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'Abstraet. It is proved that if X is a Banach lattice whose moduli of convexity
and smoothness admit the estimations 0 (s) > Kye? and gz(7) < K79 where ¢ = 2
ifp>2and 1<gx2if p =2, then there is a constant K such that for every n-di-
mensional subspace ¥ < X one has &(F,13) < REnlliv—14, Here d(F,1}) denotes
the Banach-Mazur distance. If F is any m-dimensional subspace of the trace class
8p, then d(F, 1)< olp—1/2),

Introduction. In [14] Lewis proved that for 1 < p < oo the space
L, (R, u) has the following property:

(*) there is a constant C such that every n-dimensional subspace H satisfies
A\, O -plte—12l

In this paper we will prove that some general classes of Banach
lattices satisfy (x). Moreover, it will be shown that “a noncommutative
generalization” of 1, also has this property. In the proofs of ours basic
rosults (Theorems 1.1, 1.2 and 2.2, 2.3) we follow the ideas of Lewis
from [14].

Tor the convenience of the reader some notions and facts which
will be used in both sections are put together in Section 0.

Tn Section 1 we examine uniformly convex and uniformly smooth
Banach lattices. We ghall show that any Banach lattice X whose moduli
of convexity and smoothness admit the estimations

Oxl(e) > Kye?  and  ox(7) < Kp7? whenever P> 2, or
Sxl(e) = Ky and 0x(7) < Kp7¥;  whenever 1<p<2,

has property (+) (Corollary 1.10). This already implies that any Banach
lattice X of type 2 and cotype p whenever p > 2, or of type 2 and cotype.
p. whenever 1 < p < 2, satisties (x). Let us note that the reader can more
easily undergtand proofs considering them for atomic lattices, i.e. spaces
with unconditional bases.

Tn Section 2 we prove that the trace classes S, of operators acting
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in a Hilbert space H have property (=) (Corollary 2.10). Let us recall
that the spaces 8, are uniformly convex and uniformly smooth and their
moduli of convexity and smoothness have the same order as the corres-
ponding moduli of L, ([19]). However, if p # 2 and dim H = oo, §, is
not isomorphic to coraplemented subspace of any Banach lattice ([7]).
It has also been recently proved in [17] that for p # 2 and dim H = oo
the space 8, is not isomorphic to 2 quotient of a subspace of a uniformly
convex Banach lattice.
I wish to thank to Professor T. Figiel for his helpful advice. .

§ 0. Preliminaries. The notation and terminology in the theory of
Banach spaces is standard. If X is a Banach space and X* ity dual, the
value of & functional ¥* € X* on an clement z € X is denoted by (e, y*).
For 3 e X, & + 0 we say that the functional o* e X* with |jo*] =1 is
the supporting functional at » whenever (@, ) = ||z].

Let X and Y be Banach spaces. By # (X, ¥) we denote the space
of all finite rank linear operators from X to Y. For u e & (X, X™**) we

o0
define the trace of w as a trace u = Y (¢, u(e)), where {(e;), (¢})} is
=1

some basis in X. Let « be a norm on the space F (X, Y). The completion
of #(X, Y) under the norm « is denoted by (X, ¥). By o* we mean
the norm on # (¥, X™) defined by

(1) a*(v) = gup [trace vou|

for ve # (Y, X), with the supremum taken over all u e % (X, ¥) with
a(u)<1. Then the dual of «(X, Y) is isometric to a*(¥, X™). The
duality is given via the trace: (u,w) = trace wou for e a(X, ¥) and
w e o*( ¥, X™). Moreover, the following equality holds

(2) a{u) = sup [trace vou|

for we #(X, Y), with the supremum taken over all v e # (X, X*™) with
a*(v) < 1.

As an example let us recall the space y,(X, ¥) of all operators from
X to Y factorizable through the Hilbert space, with the norm y,(u)
= inf [w,|- {lw,] Where the infimum is taken over all operators w,: X—H,
wy: H—Y such that 4 = wyow, [11].

The Banach—Mazur distamce between isomorphic Banach spaces X
and Y is defined by d(X, ¥) = inf |Z||- | T~ with the infimum taken
over all isomorphisms 7' from X onto Y.

In the proofs of ours main results the following gencralization of
John's theorem on ellipsoids of minimum volume, due to Lewis [13],
is a crucial fact.

TemoREM 0.1. Let B and F be n-dimensional (real or complex) Banach
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spaces. Let a be some norm on the space F (B, F). There is an isomorphism
w: B+ such that a(u) =1 and a*(v™") = n.

Actually Lewis proved this theorem in the real case. But it is not
difficult to extend this proof to the complex case and we omit this.

We shall also use the following fact from the theory of Banach ideals,
the particular case of which was considered in [14].

Provosrrion 0.2. For every reflewive Banach space X omd every
natural number n the following conditions are equivalent:

(i) there is a constant (' such that for any n-dimensional subspace BcX
there is a projection P from X onto B with p,(P) < C;

(ii) there is a comstanmt C' such that for any n-dimensional Bamach space
G and any subspace B = X every operator u: E—>G can be extended to the
operator i: X—G with y,() < Ou).

