty} Y'$ by

 $\Phi((1, \chi_1, \chi_2, ..., \chi_n, \chi'_1, \chi'_2, ..., \chi'_n, ...)) = \varphi((\chi_1, \chi_2, ..., \chi_n)) \varphi((\chi'_1, \chi'_2, ..., \chi'_n))$ (note that all but a finite number of the entries are unity) is in M_Y^{2s} but not in M_Y^{2s} .

Fix n and, for each positive integer $k \leq n$, let γ_k denote that element of $\prod_{j=1}^n Z(r)$ which has 1 in the k-th entry and zero elsewhere. Consider the trigonometric polynomial

$$f = 1 + t(\gamma_1 + \gamma_2 + \ldots + \gamma_n) + \omega t^n \gamma_1 \gamma_2 \ldots \gamma_n,$$

where $t \in \mathbb{R}^+$ and $|\omega| = 1$. For t suitably small,

$$f^{p/2} = \sum_{m=0}^{\infty} {p/2 \choose m} \left[t(\gamma_1 - \gamma_2 + \ldots + \gamma_n) + \omega t^n \gamma_1 \gamma_2 \ldots \gamma_n \right]^m.$$

Put $\chi = \gamma_1^{d_1} \gamma_2^{d_2} \dots \gamma_n^{d_n}$, where $d_j \in \{0, 1, \dots, r-1\}$, and let l denote the cardinality of the set of non-zero d_i 's.

In the binomial expansion of $f^{p/2}$ terms involving χ can arise as follows. For those not containing ω the coefficient of χ is given by $\binom{p/2}{d}Kt^d++o(t^d)$, where $d\geqslant l$ and K is a positive integer depending on χ . For those containing ω the coefficient is $\omega\left[\binom{p/2}{d'+1}K't^{n+d'}+o(t^{n+d'})\right]$, where $d'\geqslant (n-l)(r-1)$ and K' is a positive integer depending on χ . It follows that the portion of the coefficient of χ involving ω contributes

to the evaluation of $||f||_n^n = \int |f^{n/2}|^2 d\lambda$. Every character χ in the subgroup of I generated by $\gamma_1, \gamma_2, \ldots, \gamma_n$ gives rise to a term of the above form. Furthermore, $n+d+d' \ge n+l+(n-l)(r-1)=nr+l(2-r)$. We examine such terms which are minimal with respect to the power of t; there are two cases to consider.

If r > 2, then $n+d+d' \ge nr+n(2-r) = 2n$ (recall that $l \le n$). It follows that the term giving the minimum power of t (namely, t^{2n}) occurs when d = l = n and d' = 0, in which case $\chi = \gamma_1 \gamma_2 \dots \gamma_n$. Here K = n!, K' = 1, and (*) becomes

$$\binom{p/2}{n}n!\binom{p/2}{1}(\omega+\overline{\omega})t^{2n}+o(t^{2n}).$$

For p not an even integer, $\binom{p/2}{n}n!\binom{p/2}{1}\neq 0$.

If r=2, then $n+d+d' \ge 2n$ and, since $d \ge l$ and $d' \ge n-l$, the terms giving the minimum power of t (again, t^{2n}) occur when d=l and d'=n-l; here l can take any value from $\{0,1,\ldots,n\}$. Clearly, for each χ and corresponding l, K=l!, K'=(n-l+1)!, and (*) becomes

$${\binom{p/2}{l}} l! {\binom{p/2}{n-l+1}} (n-l+1)! (\omega+\varpi) t^{2n} + o(t^{2n}).$$

Summing over all possible χ , we obtain

$$\begin{split} \sum_{l=0}^{n} \binom{n}{l} \binom{p/2}{l} l! \binom{p/2}{n-l+1} (n-l+1)! (\omega + \overline{\omega}) t^{2n} + o(t^{2n}) \\ &= n! \sum_{l=0}^{n} \binom{p/2}{l} \binom{p/2}{n-l+1} (n-l+1) (\omega + \overline{\omega}) t^{2n} + o(t^{2n}) \\ &= \frac{(n+1)!}{2} \binom{p}{n+1} (\omega + \overline{\omega}) t^{2n} + o(t^{2n}). \end{split}$$

(The last equality can be proved by noting that $\sum_{l=0}^{n} \binom{p/2}{l} \binom{p/2}{n-l+1} (n-l+1)$ is the coefficient of z^{n+1} in the Maclaurin expansion of $(1+z)^{p/2}$ $z \frac{d}{dz} (1+z)^{p/2}$.) For p not an integer, $\frac{(n+1)!}{2} \binom{p}{n+1} \neq 0$.