Proof. Recall that if @ is a finite dimensional Banach space and ¥
is a reflexive one, then the space # (Y, &) of all operators from ¥ to &,
with the operator norm, is reflexive and its dual is isometric to the space
N(G, Y) of all nuclear operators from @ to ¥, with the nuclear norm
n( ). Similarly, the space y,(Y, @) of all operators from ¥ to G factor-
izable through the Hilbert space is reflexive and its dual, (@, ¥), is
the space of all operators of the form w = vowu, where : G-~H is a 2-ab-
solutely summing operator from & to the Hilbert space H and v: H—>Y
is an operator with a 2-absolutely summing adjoint o*: ¥Y*—H. We
define the norm y; (w) = inf @y (%) m,(v*), with the infimum taken over
all such factorizations of w [11].

The standard duality argument implies that condition (ii) is equiv-
alent to

(ii)* there is a constamt O such that for any n-dimensional Banach space
A and any subspace B < X the following inequality holds for every operator
w: G—>8

n(w) < Oy, (jw);

here j: H->X denotes the inclusion map.

We shall show that (i)=(ii)*. Pick w: G—E with y;(jw) =1 and
consider the best representation of jw in the form jw = vow where u:
G—H,v: H—X with my(u) - m,(v*) = 1. Consider the projection P: X—w(G)
with ya(P) < 0, as in (i), and its best factorization through the Hilbert
gpace H, P =ToS with §: X—H, T: H>w(G) and |T|-{S| = y.(P)-
Moreover, ¢: w(G)—E denotes the inclusion map. Thus w = ioPojow
= {0l o(Sov)ou = i0Tow,0u, where v, = Sowv is the operator from H
to H. The adjoint v} = 0*-8* is a 2-absolutely summing operator, since
80 is o*. Since v, acts in the Hilbert space, v, is also 2-absolutely summing.
We bave my(9,) = 7,(0]) < m,(0*)|S|. Hence w, as the composition of
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two 2-absolutely summing operators, is nuclear [16], and n(w) < [li]- [V
X 7ty (0) 72 (1) < [ 171 - IS 1wy (0%) -3 (1) = () %} (jw) < O. This estab-
lishes eondition (il)*. ‘

The implication (ii)=-(i) is obvious. m

§ 1. Uniformly convex and uniformly smooth Banach lattices. In this sec-
tion, for the sake of convenience, we consider only the real case. Let us rec-
all some notions. A Banach space X which is o lattice under < is called
a Banach lattice provided |z| < [yl whenever [#]< |yl, where |o|
= sup (#, —). We say that the elements #, y € X are disjointly supported
whenever inf(jz|, ly|) = 0. We say that supp © < suppy whenever
inf (ly|, |2]) = 0 implies inf (|o], |¢]) = 0 for every 2 e X. One can prove
([18]) that if for a Banach lattice X no subspace of X iy isomorphic either
t0 ¢, or to 1, then X and X™ are order isomorphic to some function latiices
on the same measure space (2, x), with the duality given by {f,s*>
= [f-w*du, for fe X and o* e X".

Now we recall some geometric properties of Banach spaces. For
a Banach space X the modulus of convewity (resp. of smoothness) is defined by

bx(e) = mi{1— 3@+l I <1, W<, lo—yl> e}
(resp.
ox(7) = swp{2 (o +yll+ e —yll—2): loll =1, lyll = 7}).

We say that the space X is uniformly convex (resp. smooth) if dx(e) > 0
(resp. lim gx(7) 7' = 0). Tt is well known that if a Banach space X
70

is uniformly smooth, then for every # X the supporting functional
o* at 2 is unique; it X is uniformly convex, then (y, #*) # 1 for y # x [8].

Sinee the uniform smoothness is preserved for subspaces, no uni-
formly smooth Banach lattice contains either ¢, or I,. Thus, X and X*
are order isomorphic to some function lattices. Therefore, for f, ge X
(@*, y* € X*), by fg (z*y*) we denote a pointwise multiplication of func-
tions. The action of a functional #* € X* on an clement f & X will be de-
noted by {f,»*> and after the above identification we have {(f,s*)
= [fw*

fThe main result of this section is

TuroREM 1.1, Let p > 2 and let X be a complete Banach lattice with
Ox{e) = K e? and ox(7) < K12 for some constants I, and K,. Then there
s @ constant K such that for every n-dimensional subspace B < X there is
a projection P from X onto B with y,(P) < Kn't~Y»,

To get this theorem we shall prove some auxiliary results. We staxt
with a theorem analogous to the theorem due to Lewis [14].

THEOREM 1.2. Let X be a uniformly smooth Banach laitice, and let
I = X be o n-dimensional subspace. Then there is a basis in B Fus «ves fu
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n
such that for f = (é: FiP® we have |f)| = 1 and for every sequence of scalars
Ay eeey a, Wwe have

n

@ w7 Qe =S8 Yadf, 1,

i=1

where f* denotes the supporting functional at f.
Let us observe that fe X, Indeed, one can estimate

f= (gf?)"k VA max(fil, eoey o).

Moreover, max(|fil, ..., [f,]) € X; thus fe X. From Schwarz’s i i
it follows that T ’ d s Tequality

| Sas)<

n
i=1 =1

2
a?) S for all scalars ay, ..., a,.

So

n
and fe X implies f~'( 3 o,f;)* € X.
i=1
To prove Theorem 1.2 we need the notion of X-summing operators.
_ DEFINI.TIOL.N 1.3. Let ¥ be a Banach space. The operator %: ¥Y—-X
iy X-summing if the image of the unit ball of ¥ is order bounded in X.
Its X-summing norm is denoted by z=x (%) and equals

mx(w) = || sup |u(y)|||g.
i<t

It B« X is a subspace, then an operator w: ¥—+F is (B, X)-sum-
{ning if the composition ju: ¥-»X is X-summing, where j: B—X is the
inclusion map. We define gy, x (%) = my (ju).

Let us notice that in the case X = L, (2, u) this notion is exactly
the same as that of p-decomposable operators ([10], [15]). Moreover, if
Y iy isomorphic to a quotient of Lpe(21, p1) (p* = p(p 1)), then
w: ¥-L, i3 Ly-summing if and only if w is absolutely summing. In our
case the last condition is equivalent to the fact that u* is p-absolutely
summing ([107).

In the sequel we shall consider only operators from 7. An easy
corollary of the definition is

§ — Studia Mathematica LXVI.3
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COROLLARY 1.4. Let u: I8>X be an operator and let (e;) denote the
wnit vector basts in ly. Then

(5) () = | Sutep)”

i=1

X

PROPORITION 1.5. On the space F(X,13) of all operators, the norm
dual 1o my 18 defined by the formule

(6) (wx)" (w) = 7xe(w¥)

for w: X—1t. By mxi(w*) we denote the X*-summing norm of the oper-
ator w*: X"

Proof. Let w: X—I? be an operator. We have to prove (see [11)
that

(7) mge(w¥) = sup [trace woul.
w lg>X
ax(w<1

Let (e;) denote the unit vector basis in . From the definition of the
trace and Schwarz’s inequality we obtain for u: If—X with mx(u) <1

|

[trace wou| = \2 (wu (e e)l

i=1

=| 2<u(ei>, w*(e)| < [ }?u(e,-w)"*-( ﬁw*(eoz)"”

H(Zn'”(e m“\*“(zw* €;)* ‘/2 o T (W)
i=1
‘Mo show the equality let us define y* = w*(e) for i =1,...,m,

y* = (2 y*2)”3 For arbitrary > 0 let us choose ze X with [l =1
and (w, "y = (L—e¢)flyl. Let us define

z, =yioly* for i=1,...,n.

! n
We have (Y #3)* = o; thus 4, X for i =1,...,n, because |o| <@
4=1

Let us define the operator u: Ij—X by

ule) =2, for 4=1,...,n.
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Then mx(w) = ol = 1. Morcover,
" n
ftrace wou) = | Y'<ule), wHe)y| =| X <o, 41
i=]1 i=1

T

l w2 0y =

= [ Doyl = [y
gy

= (@, Y 2 (L—e) gl = (L—&)mxga (w*).
Sinee &> 0 is arbitrary, thiy implies
T (WH) < sUp (trace woul;

nifaX
ny(w)<l

thus we have equality in (7). Thig completes the proof. m
For tho space Iy x(ly, H) of (H, X)-summing operators we have
the following
COROLLARY 1.6. On the space F (B, 1) of all operators the norm dual
to mg x is defined by
{7z, %)™ (20) == Inf mga (v*%)
for w: B>}, where the infimum is taken over all ewtensions v: X—Iy of
w, L.o. 0| =
Moreover, chwe is an operator W == X1y with w|H = w such that
Tge (W) == Ik 7mya (0*).
Proof. It ig a standard consequence of Proposition 1.6. m
Now we arc able to prove Theorem 1.2.

Proof of Theorem 1.2. We apply Theorem 0.1 to the norms my x
and (s, x) Thus there iy an isomorphism w: Ij—F with mgy x(u) = 1
and (7mg, <) (@™ = n. By Covollary 1.7 there is an extension w: X—1j
of w~! with my(w*) = n. Let (e;) denote the unit vector basis in 7. We

define f, = wu(e) and f == ( )’ fi)”2 Hence ||f] = o, x(u) == 1. Further-

more, wo define = 'w* (’ eX' ad g S‘ 2, Tlence
’ A Ot g
=2 s (W) £ N

Since wou i "% then Sehwars’s inequality vwldﬁ

n = trace wou = Z wou(ey), ¢ 2, o 90

fesl danl

<f(§f?)”2'(‘_,§;0%)”” = Gy o> < Ifl gl = e
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Thus
Z(fw 9> = I(Zfz)m (291)1}2
and = =
Sy gy = fI-ligl.