Write $g=1+t(\gamma_1+\gamma_2+\ldots+\gamma_n)+t^n\gamma_1\gamma_2\ldots\gamma_n$. Then, for $\omega\neq 1$ and t suitably small, the working above shows that n can be chosen so that $\|f\|_p\neq\|g\|_p$. This means that the multiplier $\varphi\in l^\infty((1,\gamma_1,\gamma_2,\ldots,\gamma_n,\gamma_1\gamma_2\ldots\gamma_n))$ defined by the sequence $(1,1,\ldots,1,\omega)$ has $\|\varphi\|_{n,p}>1$. We now show that, for ω a primitive r-th root of unity and $n\geqslant 2s,\ \varphi\in M_Y^{2s}$, where $Y=\{1,\gamma_1,\gamma_2,\ldots,\gamma_n,\gamma_1\gamma_2\ldots\gamma_n\}$. Consider any $h\in L_Y^{2s}$; $h=a_0+a_1\gamma_1+\ldots+a_n\gamma_n+a\gamma_1\gamma_2\ldots\gamma_n$. Then

$$T_{\varphi}h = a_0 + a_1\gamma_1 + \ldots + a_n\gamma_n + a\omega\gamma_1\gamma_2 \ldots \gamma_n.$$

In the expansion of $(T_{\varphi}h)^s$ the coefficient of the character $\chi = \gamma_1^{d_1} \gamma_2^{d_2} \dots \gamma_n^{d_n}$ $(0 \le d_j < r)$ is a sum of terms $a_0^{i_0} a_1^{i_1} \dots a_n^{i_n} (a\omega)^{i_{n+1}}$ for which $\sum_{j=0}^{n+1} i_j = s$ and $\gamma_1^{i_1} \gamma_2^{i_2} \dots \gamma_n^{i_n} (\gamma_1 \gamma_2 \dots \gamma_n)^{i_{n+1}} = \chi$. Thus it follows from the lemma below that T_{φ} is an isometry.

This completes the proof of case (iv), and hence of our theorem. It remains to give a statement of the lemma promised above; the proof is straightforward, and will be omitted.

LEMMA. Suppose that n and d_1, d_2, \ldots, d_n are integers such that $n \ge 2s$ and $0 \le d_j < r$, $1 \le j \le n$. There exists an integer c with $0 \le c < r$ such that the following holds. If $i_1, i_2, \ldots, i_{n+1}$ are non-negative integers for which $i_j + i_{n+1} = d_j \pmod{r}$ ($1 \le j \le n$) and $\sum_{j=1}^{n+1} i_j \le s$, then $i_{n+1} = c \pmod{r}$.

From this result we can deduce Theorem 4.1 of [5] which states that, for I' infinite and s>1 an integer, $Y\subset I'$ can be chosen so that not every multiplier of $\widehat{L_Y^{2s}}$ extends to a multiplier of $\widehat{L_Y^{2s}}(G)$. Indeed we just choose $p\in(2,2s)$ not an even integer, and $Y\subset I'$, $\varphi\in M_Y^{2s}\setminus M_Y^{2s}$ as in our theorem. It follows, using the Riesz-Thorin convexity theorem, that φ is not the restriction of a multiplier of $\widehat{L^{2s}}(G)$.

Part of the work for this paper was done at the University of Washington, Seattle, while the author held an Australian-American Educational Foundation travel grant.

The author thanks the referee for the statement of the lemma, and several helpful comments.

References

- R. P. Bons Jr., Majorant problems for trigonometric series, J. Analyse Math. 10 (1962-1963), pp. 253-271.
- [2] J. J. F. Fournier, Majorants and Lp norms, Israel J. Math. 18 (1974), pp. 157-166.
- [3] G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XIX): a problem concerning majorants of Fourier series, Quart. J. Math. Oxford 6 (1935), pp. 304-315.
- [4] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Bände 115, 152, Springer-Verlag, Berlin-New York 1963, 1970.
- [5] D. M. Oberlin, Multipliers of Lp, II, Studia Math. 59 (1977), pp. 235-248.
- [6] Translation-invariant operators of weak type (to appear).

SCHOOL OF MATHEMATICAL AND THYSICAL SCHENCES MULDOCH UNIVERSITY
MULDOCH, WESTERN AUSTRALIA
AUSTRALIA

Received April 15, 1977
Revised version August 29, 1977

(1295)

289