The last equality gives, by the uniform smoothness of the space X,
g = nf*. 'On the other hand, the first equality gives

g =foglf for i=1,.
Combining the above expressions for g and g;, we get

(8) g; =nf-f*If for i=1,...,n.
Formula (8) immediately implies

6y = {fis g = ”’(fif}‘/f;f*>~

Sinee for every sequence of scalars a, ..., e, we have

il Z awfifl = > wafilf,
=1 . (%]
we finally get

{F (Zam) fy=n 2 2<f¢/f,f*>+%2amf<f¢ﬁ/f,f > = n}j o,
19t ()]
and this cormpletes the proof. m
We need also some information on the connections between the
moduli of convexity, smoothness and the norms in Banach lattices. We
begin with the notion of a 2-convex norm. We say that the norm in a !
Banach lattice X is 2-comver provided |(w2-y2)?|2< |lo2--lly|?2 for !
2,y € X. The notion of 2-convexity was introduced in [3] for Banach
gpaces with an unecnditional basis, and independently, under another
name, for Banach lattices in [9]. We have the following possibility of
renormalization. .
ProroSITION 1.7. Let X be a Banach lattice with the modulus of smooth-
ness satisfying ox(v) << K2 for some constant K. Then there ewists a norm
[-] on X, equivalent to the original one and 2-convew. i
Proof. See [2]. For the space with an unconditional basis the prop-
osition follows also from the fact that, by the duality between the mod-
ulus of smoothness of X and the modulus of convexity of X* ([L]), we
have dx.(e ) > K& Thus X is of cotype 2 ([B]) and every operator Lrom

¢y to X is 2-absolutely summing ([15]). Then the result follows from [3]
(the proof of Lemma 3.1). m
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Thus, without loss of generality, we may assume that the original
porm on X is 2-convex. This allows us to construct some new Banach
lattice, denoted by Z. Namely we define new operations on X:

2@y = [ sgno+yPsgnyPsgn (#fsgne+yisgny)  for @, yeX,
10m = |AP(sgni)e for AeR and zeX.

We write Z = (X, ®, ©). On Z we define a norm |jjz[]] = |&||* for
2 € Z. The 2-convexity of the norm |-|| implies that the norm |||-]|} satis-
fics the triangle inequality. If p* € 2% then the value of p* on an element
z € Z is denoted by &z, ¢*. The space Z will be used in the prool of the
following suxiliary resulf.

PrOPORITION 1.8. Let X be a uniformly smooth Banach lattice with
a 2-convex norm. Let f e X, f> 0, be a positive element with |fl] =1, and
lot f* € X* denote the supporting funetional at f. Then, for every y,, ¥, € X
with SUPP Y1, SUPD Y, < SUPD f,

(9) 1<y 92 1f, £ < Jyall -yl
Proof. Let us regard f as an clement of Z. By p* e Z" we denote
the supporting functional at f. Since f> 0, we have ¢* > 0. We define
the functional #* € X7 by
@, 0%y = LIy sgn(fy), ¢*»  for  yeX.

Tt in casy to see that the formula above really defines the linear functional
on X. Morcover, <f, #*) = L. We shall show that <y, 2*)| <1 whenever
Iy = 1. Indeed, for any reals o, b € R we have

lab{V® < 27 ([al 4 |b]).
Thus’

Ify " < 272 (- lyl)
and wo have

[l sen (Il == [|[1Fw1#))
s ||y )P < L2 (Il DT =
Then, by the definition of
1Ky, %3] = [Ify " sgn(fy), o*D|
< |7y sgn(fy)l] = 1.

Thus the uniform smoothness of X implies that a* = f*. To prove in-
equality (9) pick ¥y, ¥, € X with |lg:]l = [ly.ll = 1 and put y = Y Yo lf. We
have

Fyl P sgn (fy) = lya9.l""sen (y19s),
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hence, as above, |[|ly.yal"*sgn(y.y:)||| < 1. Thus

Kyadalfs F01 = 1Ky, 9] = [Klyayalsen(m29), ¢ < 1.
By the homogeneity of (9) this completes the proof. m
PropoSITION 1.9. Let X be a Bomach lattice with « 2-convex norm
and with the modulus of convewity satisfying Ox(s) = K,&¥ (p > 2) for
some consiant K. Then there is o constant I such that for any fe X, f> 0,
[if]] = 1 the estimation holds

(10} WP < Z<yelf, /% whenever [yl < f.

Proof. First let us observe that, since |ly|| = H lyl i and y2[f = |y*[f,
we can assume that y > 0. We shall prove that there are constants K,
and K, such thatb

(11) 3x(Kalyl) < EoCy?lf, f*>  whenever 0<y</.
Next, applying the estimation for d5 we shall get the required inequality
(10).

If y = 0, then (11) is trivial. Assume y 7 0. Inequality (11) will be
proved in two steps.

Step 1. Assume that there is a z € X with 0 < 2 <, disjointly sup-
ported with y, such that y+2 = f. Then |¢] <1 and y2/f = y. From tho
definition of dx we obtain

Sx(lyl) = dx(Iif —2l) <1—27"[If+2l
=27 +2), % =275y, f* =27 R, ).

Step 2 (general). Let us observe that the 2-convexity of the norm
implies that if »(,..., s, € X are disjointly supported, then

(12) l Zk‘min < (5] o
q=] f==l]

Let m be a. natural number such that 272+ < (y2/f, f*) (2 [f, f*> > 0
because y*/f > 0). One can represent ¥ = ¢y -+...+ Y, and f =2, +...--2,
as the sums of disjointly supported elements satisfying

27Ky, <27y, for i=1,...,m~l,

(13) i
0< Y <272,

Now, from (12) we get
Iyl = | S
=1

On the other hand, see [1] (Lemma 2 and Proposition 11), there oxigt

m

- .
2 N o
< D lwilr < N2 g,
=1 f=1
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a convex increasing function 5 and & constant K, such that
5(e%) < 0x(e) < K, 5(26%).
m N
Thus write @ = Y 27%F% The convexity of ¢ gives
=1
(14)  ox(@Va) i) < Kdlayl?)

Hny m

<K 3/ame i) < JEga™ 3,27 8l )
e -

m
< Eya7t )27 dx(lleil)-

qm=]
To estiraate dx(|lel) we can apply step 1. Thus
(15) Sxlliel) < 27V KM, > for i =1,...,m.

Moreover, from the choice of m and of y; and z; we obtain

N

(16) 22_2”2 <zg/f7 f*> < 4 <y§/f7f*> +2—2m+2
=1 iz

< B -

Thus, by adding up inequalities (15) and combining the result with (14)
and (16), we gob

8 ((2Va) "Myl < (20)" B2 I, £

This completes the proof of Proposition 1.9. m

Proof of Theorem 1.1 Let B < X be any «-dimensional subspace.
Let fi, ..., f, and f be ag in Theorem 1.2. By X, =« X we denote the ideal
gencrated by f, i.e. the least subspace with fe X, satisfying two pro-
perties: (i) |y < |¢| and # e X, implies y e X,, (ii) for every subset
A c X,, sup 4 € X,. It is well known, [16], that for every » € Xy, supp @
< fupp f and then there is o projection Q from X onto X, with |@] = 1.
Morcover, B < X,, since f;eX, for ¢ =1,..., 0

On X, wo define o scalar product by <y, Yap = yayalf, £ Wo
write |lylly == €y, ¥ Then the completion of (Xoy IIlg) I8 @ Hilbert
spaco. Lot ws define P = 4,00,04,00, where ¢ XX, is defined as
above, 4,2 (X, [ 1)=+(Xq, +]la) is the nclugion wap, Os: (Xoy |1 la)—>%1 ()
is tho orthogonal projection, 4y: 4y (H)~-=(H, [|-]) 18 the formal identity.

Thoe estimation of the norn of 4, follows immediately from Prop-
osition 1.8

Iyl = <y2If; £ < Iyl

for all y e X,. Then [[iy] < L.
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Tor the estimation of the norm of ¢, pick a sequence of sealars ay, ...
n 0
vy 0, With 3 a? =1 ant put y = 3 af; €4 (B). Then Schwarz’s ine-
i=1 =1
quality and property (a) imply that |y| < f. Moreover, from Theorem 1.2
we geb

L= (S = S e

=1
= [n<y?lf, I
Thus, by :mﬁplica.tion of Proposition 1.9 to y, we obtain
WP < Ly2lf, £ = L=y f, £
= In?*=(|ly]l.)?.

Hence [i,]] < LY, Let us write w, = 4,09, w, = 4,0, and let
us observe that the representation of P as the composition P = wy0w,
determines some factorization of P through a Hilbert space. Thus y,(P)
< Jwg|| jwy || < En'*~V2, This completes the proof. m

CoROLLARY 1.10. Let I be an n-dimensional Banach space isometrio
to a quotient of a subspace of a Banach lattice X whose moduli of convewily
and smoothness odmit the estimations Ox(e) > K, and ox(7) < K%,
where q =21 p> 2, and 1 < q<<2 if p = 2. Then there is a constant K,
depending on K, and K, only, such that &(F,1y) < K -pte-2l,

Proof. Since a quotient of a subspace is isometric o a subspace
of a quotient, by the duality argument it is sufficient to prove this state-
ment in the case p > 2, ¢ = 2. Therefore, let X be a Banach lattice sabis-
fying the assumptions, let H < X be a subspace, and let Q: H—F be
a quotient map. Thus Theorem 1.1 and Proposition 0.2 yield an exten-
sion @: X—F of @ with y,(f) < En**~"». Thus for an isometric em-
bedding @*: F*+B* we have y,(Q%) = 7,(Q) < v,(§) < Kn**~"*, Hence
A(F, Y < Kn'ltP, u

The next corollary improves an estimation given in [4]. Tor tho
definition of the type and the cotype of any Banach space seo for ex-
ample [2], [61.

CorOLLARY 1.11. Let X be o Banach lattice of type q and cotype p,
where ¢ =2 if p>2, and 1 < ¢< 2 if p = 2. There ewists a constant K
such that, for any n—d%menswnal space I isometric 1o a quotient of a sub-
space of X a(F, 1 < KnMre—ta,

Proof. It is proved by Figicl in [2] that the uniformly convex
Banach lattice of type ¢ has the modulus of smoothness admiting an
estimation gx(7) < K'7? for some constant K’. Thus the Banach lattice
X of type g and cotype p satisfies the assumption of Corollary 1.10. m

O
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§ 2. The trace classes §,. In this section we shall prove the “non-
commutative analogue” of Theoremn 1.2. We begin with the definitions.

Let H Dbe & complex Iilbert space. The bagie notation from the
theory of operators in o ilbert space is the game as in [6]. Tet L<p < oo
be any real number, Tor an f)]’)(sl':htur AeZF(H,H) we put

The completion of & ([l, If) under the norm |f-|, is denoted by 8,. 1t
is well known (ef, [67) that if 1 < p < oo, the dual gpace (8,)* is isometrie
10 8, (p* - pp-1). This duality ix given by the trace: (4, B) = frace Bo
od Tor A el, and B &Sy,

Subsequently the following fact will often be used.

Lowmma 2.1, Let A H->I be o compact operator, 4 = 0. Let 1 <r < o0
be o real mumber. Lor every e H with |||l = 1 we have

(A (@), 2)" < (A"(@), @).
Moreover, in the case r> 1, the equality holds if and only if » is an
eigenvector of the operator A, i.6. A(®) = A @ for some 1> 0.
Proof. Let (e) denote the orthonormal basis in H of eigenvectors

o
of the operator A, A(e) = ae ford = 1,... For given o e H, & = 3 a;6;,

by ITolder’s inequaliby we obtain =1
o
2,
(A (@) Zamaia-Zaa”Z“
feal =

<[ Sara] (S )" = (6o, 0)

The case where the equality holds is obvious. w

The main vesult of thiy section is the following.

Trnorum 2.2, Let p > 2 and let B < 8, be an n-dimensional subspace.
There 18 a projection L from 8, onto H with y.(P) < pME=UP,

Itist wo shadl prove

Trworum 9.3, Leb L <p < co and leb B < 8, be an n-dimensional

subspace. Theve s a bawis in M, By, ..., B, such that for o soquence of

(complom) sealurs g, o0y w, W have

N

1
N KT Ve
s 0 (Z ailf’,i)c> (Z ail",,) o Jr—2

n
- \ o
(17 " lz oty
o), da ) ot |
k11
where B o (3 B0 IR Moreover, |, == 1.
toal

To establish this theorem we shall define some Banach space of
operators from Iy to subspaces of 8.
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DEFINITION 2.4. Let 1 < p < oo The operator wu: ly—-S, is R(right)-
8,-summing or L(left)-S,-summing if

5: (u(ei))o(zc(ei))* e8,, or E(M(ei))*o (ule;)) & By,
= =

respectively. Here (¢;) denotes the unit vector basis in I,. We define the
norms by

5, (1) = ” (u(eg))o ("lf(lh))*.lll2 “

\ —H[Z w(ed)*e fuie)] |,

(18)

”s

respectively. If ¥ < §, is a subspace, the operator u: I,—H is R-(&, §,)-
summing (resp. L-(E, 8,)-summing) if the composition ju: 1,—8, is
R-8,-summing (resp. L-S, summing) where j: E-§, ih the inclusion
map. We define :m%s (u) = ns (ju) (vesp. nﬂ,sp(u) = ﬂs (ju)).

Let us observe that the defmltlon of the norm (18) is similar, in
a sense, to formula (B). If B < §, is the subspace of diagonal operators
with respect to a fixed orthonormal basis in H isometric to 7,, then
R-(#, 8p)-summing and L-(E, 8,)-summing operators from I, to B are
p-decomposable, which in this case is the same ag p-summing [10].

Let us examine the dual norm to ngp.

PROPOSITION 2.5. Lét 1 <p < oo, p* =plp—1. For an operator
w: 8,1y with the norm dual to av};”@ the following equality holds:

(19) (w5,)" (w) = =5, (w*).

Here n@ +(w*) denotes the Li-Sye-summing norm of the operator w*: Iy—S,.
Pro of. Fix w: 8,—~17. First we shall prove that for every wu: I8,
with ns (w) <1 we have
trace wou| < af , (w*).

Let (¢;) be the unit vector basis in 7. For convenicnee we write A; = ule),
B; = w*(¢;). By Holder’s inequality, for arbitrary orthonormal basis (py)
in H we have

n N 1L
[trace wou| = [trace u*ow*| = IZ (urw*(s;), e{][ = ‘Z(B" 4

i=1 4=1

n
= 1 2 2 (AiBi(%): %)

= =1 =1

=1 2 > (Bl Al @0} | < S 1B, (gl 143 (g

k=1 i=1] Je=1 {=1
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,;’—’}:(M 1B (@)™ Z 145 (@) 12) ™
<| S (3 B 12 >’ (3 142 gt 2|
Tl Tl 11 fral
=[S0 00, n | S Ao, e

Thus, if 1<p @2, wo gpecily (@) as the orthonormal basis of eigen-

n
veetors of the (nonnegative) operator ' A4,47.
dwal

‘We have Z A4y ) {pg) = 0h,. Toneo, applying Lemma 2.1 to the

exponent p*/z>1 we  obtain

firace wou| < | Sf (( i’ BB gy o) )T IE’ ap|"

gy ] Teml
P l S (( \T Bm B )m/z (@) (Plc)] v [:111‘51‘00 (i’ .A.;_A_;")I)Iz]llp
ol tit =1

I"[‘:I‘il;(ﬂ(% (Zﬂj B} JC%’,i)w2 ’ll/"*ll‘tmcn (ﬁ: AiA}‘)m]lm .

By the definition of the norm in S, and 8, we geb

(2 A,Ai)l’ZH <, (%),

If 2<p< oo we spumljv (p) o8 the orthonormal basgis of eigen-

(20}  [trace wou| < H ZB*Bi)m

veetors of the operador 2, B} B, and. we obtain the same inequality (20).

Henco sup Jtrace wo u| < ar"” (™).
To prove the cquality fov o given operator w: S,—>If wo write B,
= w¥*(g;) and woe put

4; = (7:.\:’: B (;j BB oBy.

Lot us dotine w: B->8, by
u(e, ) v A dor g ey 0.
It is cagy to seo that H () os L oand that
tiraoo wou == mg, (w¥).

Thus n},ﬁm(w*) < sup [irace wou|. This completes the proof. m
A gtandard argument yields
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COROLLARY 2.6. Let L<p < oo and B8, be a subspace On the
space L(H, %) of all operators from B to 1} the norm dual to nE Sp 48 defined
by the formula

(21) (w8 s,)" ()
where the infimum s taken over all ewtensions v: Sy—>Iy of w.

Moreover, there is an operator W: S,~>1y with W[ H = w such that

= inf “Bp. (/D*) 7

;5 ,('IJ)*) = infﬂgﬂ‘(’u*).

Proof of Theorem 2.3. We apply Theorem 0.1 to 1,110 norms
ﬂzcs and. (w2 Sp)* Thus there is an isomorphism u: 1§—H with ) gp (W) =1
and (ﬂE,s )*(u“‘) = N. Oomllarv 2.6 implies that there ig an. oxtensmn
w: 8,~1 P of w! with vzs ,(w*) =n. We defmc B, = u(e), & = w(e)

fori=1,...,n and F = (21}11*)1’3 (Y‘G* )Y It is obvious that
17, =1 and @l =n. =}
Since wou = idz;” we have

7 n
7 = trace wou = Z(zoou(ei), e) = Z(Fﬂ &)
=1 =1

n n
== Ztmce G I, = tmceZF.;Gi,
i=1 4=l
(for the last equality see [6], Theorem II.8.2).

Let us assume 2 < p < oo (this is the case used in the proof of The-
orem 2.2). Let us denote by (¢,) the orthonormal basis in H of eigenvectors
of the operator & We have G(p;) = g,9,. Thus, applying Holder’s in-
equality and Lemma 2.1, we get

n.—traceZFG—-ZZ(FG (2e)s o) = D) D) (Gulon), Filgn)

i= k=171 f=1im1
0 n
< 2 16 le) 2 I3 )
k=1 i= t=1

= g(( ZZG‘?Gi) (2x)y %)1/2 ((zFiF?)(‘pk)i ‘P}c)m
= = s

it
Mz

(€ (20), 2 (7" (91), i)

9]’3*)‘/1" ( 5: (P1)) @1 p/‘)lip

k=1

”,% ’“)“’"(f (9, 91))"? = [Gle- 17, =

Therefore, in the estimations above, we have equalities in all places,

2 gh:(-P (Pr) P )112

{\ 7]
ngsH

N

.

44_;:‘
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From those equalities we subsoguently get Ghe following conditions:
(22)  forevery lo==1,... there i3 a ¢, & C such that for every ¢ =1, ..., n
Hilm) == ol (i),

(23) there 48 a ¢ & C such that for every b =1, ...
(8" () )™ == g™,
(24)  the wvedlors ¢y, ave eigonvectors of I (= 1,...), and

() =+ fiog.

(Condition (24) follows frown Leanma 2.1.)
Conditions (23) and (24) give fp == eg?'~'; henee f2 = oPgl" for
=1 ... By adding up these equalitics wo get

d L

b %l 0 QT - -

= (1Y == X = e gk == oP(IGH )" = cPnt";
Jee) el

hence o ==n~Y7~1, Thus f;, = """ for k = 1, ... Since the operators
F and @ are both dingonal in the basis ¢, wo finally obtain

(25) (R Ly
Combining conditions (22) and (25), one can verity that ¢, = aff~% Thus
(26) Gilpy) == wff "W () for  d=L,..,m, B=1,...

One ean prove, in a shnilar way, (258) and (26) also in the case 1 < p
< 2. Then in tho proot by (¢,) we mean the orthonormal basis of eigen-
veetors of tho operatoxr TF.

We shall show that (for 1 <p < oo)

(27) by = traco FyFY =2 for 4, j=1,..,0

Tet () denobe the common orthonmrmal basis of cigenveetors of the
operators B and @ (it oxisls by (26)). Sinee w*ow* - 1(111, by the defini-

tion of 2, and ¢, and (25) wo have, for 4, § -2 1, ... s My
1 i )

8y (uq,, ) = (WRomwR(e)y o) o (G, I ) = fivnow By @,

(=)
Fl(l’ﬁt Pu)s Pr) ,""’>; af (BT () 5 )

9 EA R nLd -
41,2_;(.14‘,11‘;‘,‘.11’” M)y ga) == 0 lrnoe By B EY,
R )
Formula (27) obviously yickls equality (17) and this complotes the proof. m
To prove Theorem 2.2 we noed somo technical lemmas.
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LevmA 2.7, Let A,, ..., 4,, be a sequence of bounded operators in H,
and let ay,...,q, be a sequence of scalars. Then

m

(S aa)( 3 waf < | Siar)( 34,1,

Proof. The argument is elementary. We can develop

[ Dot

=1 2

713

a4, >*

i
-

= D loil* A AT+ D (am A Af +a0.4, A7)

i=1 <3
= 2 los24, AT + 2, [(ayd,) (a.4,)* +(a;4;) (6,4,)*].
i= i<f
* But for any operators 4, B one has
AB*4-BA* < AA* + BB,
(since AA* —AB*—BA* +BB* = (A —B)(4 —B)* = 0). Then we can esti-
mate
m m m
(3 awa )(Za A < Dlaf2A, AT+ DTl A, 4%+ a4, 47]
=1 _.1 i>]
mn m m -
= 2 |“¢|2AiA:+22 lo;|24, A7 + 22 log 24 47
i=1 T=17>1 =1 i<g

By changing the indices in the last sum we see that this quantity is
equal to

Zlailei-A*+ VZlajleiA*JrZ N Jogl24, 4% = 2|aj| (ZA 43).

i=l =1 F>i =] j<1 mal
This completes the proof. m
LevmaA 2.8. Let A, B, C be operators in Hy 0 < A< B. Let 0 <r<< 1
be a vreal number. Then
O*A"0 < C*B'0.

Proof. Our assumptions imply that 0 < A"<< B ([12]). On the
other hand, for any operators ¢ and D, C*DC > 0 Wh(\ncvor D > 0. Thus
O*ATC K O*B’C’ n ,

Lenwva 2.9. Let A, B be operators in H with 0 < A < B, and let r > 0
be a real number. Then

trace A™% < trace ABTA.
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Proof. If 0 <71, then our statoment follows from Lemma 2.8
and the monotonieity of the trace, i.c. the property that trace D> 0
whenever D2 0. In the case #>1 we denote the orthonormal basis
of eigenvectors of the operator 4 by (g,); then A (p,) = o, With a;, > 0
for b =1,... Since A< B, we have a,< (B(g,), rp,) for £ =1,... On
the other hfmd Lemma 2. 1 implies that (B(g,), o))" < (B (¢y), %). GOm-
bining these inequalities, we gob

traee A7 o

Y‘I r[z /24 a’ln (/7/0 H (pk)

Icul lewal

.W,c (B" () - 2) Z(ABA (), @) = trace AB'A.

/.ml Jowed

This completes the proof. m

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let 2<p < oo and let # < 8, be an
n-dimensional subspace. We define ¥y, ..., 7, and F ag in Theorem 2.3.
On the space F(H, H) of all finite rank operators we define the sealar
product by {4, By = (trace AB*EF?%) the completion of #(H, H)
under the norm {[|-]}| determined by this scalar product will be denoted
by 8,. Then §, is o Hilbert Hl)i\u(‘(‘ We define P =4,0Q04,, where 4,:

fw'S’z ig the identity wap, @: Sy—4,(B) iy the orthogonal projection,
tyt 4y (H)-»F i tho identity map. Obvieusly, P is a projection onto B
and yo (P) < iyl 145l

To egtimate the norm o[ %y let us recall that for any 1 < ¢ < co and
operatory B e S, Ce 8, (q* = q(g—1)), the composition OB is nuclear
and {tracc OB| < 1Bl |10“q"‘ (ef. [6], IIL.7.2). So, let ¢ > 1 be such real
number that 2/p —1/¢ = 1. Wo have

[JAN] = (trace AA"FP=*)2 < |4 AXYE - |a02=2 )32
s [|All, |1
for every A e8,. Thus |y < [FY~Y2 o1,
To oﬂlnmulm tho norm. of 4y let us consider any 7'ell, T - Z“t
By the propertios of thoe irace wo have Y2
I ()P == (Y == trace (TT*)P
== frace DT (TT*PRY = teace T (TT*)0E-1T,

Applying Lemama 2.7 o the operator TT* and then Lemma 2.9 with
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the exponent 7 =p/2—1> 0, we can estimate

e

lia( DI <

-|

gince F > 0. Now we can use equality (17) and find the last line iy equal to
aP=1(trace TT*FP=2)PE = pPP=1||[T]|7.

Thus [fis] <02~ 80 po(P) < w* " and this completes the
proof. m '

COROLLARY 2.10. Let G be a n-dimensional Bamach spacc isometric
to a quotient of a subspace of 8,, 1 <p < co. Then A(@, 1) < nl'P~1,

Proof. As in the proof of Corollary 1.11, we can assume that p > 2.
Let B < 8, be a subspace and @: E—G the guotient map. By Theorem
2.2 and Proposition 0.2 there is an extension §: §,—& with y,(§) < n**~17.
Thus for an isometric embedding @*: G*—E* we have 1,(@%) = 7.(Q)
< 7u(Q) < W', Hence d(6,1) = d(G", 1) <nlW, m

o 2)1)/2—‘1 “trace T (FIF*)Tllz- 1

o
]
-

e

1 J—
Iailz)m *-trace TT*F?,

o,
i
-
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